.
Profession | Model | P_value |
---|---|---|
Clerical | y = 0.1669x+-1.0531 | 0.0135 |
Doctor | y = -1.0096x+-1.003 | 4.09e-07 |
Homemaker | y = 0.0933x+-1.0337 | 0.309 |
Lawyer | y = -0.5151x+-0.9795 | 3.28e-08 |
Manager | y = -0.8872x+-0.9392 | 1.9e-20 |
Professional | y = -0.2674x+-0.9917 | 0.000507 |
Student | y = 0.5641x+-1.081 | 5.72e-12 |
BlueCollar | y = 0.5236x+-1.1541 | 6.33e-20 |
Variable | Model | P_value |
---|---|---|
INCOME | y = -7.7e-06x+-0.5796 | 5.34e-35 |
HOME_VAL | y = -3.5e-06x+-0.53 | 6.81e-57 |
EDUCATION | y = 0.0672548x+-1.2363 | 0.000109 |
BLUEBOOK | y = -2.95e-05x+-0.5769 | 1.61e-20 |
CAR_AGE | y = -0.0411201x+-0.7018 | 1.88e-18 |
REVOKED | y = 0.9303102x+-1.1593 | 6.15e-41 |
Variable | Model | P_value |
---|---|---|
HOME_VAL | y = 0.0019148x+5450.4687 | 0.192 |
BLUEBOOK | y = 0.1101667x+4131.6544 | 3.9e-08 |
RED_CAR | y = 468.1950991x+5568.2235 | 0.205 |
OLDCLAIM | y = -38.4348091x+5796.8835 | 0.729 |
CLM_FREQ | y = 12.1620883x+5687.3798 | 0.928 |
REVOKED | y = -707.8851112x+5847.834 | 0.0864 |
MVR_PTS | y = 119.5203636x+5405.5718 | 0.0648 |
CAR_AGE | y = -18.5106011x+5861.9967 | 0.56 |
.
##
## Call:
## glm(formula = TARGET_FLAG ~ REVOKED + work + HOME_VAL + MVR_PTS +
## CAR_USE + BLUEBOOK + PARENT1 + Manager + TRAVTIME + KIDSDRIV +
## TIF + INCOME + CLM_FREQ + Sports_Car + SUV + MSTATUS + Clerical +
## Pickup + Van + Panel_Truck + CAR_AGE + BlueCollar + EDUCATION +
## Doctor + YOJ + HOMEKIDS, family = binomial(link = "logit"),
## data = training_set)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.5429 -0.7150 -0.3957 0.6089 2.8533
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.763e+00 2.405e-01 -11.490 < 2e-16 ***
## REVOKEDYes 6.950e-01 9.318e-02 7.459 8.73e-14 ***
## workUrban 2.326e+00 1.289e-01 18.041 < 2e-16 ***
## HOME_VAL -1.406e-06 3.849e-07 -3.653 0.000259 ***
## MVR_PTS 1.095e-01 1.574e-02 6.956 3.49e-12 ***
## CAR_USEPrivate -7.719e-01 9.725e-02 -7.938 2.06e-15 ***
## BLUEBOOK -2.481e-05 5.425e-06 -4.573 4.80e-06 ***
## PARENT1Yes 3.299e-01 1.266e-01 2.605 0.009181 **
## Manager -8.000e-01 1.288e-01 -6.213 5.20e-10 ***
## TRAVTIME 1.567e-02 2.189e-03 7.160 8.08e-13 ***
## KIDSDRIV 3.932e-01 6.864e-02 5.729 1.01e-08 ***
## TIF -5.859e-02 8.540e-03 -6.861 6.82e-12 ***
## INCOME -4.879e-06 1.114e-06 -4.379 1.19e-05 ***
## CLM_FREQ 1.534e-01 2.952e-02 5.196 2.03e-07 ***
## Sports_Car 9.933e-01 1.236e-01 8.038 9.12e-16 ***
## SUV 6.668e-01 9.969e-02 6.689 2.24e-11 ***
## MSTATUSYes -5.298e-01 9.580e-02 -5.530 3.20e-08 ***
## Clerical 2.588e-01 1.054e-01 2.455 0.014099 *
## Pickup 5.127e-01 1.154e-01 4.444 8.83e-06 ***
## Van 7.091e-01 1.400e-01 5.063 4.12e-07 ***
## Panel_Truck 5.791e-01 1.692e-01 3.423 0.000620 ***
## CAR_AGE -1.956e-02 7.252e-03 -2.697 0.007005 **
## BlueCollar 2.216e-01 9.940e-02 2.230 0.025758 *
## EDUCATION 6.712e-02 2.338e-02 2.871 0.004097 **
## Doctor -4.509e-01 2.585e-01 -1.744 0.081153 .
## YOJ -8.312e-03 7.785e-03 -1.068 0.285678
## HOMEKIDS 4.486e-02 3.903e-02 1.149 0.250370
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 7039.4 on 6120 degrees of freedom
## Residual deviance: 5444.8 on 6094 degrees of freedom
## AIC: 5498.8
##
## Number of Fisher Scoring iterations: 5
## REVOKED work HOME_VAL MVR_PTS CAR_USE BLUEBOOK
## 1.004836 1.127765 1.747249 1.142618 2.060208 1.779887
## PARENT1 Manager TRAVTIME KIDSDRIV TIF INCOME
## 1.921724 1.118494 1.038259 1.288659 1.012448 1.907773
## CLM_FREQ Sports_Car SUV MSTATUS Clerical Pickup
## 1.157604 1.498749 1.821772 2.014094 1.321975 1.807172
## Van Panel_Truck CAR_AGE BlueCollar EDUCATION Doctor
## 1.564285 2.126481 1.359082 1.689536 1.075873 1.098444
## YOJ HOMEKIDS
## 1.190885 1.821511
```
means_group<-matrix(kmeans(training_set[,c(6,7,12,21,28,33,24,25)],2))
training_set<-cbind(training_set,means_group[1])
colnames(training_set)[37]<-'means_group'
kmeans_model<-glm(data=training_set, TARGET_FLAG~REVOKED +MSTATUS +MVR_PTS + work +CAR_USE +TRAVTIME +TIF+means_group,family=binomial(link='logit'))
summary(kmeans_model)
##
## Call:
## glm(formula = TARGET_FLAG ~ REVOKED + MSTATUS + MVR_PTS + work +
## CAR_USE + TRAVTIME + TIF + means_group, family = binomial(link = "logit"),
## data = training_set)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1638 -0.7599 -0.4806 0.7690 3.0759
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.405039 0.218873 -20.126 < 2e-16 ***
## REVOKEDYes 0.762527 0.088690 8.598 < 2e-16 ***
## MSTATUSYes -0.707165 0.065106 -10.862 < 2e-16 ***
## MVR_PTS 0.163621 0.014217 11.509 < 2e-16 ***
## workUrban 1.997261 0.121299 16.466 < 2e-16 ***
## CAR_USEPrivate -0.778455 0.065465 -11.891 < 2e-16 ***
## TRAVTIME 0.014797 0.002086 7.093 1.31e-12 ***
## TIF -0.053969 0.008175 -6.602 4.06e-11 ***
## means_group 1.048728 0.081553 12.860 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 7039.4 on 6120 degrees of freedom
## Residual deviance: 5876.5 on 6112 degrees of freedom
## AIC: 5894.5
##
## Number of Fisher Scoring iterations: 5
small_model<-glm(data=training_set, TARGET_FLAG~REVOKED +MSTATUS +MVR_PTS + work +CAR_USE +TRAVTIME +TIF,family=binomial(link='logit'))
summary(small_model)
##
## Call:
## glm(formula = TARGET_FLAG ~ REVOKED + MSTATUS + MVR_PTS + work +
## CAR_USE + TRAVTIME + TIF, family = binomial(link = "logit"),
## data = training_set)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.0848 -0.7782 -0.5301 0.8390 2.7365
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.465712 0.153999 -16.011 < 2e-16 ***
## REVOKEDYes 0.778057 0.087001 8.943 < 2e-16 ***
## MSTATUSYes -0.645667 0.063643 -10.145 < 2e-16 ***
## MVR_PTS 0.176422 0.013975 12.624 < 2e-16 ***
## workUrban 1.803680 0.119589 15.082 < 2e-16 ***
## CAR_USEPrivate -0.724499 0.064012 -11.318 < 2e-16 ***
## TRAVTIME 0.014320 0.002054 6.973 3.10e-12 ***
## TIF -0.052313 0.008021 -6.522 6.92e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 7039.4 on 6120 degrees of freedom
## Residual deviance: 6061.0 on 6113 degrees of freedom
## AIC: 6077
##
## Number of Fisher Scoring iterations: 5
.
max_model<-lm(data=training_set, TARGET_AMT~KIDSDRIV +AGE+HOMEKIDS +YOJ + INCOME + PARENT1+ HOME_VAL + MSTATUS + SEX + EDUCATION + TRAVTIME+ CAR_USE + BLUEBOOK + TIF + RED_CAR + OLDCLAIM + CLM_FREQ + REVOKED + MVR_PTS + CAR_AGE + work + Panel_Truck + Pickup + Sports_Car + Van + SUV + Clerical
+ Doctor + Homemaker + Lawyer + Manager + Professional + Student + BlueCollar)
summary(max_model)
##
## Call:
## lm(formula = TARGET_AMT ~ KIDSDRIV + AGE + HOMEKIDS + YOJ + INCOME +
## PARENT1 + HOME_VAL + MSTATUS + SEX + EDUCATION + TRAVTIME +
## CAR_USE + BLUEBOOK + TIF + RED_CAR + OLDCLAIM + CLM_FREQ +
## REVOKED + MVR_PTS + CAR_AGE + work + Panel_Truck + Pickup +
## Sports_Car + Van + SUV + Clerical + Doctor + Homemaker +
## Lawyer + Manager + Professional + Student + BlueCollar, data = training_set)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5475 -1642 -721 385 103240
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.773e+01 6.372e+02 0.153 0.878107
