Synopsis

Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern. This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.The purpose of this report is to adress the following two questions, 1. Across the United States, which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health? 2. Across the United States, which types of events have the greatest economic consequences? As for question 1, we show that TORNADO is the most harmful event, followed by EXCESSIVE HEAT, TSTM WIND and FLOOD. In regard to question 2, we show that that FLOOD has the greatest economic consequence (Total: 150 Billion USD), followed by HURRICANE/TYPHOON (Total: 72 Billion USD) and TORNADO (Total: 57 Billion USD). In order to end up with these findings we followed a meticulous process described in our Data Processing section to the original (NOAA) dataset, which is stored in the following location: https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2

(Number of sentences: 8)

Data Processing

  1. Download the file from the corresponding url.
url <-"https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
download.file(url, "repdata%2Fdata%2FStormData.csv.bz2")
rm(url)
  1. Reading the csv file with read.csv function and create a dataset.
dataset <- read.csv("repdata%2Fdata%2FStormData.csv.bz2")
  1. View the structure of the dataset
str(dataset)
## 'data.frame':    902297 obs. of  37 variables:
##  $ STATE__   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_DATE  : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
##  $ BGN_TIME  : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
##  $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
##  $ COUNTY    : num  97 3 57 89 43 77 9 123 125 57 ...
##  $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
##  $ STATE     : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ EVTYPE    : Factor w/ 985 levels "   HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
##  $ BGN_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ BGN_AZI   : Factor w/ 35 levels "","  N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_LOCATI: Factor w/ 54429 levels ""," Christiansburg",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_DATE  : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_TIME  : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ COUNTY_END: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ COUNTYENDN: logi  NA NA NA NA NA NA ...
##  $ END_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ END_AZI   : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_LOCATI: Factor w/ 34506 levels ""," CANTON"," TULIA",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LENGTH    : num  14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##  $ WIDTH     : num  100 150 123 100 150 177 33 33 100 100 ...
##  $ F         : int  3 2 2 2 2 2 2 1 3 3 ...
##  $ MAG       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ WFO       : Factor w/ 542 levels ""," CI","%SD",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ ZONENAMES : Factor w/ 25112 levels "","                                                                                                               "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LATITUDE  : num  3040 3042 3340 3458 3412 ...
##  $ LONGITUDE : num  8812 8755 8742 8626 8642 ...
##  $ LATITUDE_E: num  3051 0 0 0 0 ...
##  $ LONGITUDE_: num  8806 0 0 0 0 ...
##  $ REMARKS   : Factor w/ 436781 levels "","\t","\t\t",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ REFNUM    : num  1 2 3 4 5 6 7 8 9 10 ...
  1. View dataset variables
colnames(dataset)
##  [1] "STATE__"    "BGN_DATE"   "BGN_TIME"   "TIME_ZONE"  "COUNTY"    
##  [6] "COUNTYNAME" "STATE"      "EVTYPE"     "BGN_RANGE"  "BGN_AZI"   
## [11] "BGN_LOCATI" "END_DATE"   "END_TIME"   "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE"  "END_AZI"    "END_LOCATI" "LENGTH"     "WIDTH"     
## [21] "F"          "MAG"        "FATALITIES" "INJURIES"   "PROPDMG"   
## [26] "PROPDMGEXP" "CROPDMG"    "CROPDMGEXP" "WFO"        "STATEOFFIC"
## [31] "ZONENAMES"  "LATITUDE"   "LONGITUDE"  "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS"    "REFNUM"
  1. Subset the dataset to retain only the variables needed for the analysis.

Here, we retain only the variables that are valuable for our analysis, and for those, the rows that at least one of their values is not zero or NA (?).

