Cargamos paquetes:
library(lme4)
library(nlme)
library(MCMCglmm)
library(AICcmodavg)
library(mgcv)
library(MuMIn)
library(MASS)
library(lattice)
library(lavaan)
library(piecewiseSEM)
library(car)Cargamos la base de datos:
Estructura de variables:
## Classes 'data.table' and 'data.frame': 272 obs. of 7 variables:
## $ Site : Factor w/ 36 levels "CE01","CE02",..: 1 1 1 1 1 1 1 1 2 2 ...
## $ mean : num 1.31e+03 2.76e+03 6.19e+02 3.83e+01 6.11e-02 ...
## $ sd : num 1101.67 1310.07 1226.58 98.61 0.32 ...
## $ Frec_Dom : chr "F12" "F23" "F34" "F45" ...
## $ prom.vert: num 0.142 0.142 0.142 0.142 0.142 ...
## $ prom.hor : num 0.0542 0.0542 0.0542 0.0542 0.0542 ...
## $ AB : num 20296 20296 20296 20296 20296 ...
## - attr(*, ".internal.selfref")=<externalptr>
## - attr(*, "sorted")= chr "Site"
Estandarización de variables:
Site <- as.factor(res2$Site)
FDm <- as.numeric(res2$mean)
FD <- as.factor(res2$Frec_Dom)
Fv <- as.numeric(((res2$prom.vert)-mean(res2$prom.vert))/sd(res2$prom.vert))
Fh <- as.numeric(((res2$prom.hor)-mean(res2$prom.hor))/sd(res2$prom.hor))
AB <- as.numeric(((res2$AB)-mean(res2$AB))/sd(res2$AB))Agrupación de variables transformadas:
## The following objects are masked _by_ .GlobalEnv:
##
## AB, FD, FDm, Fh, Fv, Site
mod1 <- lm(FDm~Fv+Fh+AB,data = res2)
mod2 <- lm(FDm~Fh,data = res2)
mod3 <- lm(FDm~Fv,data = res2)
mod4 <- lm(FDm~Fv+Fh+Fv:Fh ,data = res2)
mod5 <- lm(FDm~AB)
mod0 <- lm(FDm~1,data = res2)
AIC(mod1, mod2, mod3, mod4, mod5)## df AIC
## mod1 5 4465.891
## mod2 3 4463.353
## mod3 3 4462.030
## mod4 5 4465.943
## mod5 3 4463.010
## df AIC
## mod1 5 4465.891
## mod0 2 4461.504
No hay fuertes evidencias de que existe un mejor modelo.
#Revizamos la ortogonalidad de las variables independientes
#Seleccion de variables a traves del método “backward”
## Start: AIC=3691.99
## FDm ~ Fv + Fh + AB
##
## Df Sum of Sq RSS AIC
## - Fh 1 29473 207371016 3690.0
## - AB 1 64042 207405584 3690.1
## - Fv 1 794472 208136015 3691.0
## <none> 207341542 3692.0
##
## Step: AIC=3690.03
## FDm ~ Fv + AB
##
## Df Sum of Sq RSS AIC
## - AB 1 76441 207447457 3688.1
## - Fv 1 825430 208196445 3689.1
## <none> 207371016 3690.0
##
## Step: AIC=3688.13
## FDm ~ Fv
##
## Df Sum of Sq RSS AIC
## - Fv 1 1127158 208574615 3687.6
## <none> 207447457 3688.1
##
## Step: AIC=3687.6
## FDm ~ 1
No se muetsra una efecto importante para eliminar alguna variable
#Para la importancia relativa de cada variable del modelo
## The following objects are masked _by_ .GlobalEnv:
##
## AB, FD, FDm, Fh, Fv, Site
## The following objects are masked from data (pos = 4):
##
## AB, FD, FDm, Fh, Fv, Site
## Subset selection object
## Call: regsubsets.formula(FDm ~ Fv + Fh, data = data, nbest = 10)
## 2 Variables (and intercept)
## Forced in Forced out
## Fv FALSE FALSE
## Fh FALSE FALSE
## 10 subsets of each size up to 2
## Selection Algorithm: exhaustive
## Fv Fh
## 1 ( 1 ) "*" " "
## 1 ( 2 ) " " "*"
## 2 ( 1 ) "*" "*"
#Autocorrelación
## Fv Fh AB
## 1.133011 1.032976 1.142911
## Fv Fh AB
## 1.064430 1.016354 1.069070
## [1] 1.142911
#Relación entre variables
##
## Call:
## glm(formula = (FDm + 1) ~ Fv + Fh + AB, family = poisson, data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -34.838 -30.314 -27.133 2.557 100.298
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.108153 0.002877 2122.928 < 2e-16 ***
## Fv -0.136771 0.003238 -42.242 < 2e-16 ***
## Fh -0.022443 0.003102 -7.235 4.67e-13 ***
## AB 0.031009 0.002813 11.024 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 319740 on 271 degrees of freedom
## Residual deviance: 316954 on 268 degrees of freedom
## AIC: Inf
##
## Number of Fisher Scoring iterations: 6
glm1quasi<- glm((FDm+1)~Fv+Fh+AB, family=quasipoisson, data) #Modelo de quasi, por la sobredispersión
summary(glm1quasi)##
## Call:
## glm(formula = (FDm + 1) ~ Fv + Fh + AB, family = quasipoisson,
## data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -34.838 -30.314 -27.133 2.557 100.298
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.10815 0.11767 51.910 <2e-16 ***
## Fv -0.13677 0.13241 -1.033 0.303
## Fh -0.02244 0.12687 -0.177 0.860
## AB 0.03101 0.11503 0.270 0.788
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasipoisson family taken to be 1672.515)
##
## Null deviance: 319740 on 271 degrees of freedom
## Residual deviance: 316954 on 268 degrees of freedom
## AIC: NA
##
## Number of Fisher Scoring iterations: 6
#Modelos Mixtos
M1 <- lmer(log(FDm+1)~Fv+poly(AB,2)+Fh+poly(AB,2)+(1|Site),data=data)
M2 <- lmer(log(FDm+1)~Fv+poly(AB,2)+(1|Site),data=data)
M3 <- lmer(log(FDm+1)~Fh+poly(AB,2)+(1|Site),data=data)
M0 <- lmer(log(FDm+1)~1+(1|Site),data=data)## df AIC
## M1 7 1390.601
## M2 6 1387.175
## M3 6 1387.222
#Elección del Modelo
## Linear mixed model fit by REML ['lmerMod']
## Formula: log(FDm + 1) ~ Fv + poly(AB, 2) + Fh + poly(AB, 2) + (1 | Site)
## Data: data
## REML criterion at convergence: 1376.601
## Random effects:
## Groups Name Std.Dev.
## Site (Intercept) 0.000
## Residual 3.089
## Number of obs: 272, groups: Site, 34
## Fixed Effects:
## (Intercept) Fv poly(AB, 2)1 poly(AB, 2)2 Fh
## 3.013469 -0.007105 1.419687 -0.985677 0.043415
## Warning: 'r.squaredGLMM' now calculates a revised statistic. See the help
## page.
## R2m R2c
## [1,] 0.001257965 0.001257965