## KIDSDRIV 2.488e+02 1.270e+02 1.960 0.050083 .
## AGE 7.940e+00 7.985e+00 0.994 0.320079
## HOMEKIDS 4.210e+01 7.290e+01 0.577 0.563628
## YOJ -2.176e+01 1.383e+01 -1.573 0.115679
## INCOME -3.783e-03 1.979e-03 -1.912 0.055970 .
## PARENT1Yes 7.107e+02 2.302e+02 3.087 0.002033 **
## HOME_VAL -4.884e-04 6.647e-04 -0.735 0.462547
## MSTATUSYes -5.357e+02 1.633e+02 -3.280 0.001043 **
## SEXM 2.563e+02 2.082e+02 1.231 0.218480
## EDUCATION 2.691e+01 4.127e+01 0.652 0.514342
## TRAVTIME 1.239e+01 3.677e+00 3.371 0.000755 ***
## CAR_USEPrivate -9.373e+02 1.826e+02 -5.133 2.93e-07 ***
## BLUEBOOK 1.589e-02 9.728e-03 1.634 0.102400
## TIF -4.758e+01 1.384e+01 -3.438 0.000590 ***
## RED_CARyes 1.402e+01 1.692e+02 0.083 0.933996
## OLDCLAIM -4.397e+01 6.522e+01 -0.674 0.500259
## CLM_FREQ 2.076e+02 7.726e+01 2.687 0.007225 **
## REVOKEDYes 5.589e+02 1.850e+02 3.020 0.002534 **
## MVR_PTS 1.473e+02 2.982e+01 4.940 8.03e-07 ***
## CAR_AGE -3.749e+01 1.286e+01 -2.915 0.003572 **
## workUrban 1.540e+03 1.587e+02 9.706 < 2e-16 ***
## Panel_Truck 8.892e+01 3.097e+02 0.287 0.774057
## Pickup 2.123e+02 1.921e+02 1.105 0.269312
## Sports_Car 1.086e+03 2.488e+02 4.364 1.30e-05 ***
## Van 6.178e+02 2.407e+02 2.567 0.010293 *
## SUV 6.120e+02 2.047e+02 2.989 0.002807 **
## Clerical 2.005e+02 3.357e+02 0.597 0.550380
## Doctor -4.251e+02 4.267e+02 -0.996 0.319182
## Homemaker -1.718e+02 3.852e+02 -0.446 0.655723
## Lawyer 1.441e+02 3.248e+02 0.444 0.657401
## Manager -7.454e+02 3.024e+02 -2.465 0.013728 *
## Professional 3.575e+01 3.031e+02 0.118 0.906116
## Student 1.206e+02 3.780e+02 0.319 0.749824
## BlueCollar 1.025e+02 3.044e+02 0.337 0.736369
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4467 on 6086 degrees of freedom
## Multiple R-squared: 0.07484, Adjusted R-squared: 0.06968
## F-statistic: 14.48 on 34 and 6086 DF, p-value: < 2.2e-16
#revoked_model<-lm(data=training_set, TARGET_AMT~REVOKED)
#step(revoked_model,scope=list(lower=revoked_model,upper=max_model) ,direction="forward")
step_claimSize_model<-lm(data=training_set, TARGET_AMT~ REVOKED + MVR_PTS + CAR_USE + work + PARENT1 + INCOME + Manager + MSTATUS + CLM_FREQ + TIF + TRAVTIME + CAR_AGE + Sports_Car + Van + KIDSDRIV + SUV)
summary(step_claimSize_model)
##
## Call:
## lm(formula = TARGET_AMT ~ REVOKED + MVR_PTS + CAR_USE + work +
## PARENT1 + INCOME + Manager + MSTATUS + CLM_FREQ + TIF + TRAVTIME +
## CAR_AGE + Sports_Car + Van + KIDSDRIV + SUV, data = training_set)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5393 -1639 -722 361 103469
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.013e+03 2.610e+02 3.882 0.000105 ***
## REVOKEDYes 5.341e+02 1.763e+02 3.030 0.002460 **
## MVR_PTS 1.449e+02 2.937e+01 4.933 8.32e-07 ***
## CAR_USEPrivate -1.070e+03 1.269e+02 -8.428 < 2e-16 ***
## workUrban 1.514e+03 1.556e+02 9.726 < 2e-16 ***
## PARENT1Yes 6.941e+02 2.004e+02 3.463 0.000538 ***
## INCOME -4.460e-03 1.404e-03 -3.176 0.001502 **
## Manager -7.701e+02 1.820e+02 -4.231 2.36e-05 ***
## MSTATUSYes -5.936e+02 1.353e+02 -4.387 1.17e-05 ***
## CLM_FREQ 1.764e+02 5.540e+01 3.185 0.001457 **
## TIF -4.743e+01 1.380e+01 -3.437 0.000591 ***
## TRAVTIME 1.229e+01 3.668e+00 3.350 0.000812 ***
## CAR_AGE -3.863e+01 1.146e+01 -3.371 0.000753 ***
## Sports_Car 7.812e+02 1.949e+02 4.007 6.22e-05 ***
## Van 5.858e+02 2.050e+02 2.858 0.004283 **
## KIDSDRIV 2.805e+02 1.150e+02 2.440 0.014699 *
## SUV 3.055e+02 1.405e+02 2.175 0.029691 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4465 on 6104 degrees of freedom
## Multiple R-squared: 0.07281, Adjusted R-squared: 0.07038
## F-statistic: 29.96 on 16 and 6104 DF, p-value: < 2.2e-16
small_model<-lm(data=training_set, TARGET_AMT~Sports_Car +MSTATUS + Manager + work + CAR_USE)
summary(small_model)
##
## Call:
## lm(formula = TARGET_AMT ~ Sports_Car + MSTATUS + Manager + work +
## CAR_USE, data = training_set)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3868 -1914 -1068 475 105393
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1496.0 164.8 9.079 < 2e-16 ***
## Sports_Car 828.7 186.8 4.436 9.32e-06 ***
## MSTATUSYes -846.1 118.3 -7.150 9.66e-13 ***
## Manager -1121.0 181.3 -6.183 6.68e-10 ***
## workUrban 1543.3 146.8 10.515 < 2e-16 ***
## CAR_USEPrivate -1124.9 121.3 -9.272 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4529 on 6115 degrees of freedom
## Multiple R-squared: 0.04444, Adjusted R-squared: 0.04366
## F-statistic: 56.88 on 5 and 6115 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = LOGGED_TARGET ~ KIDSDRIV + AGE + HOMEKIDS + YOJ +
## INCOME + PARENT1 + HOME_VAL + MSTATUS + SEX + EDUCATION +
## TRAVTIME + CAR_USE + BLUEBOOK + TIF + RED_CAR + OLDCLAIM +
## CLM_FREQ + REVOKED + MVR_PTS + CAR_AGE + work + Panel_Truck +
## Pickup + Sports_Car + Van + SUV + Clerical + Doctor + Homemaker +
## Lawyer + Manager + Professional + Student + BlueCollar, data = logged_set)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7297 -0.3891 0.0348 0.4050 3.1218
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.076e+00 2.338e-01 34.547 < 2e-16 ***