Finally, we delete the initial dataset to clear up memory space.

stormData <- subset(dataset, EVTYPE != "?" & (INJURIES > 0 | FATALITIES > 0 | PROPDMG > 0 | CROPDMG > 0), select = c("EVTYPE", "FATALITIES", "INJURIES", "PROPDMG", "PROPDMGEXP", "CROPDMG", "CROPDMGEXP"))

rm(dataset)

The subsetted dataset structure and its first ten rows is as follows:

str(stormData)
## 'data.frame':    254632 obs. of  7 variables:
##  $ EVTYPE    : Factor w/ 985 levels "   HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
head(stormData,10)
##     EVTYPE FATALITIES INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP
## 1  TORNADO          0       15    25.0          K       0           
## 2  TORNADO          0        0     2.5          K       0           
## 3  TORNADO          0        2    25.0          K       0           
## 4  TORNADO          0        2     2.5          K       0           
## 5  TORNADO          0        2     2.5          K       0           
## 6  TORNADO          0        6     2.5          K       0           
## 7  TORNADO          0        1     2.5          K       0           
## 8  TORNADO          0        0     2.5          K       0           
## 9  TORNADO          1       14    25.0          K       0           
## 10 TORNADO          0        0    25.0          K       0
  1. Transforming the subsetted dataset in order to calculate the dollar amounts of damages.
#Property damages exponents
levels(stormData$PROPDMGEXP)
##  [1] ""  "-" "?" "+" "0" "1" "2" "3" "4" "5" "6" "7" "8" "B" "h" "H" "K"
## [18] "m" "M"
#Crop damages exponents
levels(stormData$CROPDMGEXP)
## [1] ""  "?" "0" "2" "B" "k" "K" "m" "M"
require(plyr)
## Loading required package: plyr
# Create a new variable to map the abovementioned levels of property damage exponents
# ""  "-" "?" "+" "0" "1" "2" "3" "4" "5" "6" "7" "8" "B" "h" "H" "K" "m" "M"
propDMGmap <- c(10^0, 10^0, 10^0, 10^0, 10^0, 10^1, 10^2, 10^3, 10^4, 10^5, 10^6, 10^7, 10^8, 10^9, 10^2, 10^2, 10^3, 10^6, 10^6)

# Create a new variable to map the abovementioned levels of crop damage exponents
# ""  "?" "0" "2" "B" "k" "K" "m" "M"
cropDMGmap <- c(10^0, 10^0, 10^0, 10^2, 10^9, 10^3, 10^3, 10^6, 10^6)

# Use the mapvalues function to map these exponents
PROPDMG10e <- as.character(mapvalues(stormData$PROPDMGEXP, levels(stormData$PROPDMGEXP), propDMGmap))
CROPDMG10e <- as.character(mapvalues(stormData$CROPDMGEXP, levels(stormData$CROPDMGEXP), cropDMGmap))

# Create two new columns to put these values
stormData$PROPDMG10e <- as.numeric(PROPDMG10e)
stormData$CROPDMG10e <- as.numeric(CROPDMG10e)

# Clear up memory space by removing 'propDMGmap', 'cropDMGmap', 'PROPDMG10e' and 'PROPDMG10e'
rm(propDMGmap)
rm(cropDMGmap)
rm(PROPDMG10e)
rm(CROPDMG10e)

# Create three new columns that have the dollar amounts for property damage, crop damage, and total damage
stormData$property.damage <- stormData$PROPDMG * stormData$PROPDMG10e
stormData$crop.damage <- stormData$CROPDMG * stormData$CROPDMG10e
stormData$total.damage <- stormData$property.damage + stormData$crop.damage
  1. Producing a new table with the aggregated property, crop, and total damages per EVTYPE
# Create a new table with the total amounts of damages per EVTYPE
EVTYPEDMG <- aggregate(list(stormData$property.damage, stormData$crop.damage, stormData$total.damage), list(stormData$EVTYPE),sum)
names(EVTYPEDMG) <- c("EVTYPE", "Property.Damage", "Crop.Damage", "Total.Damage")
rownames(EVTYPEDMG) <- NULL

# Order the dataset based on total damage (descending order)
EVTYPEDMG <- EVTYPEDMG[order(-EVTYPEDMG$Total.Damage),]

# Format numeric values into a presentable manner (non-scientific) for the reader 
EVTYPEDMG$Property.Damage <- as.numeric(format(EVTYPEDMG$Property.Damage, scientific = FALSE))
EVTYPEDMG$Crop.Damage <- as.numeric(format(EVTYPEDMG$Crop.Damage, scientific = FALSE))
EVTYPEDMG$Total.Damage <- as.numeric(format(EVTYPEDMG$Total.Damage, scientific = FALSE))