## KIDSDRIV -6.407e-02 3.807e-02 -1.683 0.092589 .
## AGE 2.979e-03 2.597e-03 1.147 0.251562
## HOMEKIDS 1.793e-02 2.507e-02 0.715 0.474688
## YOJ -7.960e-03 5.004e-03 -1.591 0.111864
## INCOME -9.588e-07 7.780e-07 -1.233 0.217940
## PARENT1Yes 8.437e-02 7.172e-02 1.176 0.239608
## HOME_VAL 1.502e-07 2.422e-07 0.620 0.535072
## MSTATUSYes -8.247e-02 5.913e-02 -1.395 0.163266
## SEXM 1.019e-01 8.008e-02 1.272 0.203557
## EDUCATION 1.318e-02 1.367e-02 0.964 0.335170
## TRAVTIME -1.066e-03 1.346e-03 -0.792 0.428367
## CAR_USEPrivate -5.121e-02 6.285e-02 -0.815 0.415313
## BLUEBOOK 1.252e-05 3.655e-06 3.427 0.000627 ***
## TIF -5.818e-03 5.162e-03 -1.127 0.259870
## RED_CARyes 5.864e-03 6.030e-02 0.097 0.922547
## OLDCLAIM 1.475e-02 1.969e-02 0.749 0.453836
## CLM_FREQ -2.121e-02 2.291e-02 -0.926 0.354563
## REVOKEDYes -4.567e-03 5.485e-02 -0.083 0.933656
## MVR_PTS 8.882e-03 8.382e-03 1.060 0.289470
## CAR_AGE -6.836e-04 4.698e-03 -0.146 0.884327
## workUrban 2.383e-02 9.097e-02 0.262 0.793416
## Panel_Truck 1.206e-02 1.138e-01 0.106 0.915623
## Pickup 5.440e-02 7.151e-02 0.761 0.446936
## Sports_Car 9.737e-02 9.073e-02 1.073 0.283343
## Van 5.165e-02 9.206e-02 0.561 0.574848
## SUV 1.337e-01 8.199e-02 1.631 0.103102
## Clerical -1.169e-01 1.184e-01 -0.987 0.323657
## Doctor -1.149e-01 2.000e-01 -0.575 0.565600
## Homemaker -2.595e-01 1.385e-01 -1.874 0.061070 .
## Lawyer -6.360e-02 1.221e-01 -0.521 0.602491
## Manager -4.840e-02 1.211e-01 -0.400 0.689463
## Professional -5.367e-02 1.087e-01 -0.494 0.621538
## Student -1.567e-01 1.304e-01 -1.202 0.229404
## BlueCollar -1.234e-01 1.055e-01 -1.170 0.242105
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8062 on 1568 degrees of freedom
## Multiple R-squared: 0.03333, Adjusted R-squared: 0.01237
## F-statistic: 1.59 on 34 and 1568 DF, p-value: 0.01715
## [1] "k-means model"
## Area under the curve: 0.7596
## [1] "forward step model"
## Area under the curve: 0.8022
## [1] "small model"
## Area under the curve: 0.7002
## [1] 4789.636
## 1 2 3 4 5 6 7
## 3165.7134 3789.3290 3280.0757 3500.6060 3649.5038 3651.5984 4608.9787
## 8 9 10 11 12 13 14
## 2000.0000 3163.4054 3921.2870 2248.7003 5119.5131 2000.0000 2491.0060
## 15 16 17 18 19 20 21
## 1827.8208 4850.2182 2000.0000 3307.3088 4833.6405 3852.4088 3833.4706
## 22 23 24 25 26 27 28
## 3541.5363 1973.3695 3748.5625 3558.5053 4362.6633 4102.7392 4901.3323
## 29 30 31 32 33 34 35
## 2010.2328 2000.0000 1998.1489 5042.4838 2469.1644 3939.5076 3309.1275
## 36 37 38 39 40 41 42
## 2243.6806 2000.0000 3966.6746 1860.7798 4578.9695 3390.1089 4321.9904
## 43 44 45 46 47 48 49
## 1846.1821 5270.5420 642.4453 3284.8901 1862.8694 4495.0873 1378.0836
## 50 51 52 53 54 55 56
## 4417.8522 2406.6593 4610.7947 5774.9671 2036.1063 3807.7711 4591.2997
## 57 58 59 60 61 62 63
## 3805.1335 4146.6238 2358.1203 4035.0913 973.1650 1727.7817 4430.7549
## 64 65 66 67 68 69 70
## 3124.3605 2277.1071 3637.1646 5916.9625 5743.4514 3132.2543 3330.8479
## 71 72 73 74 75 76 77
## 1395.5044 3726.5177 5230.8935 3554.2540 5062.4981 3215.6971 3451.7809
## 78 79 80 81 82 83 84
## 3673.2863 2935.1929 1902.3050 4542.5386 4456.0362 4259.6899 2358.4948
## 85 86 87 88 89 90 91
## 4095.8295 5418.0199 3550.4280 3718.1944 2172.3583 6057.8544 3132.5985
## 92 93 94 95 96 97 98
## 2992.6560 1683.0985 2623.5066 2685.2312 3223.0712 1056.9746 4166.8885
## 99 100 101 102 103 104 105
## 4760.8431 2850.1161 3236.2395 4878.8403 5121.4840 5806.4603 3080.1361
## 106 107 108 109 110 111 112
## 3077.9892 3167.0454 2571.6008 4583.1980 3748.8535 4831.2872 1730.3549
## 113 114 115 116 117 118 119
## 3301.1000 2448.7294 4836.0738 2153.1751 1446.5208 5150.0010 4392.7484
## 120 121 122 123 124 125 126
## 2730.8821 4042.3693 4978.9275 4439.8954 4113.1989 3917.9270 4000.8417
## 127 128 129 130 131 132 133
## 3998.2749 3782.2700 2971.8399 3274.7899 2000.0000 2824.4399 2000.0000
## 134 135 136 137 138 139 140
## 2563.4851 3305.2738 3777.5750 5637.6860 5743.4175 2602.2532 2000.0000
## 141 142 143 144 145 146 147
## 1629.7389 5750.4227 2694.0433 2135.1291 2469.9512 5227.2559 2678.1124
## 148 149 150 151 152 153 154
## 2607.3898 4202.0688 2382.4501 5124.7068 4064.8133 6201.2154 3963.4980
## 155 156 157 158 159 160 161
## 4159.6531 4316.8041 2433.0096 2474.9861 4368.7017 4409.4924 3463.9087
## 162 163 164 165 166 167 168
## 2405.3887 3670.8900 2024.0777 6692.4475 3366.4922 2763.6731 3571.1017
## 169 170 171 172 173 174 175
## 3746.0965 2000.0000 2519.1814 4577.3682 3366.9724 6010.2618 3753.2219
## 176 177 178 179 180 181 182
## 3612.9528 4886.8318 4983.2654 6522.1031 5038.3210 5233.3738 4349.9759
## 183 184 185 186 187 188 189
## 2393.2917 3836.5394 3677.7241 3917.9855 2000.0000 2037.1249 3424.1460
## 190 191 192 193 194 195 196
## 4838.6656 4236.1099 4854.2599 4940.7706 3436.6680 2872.7400 4465.3128
## 197 198 199 200 201 202 203
## 4517.7175 4048.8852 3896.1541 3010.1240 2000.0000 4227.9367 2924.5355
## 204 205 206 207 208 209 210
## 2948.3362 2363.7089 1319.5407 5926.6264 2792.5609 2782.3138 2027.2573
## 211 212 213 214 215 216 217
## 987.1803 3627.6382 4625.2750 4946.6214 2154.2237 4053.6166 4422.9763
## 218 219 220 221 222 223 224
## 2403.2657 3334.1797 1375.0320 1972.4324 2185.2819 3976.5688 4159.4661
## 225 226 227 228 229 230 231
## 2817.8358 3705.6394 5528.0717 4370.1398 4397.7943 3123.4466 1652.9868
## 232 233 234 235 236 237 238
## 3314.8499 6321.4432 2723.1886 1631.6024 3274.4396 2889.1974 2304.1700
## 239 240 241 242 243 244 245
## 1482.3202 6097.4847 1855.3653 2717.7697 5630.6407 4308.9377 3044.2470
## 246 247 248 249 250 251 252
## 3980.9585 3298.2627 3697.6746 1932.5096 4464.7618 4111.1007 4350.9067
## 253 254 255 256 257 258 259
## 2654.2357 3854.0512 3504.9701 4759.0075 2000.4936 3663.2129 4650.7918
## 260 261 262 263 264 265 266
## 2734.7524 2508.5815 2570.0693 2918.9354 3068.2299 3227.5619 2339.4265
## 267 268 269 270 271 272 273
## 2497.0318 2647.0317 6724.2285 4121.6746 4422.6960 2551.7816 3677.4461
## 274 275 276 277 278 279 280
## 6068.6741 3160.9911 4301.3919 5190.8239 3214.2282 3896.7289 2953.1342
## 281 282 283 284 285 286 287
## 4096.3049 3948.4253 3577.7552 3540.1545 4152.0764 4233.8902 2360.6667
## 288 289 290 291 292 293 294
## 3914.6761 3439.8018 5827.5959 4145.8960 2529.7459 2269.3844 2000.0000
## 295 296 297 298 299 300 301
## 2980.4813 3627.8532 3868.6555 5279.3193 1967.3827 3260.5177 3750.7018
## 302 303 304 305 306 307 308
## 2511.6447 3568.9245 5085.5859 4634.2668 4257.6736 3052.8976 4233.3116
## 309 310 311 312 313 314 315
## 1697.7629 3747.0900 5558.0418 3176.3690 2000.0000 6469.1991 3925.3056
## 316 317 318 319 320 321 322
## 2776.2703 3167.5999 2579.5554 4626.3105 1978.3707 3113.8108 4562.3706
## 323 324 325 326 327 328 329
## 2401.2325 3381.6916 5705.4339 4195.8846 5072.1586 2807.0494 4149.9090
## 330 331 332 333 334 335 336
## 3915.5591 2434.3177 1834.7254 5551.8376 2300.8830 4204.1619 4314.9356
## 337 338 339 340 341 342 343
## 3409.7008 4090.2503 3358.7676 2394.0773 4423.1797 5641.9650 4086.7504
## 344 345 346 347 348 349 350
## 5133.4079 1821.7397 2051.9631 2792.7409 2688.2789 2298.8358 3097.2476
## 351 352 353 354 355 356 357
## 1734.7859 4959.3784 6290.4614 6087.7603 2603.4816 4793.0482 4384.8992
## 358 359 360 361 362 363 364
## 3245.0830 1992.5132 2241.6517 5289.1904 3293.5868 2180.3633 4093.3940
## 365 366 367 368 369 370 371
## 2896.4556 4964.7941 2456.0345 3561.6423 2798.1148 2921.4160 3419.0499
## 372 373 374 375 376 377 378
## 3666.4040 5742.7648 2000.0000 2552.5681 4575.2696 1353.3040 3562.7825
## 379 380 381 382 383 384 385
## 1965.3004 3045.1112 2000.0000 3547.3692 4227.6833 3183.4665 1843.5911
## 386 387 388 389 390 391 392
## 4840.6343 4678.6893 2848.1535 2216.1514 4747.8403 3310.4329 2472.8436
## 393 394 395 396 397 398 399
## 2770.8081 3529.5515 2480.0623 4305.0348 2573.9978 3535.2141 4293.1882
## 400 401 402 403 404 405 406
## 4681.6792 2000.0000 2000.0000 2258.1014 2657.4592 2681.8871 3324.1050
## 407 408 409 410 411 412 413
## 1342.2685 5055.0693 1328.5372 2581.1015 2291.3062 5219.3007 4523.0338
## 414 415 416 417 418 419 420
## 1025.9878 4371.4689 3490.6248 1781.6586 4120.5775 980.4230 2850.9001
## 421 422 423 424 425 426 427
## 4784.0741 5883.3825 6256.3304 1872.4688 3228.2344 4031.8935 3373.9432
## 428 429 430 431 432 433 434
## 3479.3191 4494.1888 4771.6102 3988.7726 1546.9730 2067.6811 1389.7658
## 435 436 437 438 439 440 441
## 3440.6089 6289.6566 1861.1823 2425.9738 3240.9644 2990.3466 968.8001
## 442 443 444 445 446 447 448
## 3746.9585 2102.7647 3458.7101 1938.4093 1372.2371 3586.8255 2273.4479
## 449 450 451 452 453 454 455
## 4874.5612 5332.2740 2537.4398 3436.8476 4179.2754 3290.0063 4550.5535
## 456 457 458 459 460 461 462
## 4658.8695 4786.3130 6605.5491 1636.0420 3617.7524 2016.8578 2354.7939
## 463 464 465 466 467 468 469
## 1357.5312 3563.0373 2000.0000 2613.5016 5645.7864 4086.3996 2492.0835
## 470 471 472 473 474 475 476
## 4054.1301 2294.3649 5356.1219 2000.0000 2014.2563 3731.3426 2022.4256
## 477 478 479 480 481 482 483
## 4894.7094 6212.6432 2021.4659 3395.1032 1934.9898 3197.2660 2000.0000
## 484 485 486 487 488 489 490
## 3743.7454 5628.5881 5174.6673 3338.7824 4301.3090 3340.1234 5928.5609
## 491 492 493 494 495 496 497
## 4531.1771 2711.7764 3096.6050 3474.4207 3373.8249 4109.1956 3656.4348
## 498 499 500 501 502 503 504
## 2653.8796 4362.6167 2000.0000 3873.3382 3443.4886 6111.2858 3708.9543
## 505 506 507 508 509 510 511
## 5361.7521 2126.3082 5029.5590 3196.1751 2000.0000 3461.3221 2000.0000
## 512 513 514 515 516 517 518
## 2917.4019 3946.9884 1448.0143 2000.0000 2424.7252 5032.5451 5125.9894
## 519 520 521 522 523 524 525
## 2000.0000 5256.4458 3080.7220 2773.5703 4049.5989 3991.0551 2824.5492
## 526 527 528 529 530 531 532
## 1893.7884 2031.4574 2473.4712 721.3670 3592.7594 1396.2331 2582.4729
## 533 534 535 536 537 538 539
## 4176.3838 4343.2223 1979.2867 4014.5000 3375.3483 1366.0456 3189.8561
## 540 541 542 543 544 545 546
## 1161.2068 1869.9740 2465.2835 3677.5830 4480.7255 1584.2975 3064.6811
## 547 548 549 550 551 552 553
## 2399.6935 6160.8760 5373.6045 2137.4289 2536.5392 2846.9988 2208.8553
## 554 555 556 557 558 559 560
## 3759.5578 1863.6321 2611.2350 3889.0760 2472.3829 4627.7184 3247.2599
## 561 562 563 564 565 566 567
## 1861.1246 3931.0912 3586.9478 2000.0000 4464.2981 3471.9442 7453.1164
## 568 569 570 571 572 573 574
## 3270.0369 2000.0000 5635.6963 2581.2131 3508.3973 3343.6335 2380.2044
## 575 576 577 578 579 580 581
## 2464.7476 659.8902 3587.9335 3207.5862 2000.0000 2606.1483 2068.9992
## 582 583 584 585 586 587 588
## 5195.3187 3060.4432 5184.3240 1854.2999 2402.9845 2643.6263 3796.0621
## 589 590 591 592 593 594 595
## 6026.6984 4703.8325 3771.2015 2522.4436 802.7681 3978.0343 4770.6990
## 596 597 598 599 600 601 602
## 4097.7136 2000.0000 3660.8115 3412.6754 3851.9403 4322.8133 3617.4510
## 603 604 605 606 607 608 609
## 3537.6751 3065.6844 4341.7121 4453.8111 5807.3948 2545.9046 3053.6363
## 610 611 612 613 614 615 616
## 3133.7937 3095.5787 4558.8087 1248.6866 2542.2062 4105.8298 1777.7853
## 617 618 619 620 621 622 623
## 1750.5918 4010.8715 3578.6725 5486.1230 3294.0974 3372.7582 2399.1971
## 624 625 626 627 628 629 630
## 3751.7739 3388.2673 5912.4765 4809.6676 2351.7132 1681.0211 5257.2220
## 631 632 633 634 635 636 637
## 2426.9810 3971.5118 2993.2749 3335.4208 2828.3992 3405.5634 2612.7548
## 638 639 640 641 642 643 644
## 5098.2633 3319.3062 4523.5780 3328.6846 2000.0000 1809.3216 1557.9559
## 645 646 647 648 649 650 651
## 4158.5706 5155.3326 4166.1323 4383.0572 2000.0000 2000.0000 1963.2211
## 652 653 654 655 656 657 658
## 2068.7189 5005.0012 751.8128 2859.8072 3433.9346 3815.1683 1531.7240
## 659 660 661 662 663 664 665
## 2863.4025 2000.0000 4425.6697 3816.4021 3703.2805 3845.5344 3119.9043
## 666 667 668 669 670 671 672
## 3696.4220 4271.3414 2000.0000 3816.7516 2614.4431 3755.2281 4637.4716
## 673 674 675 676 677 678 679
## 5129.1150 2065.5408 3667.2570 3748.1448 3639.1263 4682.9051 1617.9560
## 680 681 682 683 684 685 686
## 2764.8353 5666.4050 3611.7286 4136.0842 1988.9391 3345.2733 2517.0846
## 687 688 689 690 691 692 693
## 1525.2692 3662.1926 3880.1854 2000.0000 3156.2732 2607.8734 1893.7204
## 694 695 696 697 698 699 700
## 3670.4877 2051.0348 3789.6294 1947.6120 4485.2655 3403.8357 3836.0803
## 701 702 703 704 705 706 707
## 4024.2873 1446.2240 4085.8489 1564.5751 2731.4875 3662.6871 4026.4109
## 708 709 710 711 712 713 714
## 5823.5532 3733.8114 2572.2931 3465.4814 2264.3329 4540.4759 2000.0000
## 715 716 717 718 719 720 721
## 2014.7512 1980.0693 2460.0053 2098.4757 2217.0281 2210.2801 4395.7235
## 722 723 724 725 726 727 728
## 1762.9059 2440.5830 2000.0000 1745.0726 2311.4700 3017.6323 2000.0000
## 729 730 731 732 733 734 735
## 2314.3913 2828.2221 4355.5057 4648.0187 4202.0901 1850.4918 4259.1434
## 736 737 738 739 740 741 742
## 2000.0000 2682.5724 2168.3668 3566.3392 3691.8431 5385.8401 3088.2401
## 743 744 745 746 747 748 749
## 4669.0459 3089.4658 4380.9199 4413.7615 5308.6999 4041.0334 2000.0000
## 750 751 752 753 754 755 756
## 3405.2866 2729.3744 3647.0320 4509.7891 2000.0000 2254.5593 3736.6326
## 757 758 759 760 761 762 763
## 3701.4252 3743.2099 3166.2989 3261.6503 3396.6114 5990.8008 4790.6103
## 764 765 766 767 768 769 770
## 5040.5302 4021.4044 4667.6567 3487.3433 3774.0468 4159.3397 1640.0853
## 771 772 773 774 775 776 777
## 4335.3192 4556.9921 4189.3534 5147.8299 1834.1695 4294.4506 2339.0695
## 778 779 780 781 782 783 784
## 2000.0000 3414.9999 1227.9877 3753.6668 6211.8570 2208.3233 4251.2390
## 785 786 787 788 789 790 791
## 2758.4411 4958.4187 2637.2589 3655.2428 3527.2230 2000.0000 2273.3296
## 792 793 794 795 796 797 798
## 3166.4971 4438.6095 2000.0000 2790.8712 3588.9668 3115.5549 4607.5744
## 799 800 801 802 803 804 805
## 5389.7995 4399.8403 3690.5187 1463.3549 1609.1311 3845.0838 1648.2361
## 806 807 808 809 810 811 812
## 2912.5595 2756.4115 3174.0003 1725.8891 4454.2380 4851.4102 2018.8889
## 813 814 815 816 817 818 819
## 2434.9622 1386.5693 4107.7133 2936.9626 2087.8648 5505.9136 4871.0305
## 820 821 822 823 824 825 826
## 4155.2731 4713.7139 2992.0426 4650.6613 4131.4457 4794.4007 3504.6232
## 827 828 829 830 831 832 833
## 3009.0891 2482.5494 1756.1913 2824.7062 2134.7041 2009.9854 4527.1828
## 834 835 836 837 838 839 840
## 1838.8658 2447.8514 3405.2221 3257.0972 3291.3215 2392.6543 3207.4356
## 841 842 843 844 845 846 847
## 3107.4916 3180.1661 3724.5037 2342.8716 1954.3688 1703.2706 3959.3334
## 848 849 850 851 852 853 854
## 2000.0000 6077.2044 5192.9478 5010.7070 2000.0000 2825.1378 3342.8682
## 855 856 857 858 859 860 861
## 4481.1586 684.5560 2828.8419 2000.0000 6125.5947 2680.9243 3548.8139
## 862 863 864 865 866 867 868
## 4965.9986 3368.4374 2152.5261 3770.7142 2101.2546 5692.4990 2509.8495
## 869 870 871 872 873 874 875
## 1697.3634 4877.6783 2423.4118 5560.6665 2000.0000 6268.6442 3743.2985
## 876 877 878 879 880 881 882
## 3587.9373 1926.1657 3322.1229 1029.9067 4395.0980 4894.1729 3943.8193
## 883 884 885 886 887 888 889
## 2303.9316 3386.7790 4971.6738 3810.5603 5696.0691 1905.6700 2180.9991
## 890 891 892 893 894 895 896
## 3329.5617 3934.8720 2671.9134 2690.3883 1566.2326 2653.8899 3896.0439
## 897 898 899 900 901 902 903
## 2000.0000 2715.6417 3875.8001 4066.5545 2447.5922 3253.4630 5934.0456
## 904 905 906 907 908 909 910
## 1274.9391 1606.8546 3597.2992 2000.0000 2476.5968 4117.7982 2000.0000
## 911 912 913 914 915 916 917
## 5638.7343 3274.6632 1269.9419 2940.0866 1892.1253 3757.6464 6660.2413
## 918 919 920 921 922 923 924
## 4297.8421 3337.6806 3628.0603 3234.5746 2547.5235 2887.7105 2405.7623
## 925 926 927 928 929 930 931
## 1918.2664 1784.2764 3537.7494 2000.0000 5224.3052 1220.4532 3921.0493
## 932 933 934 935 936 937 938
## 6284.6922 2535.0047 5119.8503 3486.0289 4506.1086 2431.7348 3847.2881
## 939 940 941 942 943 944 945
## 5053.5005 3610.9904 6017.5061 2468.3077 4181.0674 2788.6660 5389.9837
## 946 947 948 949 950 951 952
## 2952.4111 3722.6708 3121.5937 1740.2257 3893.6360 1804.4679 3749.7618
## 953 954 955 956 957 958 959
## 4113.1418 4246.3048 1467.7886 4609.0037 4193.2543 3095.7815 4032.6246
## 960 961 962 963 964 965 966
## 2403.6728 4171.8461 4264.8711 4051.1379 2651.8912 2000.0000 5607.1415
## 967 968 969 970 971 972 973
## 4661.0486 4050.8799 2816.2490 3403.3790 4719.7899 3053.3262 2629.8313
## 974 975 976 977 978 979 980
## 4363.7834 961.5790 3728.0105 4523.5830 2664.9811 2894.2174 4366.6149
## 981 982 983 984 