# View the first 10 rows of the newly produced table
head(EVTYPEDMG,10)
##                EVTYPE Property.Damage Crop.Damage Total.Damage
## 85              FLOOD    144657709807  5661968450 150319678257
## 223 HURRICANE/TYPHOON     69305840000  2607872800  71913712800
## 406           TORNADO     56947380676   414953270  57362333946
## 349       STORM SURGE     43323536000        5000  43323541000
## 133              HAIL     15735267513  3025954473  18761221986
## 72        FLASH FLOOD     16822673978  1421317100  18243991078
## 48            DROUGHT      1046106000 13972566000  15018672000
## 214         HURRICANE     11868319010  2741910000  14610229010
## 309       RIVER FLOOD      5118945500  5029459000  10148404500
## 237         ICE STORM      3944927860  5022113500   8967041360
  1. Producing a new table with total fatalities and injuries per EVTYPE
# Create a new table with the total fatalities and injuries per EVTYPE
EVTYPEHARM <- aggregate(list(stormData$FATALITIES, stormData$INJURIES), list(stormData$EVTYPE),sum)
names(EVTYPEHARM) <- c("EVTYPE", "FATALITIES", "INJURIES")
rownames(EVTYPEHARM) <- NULL

# Calculate the total number of fatalities and injuries
EVTYPEHARM$TOTAL <- EVTYPEHARM$FATALITIES + EVTYPEHARM$INJURIES

# Order the dataset based on total fatalities and injuries (descending order)
EVTYPEHARM <- EVTYPEHARM[order(-EVTYPEHARM$TOTAL),]

# View the first 10 rows of the newly produced table
head(EVTYPEHARM,10)
##                EVTYPE FATALITIES INJURIES TOTAL
## 406           TORNADO       5633    91346 96979
## 60     EXCESSIVE HEAT       1903     6525  8428
## 422         TSTM WIND        504     6957  7461
## 85              FLOOD        470     6789  7259
## 257         LIGHTNING        816     5230  6046
## 150              HEAT        937     2100  3037
## 72        FLASH FLOOD        978     1777  2755
## 237         ICE STORM         89     1975  2064
## 363 THUNDERSTORM WIND        133     1488  1621
## 480      WINTER STORM        206     1321  1527

Results

  1. Which types of events (as indicated in the EVTYPE variable) are most harmful in the United States with respect to population health?
require(reshape2)
## Loading required package: reshape2
require(ggplot2)
## Loading required package: ggplot2
# Reshape the dataset for plotting purposes. Present only the 10 most harmful events
EVTYPEHARMmelted <- melt(EVTYPEHARM[1:10,1:3], id.vars = "EVTYPE", variable.name = "CONSEQUENCE")

# Produce the stacked plot with ggplot

ggplot(EVTYPEHARMmelted, aes(fill = CONSEQUENCE, x = reorder(EVTYPE,-value), y = value)) +
        geom_bar(stat="identity") + 
        xlab("Event Type") + 
        ylab("Number of Incidents") + 
        theme(axis.text.x = element_text(angle=90, hjust=1)) + 
        ggtitle("The 10 most harmful event types with respect to population health") +
        theme(plot.title = element_text(hjust = 0.5))

The figure above shows that TORNADO is the most harmful event, followed by EXCESSIVE HEAT, TSTM WIND and FLOOD.

  1. Across the United States, which types of events have the greatest economic consequences?
require(reshape2)
require(ggplot2)

# Reshape the dataset for plotting purposes. Present only the 10 events with most damages
EVTYPEDMGmelted <- melt(EVTYPEDMG[1:10,1:3], id.vars = "EVTYPE", variable.name = "CONSEQUENCE")

# Produce the stacked plot with ggplot

ggplot(EVTYPEDMGmelted, aes(fill = CONSEQUENCE, x = reorder(EVTYPE, -value), y = value/10^9)) +
        geom_bar(stat="identity") + 
        xlab("Event Type") + 
        ylab("Damages in billion USD") + 
        theme(axis.text.x = element_text(angle=90, hjust=1)) + 
        ggtitle("The 10 event types with most economic damages") +
        theme(plot.title = element_text(hjust = 0.5))

The figure above shows that FLOOD has the greatest economic consequence (Total: 150 Billion USD), followed by HURRICANE/TYPHOON (Total: 72 Billion USD) and TORNADO (Total: 57 Billion USD).