985 986 987
## 3133.7728 2309.3879 5578.2431 4509.8256 5032.7826 4586.6842 4131.0257
## 988 989 990 991 992 993 994
## 2299.3996 3296.2055 4942.7357 3152.8543 2000.0000 5470.4331 3162.6487
## 995 996 997 998 999 1000 1001
## 3800.7807 2802.4518 4149.4910 1389.9292 3601.0357 3709.2249 3262.6434
## 1002 1003 1004 1005 1006 1007 1008
## 5799.4990 4544.9863 2993.2635 4336.5390 1919.1412 2408.4800 4250.5255
## 1009 1010 1011 1012 1013 1014 1015
## 3914.3785 2615.0939 4092.1296 3322.9876 2545.3782 1392.5899 2531.0839
## 1016 1017 1018 1019 1020 1021 1022
## 3723.8603 2873.6500 4646.8845 3621.6162 1479.3372 3246.9035 2000.0000
## 1023 1024 1025 1026 1027 1028 1029
## 5236.7328 4633.9291 5372.0443 5578.8063 4145.0064 2000.0000 3129.4036
## 1030 1031 1032 1033 1034 1035 1036
## 1648.9005 2947.9055 2286.6422 3775.9124 2904.5040 2967.8002 2000.0000
## 1037 1038 1039 1040 1041 1042 1043
## 2149.3449 2906.7862 3596.6641 3754.6263 2989.7219 2000.0000 3578.9240
## 1044 1045 1046 1047 1048 1049 1050
## 1425.7081 6377.2362 2526.1414 4428.1060 4731.7049 4256.0483 4417.0029
## 1051 1052 1053 1054 1055 1056 1057
## 4475.7974 5158.9201 5837.8510 890.0905 5121.8161 3017.9503 3337.9085
## 1058 1059 1060 1061 1062 1063 1064
## 1468.7529 4708.6658 5259.6665 2882.9223 5371.2462 5048.3411 3134.9563
## 1065 1066 1067 1068 1069 1070 1071
## 2168.7655 3371.8661 3014.9032 3873.5865 1538.8078 4168.0075 3517.4706
## 1072 1073 1074 1075 1076 1077 1078
## 2556.3417 2000.0000 6121.2401 3645.2742 2000.0000 1850.5528 1976.5221
## 1079 1080 1081 1082 1083 1084 1085
## 4433.1180 1534.5815 5351.8874 5346.3866 1721.9465 3919.1313 4228.5993
## 1086 1087 1088 1089 1090 1091 1092
## 6578.4180 1494.3962 3223.1745 3447.7981 1124.3392 3053.1558 2143.5149
## 1093 1094 1095 1096 1097 1098 1099
## 2727.7673 3754.3049 3378.2384 3539.8584 3547.9865 2994.8297 3895.6991
## 1100 1101 1102 1103 1104 1105 1106
## 5910.2353 1308.7881 2365.0668 4172.6115 4100.7849 4495.3700 3361.3443
## 1107 1108 1109 1110 1111 1112 1113
## 2746.0468 4095.3000 2000.0000 3476.7201 4648.3938 2000.0000 3326.3365
## 1114 1115 1116 1117 1118 1119 1120
## 2960.7894 3530.4070 574.3626 4093.5768 6447.9255 5269.1498 2977.6538
## 1121 1122 1123 1124 1125 1126 1127
## 3344.2481 3928.8230 1118.7815 3357.0446 2002.3822 3440.2021 6421.6108
## 1128 1129 1130 1131 1132 1133 1134
## 1393.7947 1424.2239 3939.6724 1854.1537 2000.0000 5490.7785 2228.8960
## 1135 1136 1137 1138 1139 1140 1141
## 5398.5155 2490.5929 3464.3535 3329.4839 2132.5166 3580.8877 2004.1147
## 1142 1143 1144 1145 1146 1147 1148
## 3765.9684 2000.0000 4282.7292 4895.7356 2068.8006 4149.7673 6148.1756
## 1149 1150 1151 1152 1153 1154 1155
## 3129.1637 5213.9280 4395.6413 6270.0900 2000.0000 4174.9532 5656.3352
## 1156 1157 1158 1159 1160 1161 1162
## 4485.8155 1267.8182 4017.7023 3287.2779 1570.7894 2265.0998 2809.1630
## 1163 1164 1165 1166 1167 1168 1169
## 3160.7620 3679.9034 1911.9461 4113.6238 3167.0363 4389.8096 4189.6834
## 1170 1171 1172 1173 1174 1175 1176
## 1939.8442 3808.0891 5221.2923 4792.0136 5671.5329 1836.6587 2950.3820
## 1177 1178 1179 1180 1181 1182 1183
## 4116.3350 997.6755 3483.0364 5448.7485 1984.3765 5986.5711 2899.9184
## 1184 1185 1186 1187 1188 1189 1190
## 4342.3235 6058.6544 1795.3976 2714.0621 2280.2432 4645.2189 3198.2330
## 1191 1192 1193 1194 1195 1196 1197
## 4567.5171 3011.1530 1287.5031 5105.0632 3147.0383 1587.3175 3750.2047
## 1198 1199 1200 1201 1202 1203 1204
## 1866.9430 5203.2128 4361.5005 3656.7199 3036.6842 3857.2174 3418.1724
## 1205 1206 1207 1208 1209 1210 1211
## 3434.2173 1220.3905 4605.8821 4055.2714 4202.4572 2000.0000 1577.1807
## 1212 1213 1214 1215 1216 1217 1218
## 3529.4928 5611.9871 2496.4079 4139.2545 1939.4425 4822.4694 3633.8120
## 1219 1220 1221 1222 1223 1224 1225
## 3145.5930 2000.0000 1273.0826 3173.6946 5676.0075 3710.8652 4389.0965
## 1226 1227 1228 1229 1230 1231 1232
## 2084.6189 2119.6620 2698.2972 4127.2205 6214.4100 3212.7939 2953.4769
## 1233 1234 1235 1236 1237 1238 1239
## 3916.2452 5296.1496 2119.1362 1186.6845 1710.0797 5531.0194 3169.2833
## 1240 1241 1242 1243 1244 1245 1246
## 2022.8587 4263.0293 1069.7967 1162.3425 3248.0334 2532.0211 6053.8790
## 1247 1248 1249 1250 1251 1252 1253
## 4476.7478 1158.1602 1729.6886 2110.0236 3155.3626 5321.4385 1672.3267
## 1254 1255 1256 1257 1258 1259 1260
## 4172.5067 2000.0000 2944.6015 2000.0000 1456.5452 4584.5123 3039.9357
## 1261 1262 1263 1264 1265 1266 1267
## 3941.4977 3932.4335 1460.0036 2000.0000 3291.8936 3576.8024 4642.2399
## 1268 1269 1270 1271 1272 1273 1274
## 1515.6047 4606.5698 3042.0982 3350.9423 4604.1394 2992.2354 3934.9912
## 1275 1276 1277 1278 1279 1280 1281
## 2876.2891 2149.3396 4737.1467 4063.2115 3536.6990 2931.1333 4867.6810
## 1282 1283 1284 1285 1286 1287 1288
## 3789.1353 4101.4857 4200.1284 4793.1147 3549.0705 4801.8016 2000.0000
## 1289 1290 1291 1292 1293 1294 1295
## 2753.6943 3277.1780 5414.0908 3002.4307 1467.8274 4078.2429 4839.2915
## 1296 1297 1298 1299 1300 1301 1302
## 3236.0218 3147.1455 3992.7928 5182.9539 4513.9772 2503.1269 2660.6465
## 1303 1304 1305 1306 1307 1308 1309
## 2303.5157 2959.3601 1782.3062 2450.8630 2000.0000 5125.0522 2000.0000
## 1310 1311 1312 1313 1314 1315 1316
## 5777.2578 4289.8366 3754.9117 6461.2097 3907.0512 2309.5197 1563.4290
## 1317 1318 1319 1320 1321 1322 1323
## 2444.0281 2323.7774 2320.8301 2000.0000 2694.0126 4979.8881 5111.1520
## 1324 1325 1326 1327 1328 1329 1330
## 1481.9401 2566.8750 2000.0000 3668.9706 3330.9635 1681.7886 2737.1884
## 1331 1332 1333 1334 1335 1336 1337
## 2525.0615 2345.8383 2393.2697 2401.9595 3833.9255 3555.4681 2773.5942
## 1338 1339 1340 1341 1342 1343 1344
## 940.5686 4216.0003 3776.6796 2860.3115 4223.7897 1819.7105 2576.8445
## 1345 1346 1347 1348 1349 1350 1351
## 2000.0000 929.4027 3603.8422 4307.0279 1059.4566 3339.8982 3531.6624
## 1352 1353 1354 1355 1356 1357 1358
## 5020.9234 3111.4254 3674.2478 2017.6938 709.6880 2918.1825 4585.2871
## 1359 1360 1361 1362 1363 1364 1365
## 2292.2119 2000.0000 1701.4844 1438.4875 5753.4083 2371.9369 2574.7930
## 1366 1367 1368 1369 1370 1371 1372
## 3687.4002 5265.6215 5006.4076 4165.0431 4867.3322 4150.9964 2673.0470
## 1373 1374 1375 1376 1377 1378 1379
## 2000.0000 3425.4049 3914.9526 4249.1858 4731.9220 4171.0264 2438.3164
## 1380 1381 1382 1383 1384 1385 1386
## 3428.8220 5712.3806 5645.5186 4492.3080 2000.0000 2000.0000 1524.5283
## 1387 1388 1389 1390 1391 1392 1393
## 2053.5551 2099.6082 1104.7906 3500.7476 4585.4037 5151.4630 2088.7671
## 1394 1395 1396 1397 1398 1399 1400
## 4314.4928 3060.2450 2959.4030 3570.6949 4602.9965 5104.8236 3749.2916
## 1401 1402 1403 1404 1405 1406 1407
## 3035.3950 3204.4590 5853.0316 4076.7725 3589.2126 4155.3401 3453.4001
## 1408 1409 1410 1411 1412 1413 1414
## 3145.0009 1649.2498 4955.3254 2987.9387 3328.0412 2151.7248 4318.8943
## 1415 1416 1417 1418 1419 1420 1421
## 1473.5126 2000.0000 2575.1208 2140.1150 3950.0900 2320.3248 1530.3794
## 1422 1423 1424 1425 1426 1427 1428
## 6439.1809 4485.1898 2000.0000 5106.1030 6514.4641 1631.6231 3412.2078
## 1429 1430 1431 1432 1433 1434 1435
## 4271.1522 3040.5847 3620.1655 2207.5884 2200.0671 2840.0988 3123.0375
## 1436 1437 1438 1439 1440 1441 1442
## 3669.4356 3504.8599 2000.0000 2861.5203 1113.0727 2000.0000 5410.3690
## 1443 1444 1445 1446 1447 1448 1449
## 4578.8209 2131.7639 3628.2253 4599.3097 2000.0000 2962.6489 2000.0000
## 1450 1451 1452 1453 1454 1455 1456
## 1931.6613 2811.8461 3625.3056 2000.0000 2279.1102 1933.4723 3127.8360
## 1457 1458 1459 1460 1461 1462 1463
## 5318.7897 1918.5202 2615.3363 2417.5204 758.0804 3162.9059 2000.0000
## 1464 1465 1466 1467 1468 1469 1470
## 3734.1937 3633.0183 4974.6463 2612.5019 2633.5520 3943.1018 3930.1665
## 1471 1472 1473 1474 1475 1476 1477
## 3742.7597 2636.3156 1974.6631 3402.6929 3632.5925 839.0055 3850.0536
## 1478 1479 1480 1481 1482 1483 1484
## 3585.1458 3134.2401 1693.8258 3962.5133 927.9094 4050.1062 3429.2527
## 1485 1486 1487 1488 1489 1490 1491
## 4286.4223 3881.4118 3358.3791 3734.5677 4908.3723 3424.9182 3309.4160
## 1492 1493 1494 1495 1496 1497 1498
## 5403.3569 2268.4660 1613.8864 5604.7435 4169.6482 3300.9521 1790.4768
## 1499 1500 1501 1502 1503 1504 1505
## 2284.7805 1912.1460 1515.7145 4202.4843 4073.1048 5942.3588 2888.9616
## 1506 1507 1508 1509 1510 1511 1512
## 3562.6139 4647.4340 3683.5458 4113.0908 4292.5198 1589.6789 3642.1667
## 1513 1514 1515 1516 1517 1518 1519
## 2933.9941 3852.0415 4272.3243 4622.0353 1700.9265 3401.6620 3687.5316
## 1520 1521 1522 1523 1524 1525 1526
## 2420.4055 3660.1078 2111.5418 3083.7902 3546.6998 1080.9974 4132.0662
## 1527 1528 1529 1530 1531 1532 1533
## 2946.5912 4577.1906 5155.1645 5389.3552 4437.3364 5183.4716 2000.0000
## 1534 1535 1536 1537 1538 1539 1540
## 1482.6369 3930.0962 3360.8262 2922.9278 4510.7488 5786.7670 6194.0746
## 1541 1542 1543 1544 1545 1546 1547
## 2068.7203 2703.9345 2162.7739 4529.0202 4751.4791 3626.9843 2233.4852
## 1548 1549 1550 1551 1552 1553 1554
## 3745.7275 1966.9733 3098.8850 4296.9647 3432.0130 2862.7872 4710.4430
## 1555 1556 1557 1558 1559 1560 1561
## 3354.3902 2526.1344 4233.2686 1921.9308 4373.0938 3799.9004 3139.3414
## 1562 1563 1564 1565 1566 1567 1568
## 5144.2532 4314.6844 4231.5129 6345.9836 3426.5864 2310.5590 3340.9249
## 1569 1570 1571 1572 1573 1574 1575
## 3707.8847 3768.0711 4463.3211 3694.9722 2691.1719 4743.9018 1942.8352
## 1576 1577 1578 1579 1580 1581 1582
## 4497.8862 3996.7766 2556.0326 2769.7450 3730.2779 3861.2122 1812.1074
## 1583 1584 1585 1586 1587 1588 1589
## 2000.0000 2485.0203 2435.2594 2875.8842 1575.2034 3490.9795 1367.7754
## 1590 1591 1592 1593 1594 1595 1596
## 4852.1413 3871.2480 5745.6542 2213.5460 2000.0000 2735.9126 3036.7288
## 1597 1598 1599 1600 1601 1602 1603
## 3666.6638 3822.5202 3539.3824 3526.4903 4316.6611 4414.2025 3454.6280
## 1604 1605 1606 1607 1608 1609 1610
## 2000.0000 3519.4993 5856.0771 1253.6929 2000.0000 3461.5064 5942.9003
## 1611 1612 1613 1614 1615 1616 1617
## 3691.8393 2000.0000 3451.1722 4381.4749 4156.3960 4584.8590 2815.6177
## 1618 1619 1620 1621 1622 1623 1624
## 4671.2429 3589.9591 3799.3850 4579.7008 2141.9938 5329.6947 2000.0000
## 1625 1626 1627 1628 1629 1630 1631
## 2848.1033 3238.9940 3730.4143 2957.4784 2844.9391 5893.6492 3223.4677
## 1632 1633 1634 1635 1636 1637 1638
## 4994.9260 2692.7158 4122.7903 2675.3300 3430.0008 4900.4182 3241.7170
## 1639 1640 1641 1642 1643 1644 1645
## 3154.7055 3393.5756 2000.0000 2000.0000 3043.9669 3546.4320 3607.6089
## 1646 1647 1648 1649 1650 1651 1652
## 1027.1243 4154.6847 3044.3760 1301.6588 4679.0071 3178.2471 1064.9144
## 1653 1654 1655 1656 1657 1658 1659
## 3866.9743 1578.8153 4994.2468 4418.8721 473.9855 2222.1654 3004.5917
## 1660 1661 1662 1663 1664 1665 1666
## 2510.9863 4329.6999 5996.4850 4945.4441 5538.4402 6603.3229 1751.0016
## 1667 1668 1669 1670 1671 1672 1673
## 3995.6488 3733.8442 6421.8057 2418.9236 5145.3619 2000.0000 5183.7022
## 1674 1675 1676 1677 1678 1679 1680
## 3284.5290 1342.1954 2966.4908 2651.9803 3045.5640 4357.9492 2000.0000
## 1681 1682 1683 1684 1685 1686 1687
## 2385.4868 5860.3794 4950.7721 3829.3469 4121.8760 2778.4126 1144.5693
## 1688 1689 1690 1691 1692 1693 1694
## 4645.4759 868.9109 2064.9674 1888.5405 2000.0000 2834.5626 4499.7543
## 1695 1696 1697 1698 1699 1700 1701
## 3353.6516 5063.1897 2000.0000 5071.0228 6383.9937 2478.0614 4702.6415
## 1702 1703 1704 1705 1706 1707 1708
## 1196.1815 3265.8169 3524.8014 3844.2949 3103.4184 2000.0000 3151.8250
## 1709 1710 1711 1712 1713 1714 1715
## 6226.9004 2259.9599 3904.9859 1675.2918 3763.4710 3574.2207 4605.8931
## 1716 1717 1718 1719 1720 1721 1722
## 1925.0893 2796.1525 2000.0000 3474.2740 1619.9041 2958.8068 4217.5413
## 1723 1724 1725 1726 1727 1728 1729
## 4081.5829 4991.3372 4232.8232 257.5929 1908.4152 4133.5781 5471.4220
## 1730 1731 1732 1733 1734 1735 1736
## 4075.7584 3609.1964 2200.9555 1350.0129 3479.3983 2000.0000 2401.5940
## 1737 1738 1739 1740 1741 1742 1743
## 3505.3313 2528.3423 2000.0000 2705.3440 6779.6997 3057.4868 1414.6873
## 1744 1745 1746 1747 1748 1749 1750
## 2228.2291 3634.6959 3993.3999 4217.9211 4012.4825 4537.8548 3446.2949
## 1751 1752 1753 1754 1755 1756 1757
## 3353.2942 5212.7783 2966.3350 4741.5831 2182.3376 3593.3177 2936.1236
## 1758 1759 1760 1761 1762 1763 1764
## 4152.7778 2555.4282 3023.3276 5871.5606 1305.0027 2504.8579 2485.9208
## 1765 1766 1767 1768 1769 1770 1771
## 4787.9123 5615.3031 2349.2389 4017.5785 2265.7488 1870.4974 1679.4240
## 1772 1773 1774 1775 1776 1777 1778
## 3262.6825 3214.1388 5778.7782 3601.3633 2005.6202 4650.0099 3883.4083
## 1779 1780 1781 1782 1783 1784 1785
## 4307.7400 4166.9914 3378.5911 2319.9369 4669.5353 3121.1434 3124.8286
## 1786 1787 1788 1789 1790 1791 1792
## 2587.1625 3340.5088 1896.0189 5227.1544 4299.1088 2000.0000 2376.4156
## 1793 1794 1795 1796 1797 1798 1799
## 3882.3887 4036.5142 3553.2028 4472.1176 1723.3196 3533.3928 1926.1881
## 1800 1801 1802 1803 1804 1805 1806
## 4488.7878 4441.6676 2000.0000 2728.4679 4264.0063 2623.5530 4277.6630
## 1807 1808 1809 1810 1811 1812 1813
## 4832.5645 5108.6623 2938.5937 3362.2183 2636.5791 2442.5120 4816.0181
## 1814 1815 1816 1817 1818 1819 1820
## 3720.3885 2000.0000 2441.4661 1437.1166 3129.4608 3399.9861 3455.6573
## 1821 1822 1823 1824 1825 1826 1827
## 1430.8233 2000.0000 1970.5367 3611.7749 4046.8717 5966.3118 3859.5436
## 1828 1829 1830 1831 1832 1833 1834
## 4013.0822 1056.0820 3924.3658 3241.6813 1544.3972 3348.6362 1942.8725
## 1835 1836 1837 1838 1839 1840 1841
## 4311.3402 3514.2683 2746.3758 2000.0000 1610.6692 4979.2511 2202.4496
## 1842 1843 1844 1845 1846 1847 1848
## 2991.2337 3384.2577 3684.3141 1969.3035 3102.3483 3118.6422 2832.3167
## 1849 1850 1851 1852 1853 1854 1855
## 3794.8762 3716.7625 3631.7870 3120.2466 3765.1789 732.4628 939.4335
## 1856 1857 1858 1859 1860 1861 1862
## 3416.6051 1889.2075 3590.8436 2000.0000 1977.7907 2000.0000 1176.4707
## 1863 1864 1865 1866 1867 1868 1869
## 3263.8690 2769.3284 4203.0660 2755.5847 2130.9725 2312.7288 4837.5474
## 1870 1871 1872 1873 1874 1875 1876
## 3791.5895 5209.5092 3800.1937 1433.1828 2436.8744 3827.5529 3651.8262
## 1877 1878 1879 1880 1881 1882 1883
## 1326.4718 5631.0517 4726.9224 4221.6546 2447.4303 3084.3745 1860.3378
## 1884 1885 1886 1887 1888 1889 1890
## 2000.0000 3759.5904 3156.1098 2398.5777 2942.1133 4336.8642 4713.4048
## 1891 1892 1893 1894 1895 1896 1897
## 2156.3950 3431.3357 1467.5322 1491.7845 4732.3184 3224.7778 2000.0000
## 1898 1899 1900 1901 1902 1903 1904
## 3741.7002 3083.8013 4448.6313 3511.2217 4631.0157 1834.6171 3675.2062
## 1905 1906 1907 1908 1909 1910 1911
## 4020.0915 1441.0089 1603.9728 4017.7788 4317.4266 5443.9310 3166.7050
## 1912 1913 1914 1915 1916 1917 1918
## 3973.8591 1810.3200 4251.1832 4116.7982 3740.3830 3017.4052 1486.2741
## 1919 1920 1921 1922 1923 1924 1925
## 1631.6594 3151.1671 1730.9150 3934.6221 2365.5231 3267.5674 2000.0000
## 1926 1927 1928 1929 1930 1931 1932
## 767.4163 2928.3569 3382.0716 1149.6548 2951.5166 857.6289 3891.8662
## 1933 1934 1935 1936 1937 1938 1939
## 5047.4313 5139.6335 3112.1137 4604.1086 3194.5751 1263.8083 3591.2063
## 1940 1941 1942 1943 1944 1945 1946
## 3386.6801 3168.1406 2556.7887 2582.7207 2145.6172 1371.2136 4220.5689
## 1947 1948 1949 1950 1951 1952 1953
## 5363.4098 2183.2947 4879.3458 1676.8388 4096.0459 3281.5568 4274.0956
## 1954 1955 1956 1957 1958 1959 1960
## 5144.0862 3736.7820 3868.1782 2000.0000 2700.4981 3796.5960 2000.0000
## 1961 1962 1963 1964 1965 1966 1967
## 5803.7582 4205.4803 4220.4667 3063.3256 3497.1128 2091.0219 2338.0400
## 1968 1969 1970 1971 1972 1973 1974
## 5007.3146 998.2706 1520.2432 2053.2349 1878.4981 4183.0168 5072.8072
## 1975 1976 1977 1978 1979 1980 1981
## 2162.7383 3792.5547 1075.0562 5229.4000 4089.2175 3790.1487 3204.3636
## 1982 1983 1984 1985 1986 1987 1988
## 4614.4910 3543.7286 3071.6483 3044.6924 4389.6522 3714.0012 2832.7665
## 1989 1990 1991 1992 1993 1994 1995
## 2835.1443 4617.4343 1893.0619 5627.2838 5297.9426 5296.5493 3727.2762
## 1996 1997 1998 1999 2000 2001 2002
## 3810.6870 3925.6772 5828.6118 3765.2304 2304.1457 4499.0903 4426.0328
## 2003 2004 2005 2006 2007 2008 2009
## 5647.3033 1278.7555 4417.8428 2838.6388 5387.1464 1483.3620 3961.6995
## 2010 2011 2012 2013 2014 2015 2016
## 4519.6442 3733.2200 2671.2793 7134.5247 1984.2133 3948.3066 4841.8525
## 2017 2018 2019 2020 2021 2022 2023
## 2189.4327 5076.3957 4596.8888 2354.9074 1529.1891 3489.2215 3391.2545
## 2024 2025 2026 2027 2028 2029 2030
## 3790.1246 3170.3592 1767.6268 2879.7157 3610.3980 2782.6804 4905.6463
## 2031 2032 2033 2034 2035 2036 2037
## 2963.7299 3048.9933 1183.6720 2678.5389 4889.6169 4028.2851 3128.8711
## 2038 2039 2040 2041 2042 2043 2044
## 3108.2827 4577.4475 2943.2317 2029.3064 2000.0000 4066.9784 4655.0231
## 2045 2046 2047 2048 2049 2050 2051
## 1265.0511 1711.1618 1427.9448 3701.4409 3769.3889 3943.1107 3229.6834
## 2052 2053 2054 2055 2056 2057 2058
## 3690.3654 4705.2283 2838.9226 5245.0365 2000.0000 4538.8396 3458.3365
## 2059 2060 2061 2062 2063 2064 2065
## 1647.2239 2000.0000 3038.7192 3995.2275 2000.0000 2000.0000 3403.8575
## 2066 2067 2068 2069 2070 2071 2072
## 2562.8209 4350.9962 5973.1737 2000.0000 1065.8521 3453.8159 3172.4698
## 2073 2074 2075 2076 2077 2078 2079
## 4933.3639 4325.0912 1719.7898 2420.4847 5372.1487 3269.6193 2000.0000
## 2080 2081 2082 2083 2084 2085 2086
## 6929.3753 922.1474 4507.9040 4031.8804 1129.1868 2000.0000 1950.5719
## 2087 2088 2089 2090 2091 2092 2093
## 3358.3593 4459.3335 2799.7969 4787.1241 2337.4047 1995.0724 3974.6677
## 2094 2095 2096 2097 2098 2099 2100
## 3452.8973 3723.3520 4899.1314 4497.9722 3702.5734 5399.6342 4432.7682
## 2101 2102 2103 2104 2105 2106 2107
## 2000.0000 2000.0000 6819.0245 3804.8563 2116.5166 2946.2444 4680.2187
## 2108 2109 2110 2111 2112 2113 2114
## 926.6597 3134.8945 2582.1384 6395.4160 2024.6560 4192.2381 1511.7049
## 2115 2116 2117 2118 2119 2120 2121
## 2443.5511 1015.2999 4909.7739 4011.3178 7217.2536 3068.8725 2464.3455
## 2122 2123 2124 2125 2126 2127 2128
## 4233.3490 5662.8025 4566.7010 3527.6764 2000.0000 4513.7353 3600.3518
## 2129 2130 2131 2132 2133 2134 2135
## 2776.2541 1580.9736 2607.1232 3758.6481 3897.4451 2000.0000 4831.6181
## 2136 2137 2138 2139 2140 2141
## 918.9765 4098.6414 1955.1520 646.8850 3938.2103 2721.3404
suppressWarnings(suppressMessages(library(e1071))) suppressWarnings(suppressMessages(library(MASS))) suppressWarnings(suppressMessages(library(car))) suppressWarnings(suppressMessages(library(corrplot))) suppressWarnings(suppressMessages(library(pROC))) suppressWarnings(suppressMessages(library(caret))) suppressWarnings(suppressMessages(library(tidyr))) suppressWarnings(suppressMessages(library(ggplot2))) suppressWarnings(suppressMessages(library(dplyr))) suppressWarnings(suppressMessages(library(corrplot))) suppressWarnings(suppressMessages(library(kableExtra))) suppressWarnings(suppressMessages(library(gridExtra)))
insurance_data<-as_data_frame(read.csv(‘https://raw.githubusercontent.com/WigodskyD/data-sets/master/insurance_training_data%20(1).csv’),stringsAsFactors=FALSE) head(insurance_data) insurance_data\(OLDCLAIM<-as.numeric(gsub('\\\)|,‘,’‘, insurance_data\(OLDCLAIM)) insurance_data\)INCOME<-as.numeric(gsub(’\\(|,', '', insurance_data\)INCOME)) conditional_oldclaim<-insurance_data\(OLDCLAIM[which(insurance_data\)OLDCLAIM!=0)] hist(insurance_data\(OLDCLAIM) hist(conditional_oldclaim,breaks=32) insurance_data\)OLDCLAIM<-cut(insurance_data\(OLDCLAIM,breaks=c(-.1,.1,3660,6050,9866,max(insurance_data\)OLDCLAIM)),labels=c(1:5)) hist(as.numeric(insurance_data\(OLDCLAIM)) insurance_data %>% separate(URBANICITY, sep='/ ',into=c('home','work'))->insurance_data insurance_data\)home<- as.factor(gsub(‘z_’,‘’,insurance_data\(home)) insurance_data\)INCOME[is.na(insurance_data$INCOME)]<-61898 insurance_data\(INCOME<-cut(insurance_data\)INCOME,breaks=c(-.1,22345,43660,65260,95555,max(insurance_data\(INCOME)),labels=c(1:5)) insurance_data %>% spread(key=CAR_TYPE,value=CAR_TYPE)->insurance_data insurance_data<-insurance_data[,-c(25,27)] colnames(insurance_data)[26]<-'Panel_Truck' colnames(insurance_data)[30]<-'SUV' colnames(insurance_data)[28]<-'Sports_Car' insurance_data\)Panel_Truck<-as.character(insurance_data\(Panel_Truck) insurance_data\)Panel_Truck[insurance_data$Panel_Truck==’Panel Truck’]<-1 insurance_data\(Panel_Truck[is.na(insurance_data\)Panel_Truck)]<-0 insurance_data\(Sports_Car<-as.character(insurance_data\)Sports_Car) insurance_data\(Sports_Car[insurance_data\)Sports_Car==’Sports Car’]<-1 insurance_data\(Sports_Car[is.na(insurance_data\)Sports_Car)]<-0 insurance_data\(Pickup<-as.character(insurance_data\)Pickup) insurance_data\(Pickup[insurance_data\)Pickup==‘Pickup’]<-1 insurance_data\(Pickup[is.na(insurance_data\)Pickup)]<-0 insurance_data\(Van<-as.character(insurance_data\)Van) insurance_data\(Van[insurance_data\)Van==‘Van’]<-1 insurance_data\(Van[is.na(insurance_data\)Van)]<-0 insurance_data\(SUV<-as.character(insurance_data\)SUV) insurance_data\(SUV[insurance_data\)SUV==‘z_SUV’]<-1 insurance_data\(SUV[is.na(insurance_data\)SUV)]<-0 cols<-c(‘work’,‘Panel_Truck’,‘Pickup’,‘Sports_Car’,‘Van’,‘SUV’) insurance_data[cols] <- lapply(insurance_data[cols], factor) insurance_data\(BLUEBOOK<-as.numeric(gsub('\\\)|,‘,’’, insurance_data$BLUEBOOK)) head(insurance_data[,c(10:16)])
insurance_data\(JOB<-as.character(insurance_data\)JOB) insurance_data\(JOB[insurance_data\)JOB==‘’]<-’None’ insurance_data %>% spread(key=JOB,value=JOB,fill=‘0’)->insurance_data colnames(insurance_data)[32]<-’Homemaker’ colnames(insurance_data)[38]<-’BlueCollar’ insurance_data\(Clerical %>% recode('Clerical' = '1')->insurance_data\)Clerical insurance_data\(Doctor %>% recode('Doctor' = '1')->insurance_data\)Doctor insurance_data\(Homemaker %>% recode('Home Maker' = '1')->insurance_data\)Homemaker insurance_data\(Lawyer %>% recode('Lawyer' = '1')->insurance_data\)Lawyer insurance_data\(Manager %>% recode('Manager' = '1')->insurance_data\)Manager insurance_data\(Professional %>% recode('Professional' = '1')->insurance_data\)Professional insurance_data\(Student %>% recode('Student' = '1')->insurance_data\)Student insurance_data\(BlueCollar %>% recode('z_Blue Collar' = '1')->insurance_data\)BlueCollar insurance_data\(YOJ[is.na(insurance_data\)YOJ)]<-0 insurance_data<-insurance_data[,-c(1,35)] insurance_data\(KIDSDRIV<-as.factor(insurance_data\)KIDSDRIV) insurance_data\(HOME_VAL<-as.numeric(gsub('\\\)|,‘,’‘, insurance_data\(HOME_VAL)) '<High School'='1','Bachelors'='3','Masters'='4','PhD'='5','z_High School'='2' insurance_data\)EDUCATION %>% recode(’
optional dataframe with conglomerate column limiting multicollinearity of old claims
Profession_Set<-rep(‘a’,8) Profession_Set<-cbind(Profession_Set,Profession_Set,Profession_Set) colnames(Profession_Set)<-c(‘Profession’,‘Model’,‘P_value’) for(i in 29:36){ column_to_test<-noquote(colnames(insurance_data[i])) regression<-paste0(‘TARGET_FLAG’,‘~’,column_to_test) one_var_model<-glm(data=insurance_data, as.formula(regression),family=binomial(link=‘logit’)) Profession_Set[i-28,1]<-noquote(as.character((one_var_model)\(terms[[3]])) Profession_Set[i-28,2]<-noquote(paste0('y = ',round(summary(one_var_model)\)coeff[2],4),‘x’,‘+’,round(summary(one_var_model)\(coeff[1],4))) Profession_Set[i-28,3]<-noquote(signif(summary(one_var_model)\)coeff[8],3)) }
kable_input<-kable(Profession_Set, “html”) %>% kable_styling(“striped”, full_width = T) %>% column_spec(1, bold = T, color = “cornsilk”, background = “DarkCyan”) %>% column_spec(2, bold = T, color = “DarkCyan”, background = “cornsilk”) %>% column_spec(3, bold = T, color = “DarkCyan”, background = “cornsilk”) add_header_above(kable_input, header = c(“Single Variable Models by Professional Category”=2,‘’=1), bold = TRUE, italic = TRUE)%>% kable_styling(bootstrap_options = “striped”, font_size = 18)
wealth_set<-rep(‘a’,6) wealth_set<-cbind(wealth_set,wealth_set,wealth_set) colnames(wealth_set)<-c(‘Variable’,‘Model’,‘P_value’)
j<-1 for(i in c(7,9,12,15,22,20)){ column_to_test<-noquote(colnames(insurance_data[i])) regression<-paste0(‘TARGET_FLAG’,‘~’,column_to_test) one_var_model<-glm(data=insurance_data, as.formula(regression),family=binomial(link=‘logit’)) wealth_set[j,1]<-noquote(as.character((one_var_model)\(terms[[3]])) wealth_set[j,2]<-noquote(paste0('y = ',round(summary(one_var_model)\)coeff[2],7),‘x’,‘+’,round(summary(one_var_model)\(coeff[1],4))) wealth_set[j,3]<-noquote(signif(summary(one_var_model)\)coeff[8],3)) j<-j+1 }
kable_input<-kable(wealth_set, “html”) %>% kable_styling(“striped”, full_width = T) %>% column_spec(1, bold = T, color = “AliceBlue”, background = “lightslategray”) %>% column_spec(2, bold = T, color = “lightslategray”, background = “AliceBlue”) %>% column_spec(3, bold = T, color = “lightslategray”, background = “AliceBlue”) add_header_above(kable_input, header = c(“Single Variable Models by Wealth Measures”=2,‘’=1), bold = TRUE, italic = TRUE)%>% kable_styling(bootstrap_options = “striped”, font_size = 18) plota<-ggplot()+geom_boxplot(data=insurance_data, y=insurance_data\(INCOME,aes(y=insurance_data\)INCOME,x=insurance_data\(TARGET_FLAG,group=insurance_data\)TARGET_FLAG))+labs(x=‘target’,y=‘income’)+ theme(panel.background = element_rect(fill = ‘Wheat’)) plotb<-ggplot()+geom_boxplot(data=insurance_data, y=insurance_data\(HOME_VAL,aes(y=insurance_data\)HOME_VAL,x=insurance_data\(TARGET_FLAG,group=insurance_data\)TARGET_FLAG))+labs(x=‘target’,y=‘home value’)+ theme(panel.background = element_rect(fill = ‘Wheat’)) plotc<-ggplot()+geom_boxplot(data=insurance_data, y=insurance_data\(BLUEBOOK,aes(y=insurance_data\)BLUEBOOK,x=insurance_data\(TARGET_FLAG,group=insurance_data\)TARGET_FLAG))+labs(x=‘target’,y=‘Bluebook Value’)+ theme(panel.background = element_rect(fill = ‘Wheat’)) grid.arrange(plota,plotb,plotc,nrow = 1)
claim_size_data<-insurance_data[which(insurance_data$TARGET_FLAG==1),] claimSize_set<-rep(‘a’,8) claimSize_set<-cbind(claimSize_set,claimSize_set,claimSize_set) colnames(claimSize_set)<-c(‘Variable’,‘Model’,‘P_value’) j<-1 for(i in c(9,15,17,18,19,20,21,22)){ column_to_test<-noquote(colnames(claim_size_data[i])) regression<-paste0(‘TARGET_AMT’,‘~’,column_to_test) one_var_model<-lm(data=claim_size_data, as.formula(regression) ) claimSize_set[j,1]<-noquote(as.character((one_var_model)\(terms[[3]])) claimSize_set[j,2]<-noquote(paste0('y = ',round(summary(one_var_model)\)coeff[2],7),‘x’,‘+’,round(summary(one_var_model)\(coeff[1],4))) claimSize_set[j,3]<-noquote(signif(summary(one_var_model)\)coeff[8],3)) j<-j+1 }
kable_input<-kable(claimSize_set, “html”) %>% kable_styling(“striped”, full_width = T) %>% column_spec(1, bold = T, color = “cornsilk”, background = “DarkCyan”) %>% column_spec(2, bold = T, color = “DarkCyan”, background = “cornsilk”) %>% column_spec(3, bold = T, color = “DarkCyan”, background = “cornsilk”) add_header_above(kable_input, header = c(“Single Variable Models by Wealth Measures”=2,‘’=1), bold = TRUE, italic = TRUE)%>% kable_styling(bootstrap_options = “striped”, font_size = 18)
plota<-ggplot()+geom_boxplot(data=claim_size_data, y=claim_size_data\(TARGET_AMT,aes(y=claim_size_data\)TARGET_AMT,x=claim_size_data\(RED_CAR,group=claim_size_data\)RED_CAR))+labs(x=‘Red Car’,y=‘Claim Amount’)+ theme(panel.background = element_rect(fill = ‘#c7e2d1’)) plotb<-ggplot()+geom_point(data=claim_size_data, aes(y=claim_size_data\(TARGET_AMT,x=claim_size_data\)HOME_VAL))+labs(x=‘Home Value’,y=‘Claim Amount’)+ theme(panel.background = element_rect(fill = ‘#c7e2d1’))+xlim(10,800000) plotc<-ggplot()+geom_point(data=claim_size_data, aes(y=claim_size_data\(TARGET_AMT,x=claim_size_data\)BLUEBOOK))+labs(x=‘Bluebook’,y=‘Claim Amount’)+ theme(panel.background = element_rect(fill = ‘#c7e2d1’))+xlim(10,75000) plotd<-ggplot()+geom_boxplot(data=claim_size_data, y=claim_size_data\(TARGET_AMT,aes(y=claim_size_data\)TARGET_AMT,x=claim_size_data\(OLDCLAIM,group=claim_size_data\)OLDCLAIM))+labs(x=‘Old Claim Amt’,y=‘Claim Amount’)+ theme(panel.background = element_rect(fill = ‘#c7e2d1’))
plote<-ggplot()+geom_boxplot(data=claim_size_data, y=claim_size_data\(TARGET_AMT,aes(y=claim_size_data\)TARGET_AMT,x=claim_size_data\(CLM_FREQ,group=claim_size_data\)CLM_FREQ))+labs(x=‘Claim Freq’,y=‘Claim Amount’)+ theme(panel.background = element_rect(fill = ‘#c7e2d1’))+ylim(0,30000)
plotg<-ggplot()+geom_point(data=claim_size_data, aes(y=claim_size_data\(TARGET_AMT,x=claim_size_data\)MVR_PTS))+labs(x=‘Points on License’,y=‘Claim Amount’)+ theme(panel.background = element_rect(fill = ‘#c7e2d1’))+xlim(0,15) ploth<-ggplot()+geom_point(data=claim_size_data, aes(y=claim_size_data\(TARGET_AMT,x=claim_size_data\)CAR_AGE))+labs(x=‘Car Age’,y=‘Claim Amount’)+ theme(panel.background = element_rect(fill = ‘#c7e2d1’))+xlim(0,30) grid.arrange(plota,plotb,plotc,plotd,plote,plotg,ploth,nrow = 2)
set.seed(102) insurance_data\(CAR_AGE[is.na(insurance_data\)CAR_AGE)]<-mean(insurance_data\(CAR_AGE,na.rm=TRUE) insurance_data\)AGE[is.na(insurance_data$AGE)]<-mean(insurance_data\(AGE,na.rm=TRUE) insurance_data\)HOME_VAL[is.na(insurance_data$HOME_VAL)]<-mean(insurance_data\(HOME_VAL,na.rm=TRUE) testing_indices<-sample.int(length(insurance_data\)AGE),size=.25*length(insurance_data$AGE)) testing_set<-insurance_data[testing_indices,] training_set<-insurance_data[-testing_indices,]
first_logit<-glm(data=training_set, TARGET_FLAG~KIDSDRIV +AGE+HOMEKIDS +YOJ + INCOME + PARENT1+ HOME_VAL + MSTATUS + SEX + #EDUCATION + TRAVTIME+ CAR_USE + BLUEBOOK + TIF + RED_CAR + OLDCLAIM + CLM_FREQ + REVOKED + MVR_PTS + CAR_AGE + work + Panel_Truck + Pickup + Sports_Car + Van + SUV + Clerical
+ Doctor + Homemaker + Lawyer + Manager + Professional + Student + BlueCollar ,family=binomial(link=‘logit’)) revoked_model<-glm(data=training_set, TARGET_FLAG~REVOKED,family=binomial(link=‘logit’)) The stepwise regression model produced the model below. step(revoked_model,scope=list(lower=revoked_model,upper=first_logit) ,direction=“forward”) forward_step_model<-glm(data=training_set, TARGET_FLAG~REVOKED+work+HOME_VAL+MVR_PTS+CAR_USE+BLUEBOOK+PARENT1+Manager+TRAVTIME+KIDSDRIV+TIF+INCOME+CLM_FREQ+Sports_Car+SUV+MSTATUS+Clerical+Pickup+Van+Panel_Truck+CAR_AGE+BlueCollar+EDUCATION+Doctor+YOJ+HOMEKIDS,family=binomial(link=‘logit’)) summary(forward_step_model) vif(forward_step_model) plota<-ggplot()+geom_point(aes(x=seq_along(resid(forward_step_model)),y=resid(forward_step_model)),color=‘blue’,shape=20,size=2)+ theme(panel.background = element_rect(fill = ‘#d3dded’))+labs(x=‘Forward Step Model’,y=‘Residuals’)+ylim(-4,4) plotb<-ggplot()+geom_point(aes(x=seq_along(cooks.distance(forward_step_model)),y=cooks.distance(forward_step_model)),color=‘blue’,shape=20,size=2)+ theme(panel.background = element_rect(fill = ‘#d3dded’))+labs(x=‘Forward Step Model’,y=“Cook’s Distance”)+ylim(0,.004) grid.arrange(plota,plotb,nrow = 1)
means_group<-matrix(kmeans(training_set[,c(6,7,12,21,28,33,24,25)],2)) training_set<-cbind(training_set,means_group[1]) colnames(training_set)[37]<-’means_group’ kmeans_model<-glm(data=training_set, TARGET_FLAG~REVOKED +MSTATUS +MVR_PTS + work +CAR_USE +TRAVTIME +TIF+means_group,family=binomial(link=‘logit’)) summary(kmeans_model) small_model<-glm(data=training_set, TARGET_FLAG~REVOKED +MSTATUS +MVR_PTS + work +CAR_USE +TRAVTIME +TIF,family=binomial(link=‘logit’)) summary(small_model)
max_model<-lm(data=training_set, TARGET_AMT~KIDSDRIV +AGE+HOMEKIDS +YOJ + INCOME + PARENT1+ HOME_VAL + MSTATUS + SEX + EDUCATION + TRAVTIME+ CAR_USE + BLUEBOOK + TIF + RED_CAR + OLDCLAIM + CLM_FREQ + REVOKED + MVR_PTS + CAR_AGE + work + Panel_Truck + Pickup + Sports_Car + Van + SUV + Clerical
+ Doctor + Homemaker + Lawyer + Manager + Professional + Student + BlueCollar) summary(max_model)
revoked_model<-lm(data=training_set, TARGET_AMT~REVOKED) step(revoked_model,scope=list(lower=revoked_model,upper=max_model) ,direction=“forward”) step_claimSize_model<-lm(data=training_set, TARGET_AMT~ REVOKED + MVR_PTS + CAR_USE + work + PARENT1 + INCOME + Manager + MSTATUS + CLM_FREQ + TIF + TRAVTIME + CAR_AGE + Sports_Car + Van + KIDSDRIV + SUV) summary(step_claimSize_model) small_model<-lm(data=training_set, TARGET_AMT~Sports_Car +MSTATUS + Manager + work + CAR_USE) summary(small_model)
plota<-ggplot(data=insurance_data,aes(x=insurance_data\(TARGET_FLAG,y=insurance_data\)TARGET_AMT))+geom_violin(draw_quantiles = c(0.25, 0.5, 0.75),bw=.7)+ scale_color_manual(values=c(“#022082”, “#a3204e”))+ theme(panel.background = element_rect(fill = ‘#b5c6fc’))+coord_flip()+ylab(‘Claim Sizes’)+xlab(‘Actual Amount’)+ylim(1,25000) plotb<-ggplot(data=insurance_data,aes(x=insurance_data\(TARGET_FLAG,y=insurance_data\)TARGET_AMT))+geom_violin()+ylim(10000,50000)+ scale_color_manual(values=c(“#022082”, “#a3204e”))+ theme(panel.background = element_rect(fill = ‘#b5c6fc’))+coord_flip()+ylab(‘Claim Sizes’)+xlab(‘’) plotc<-ggplot(data=insurance_data,aes(x=insurance_data\(TARGET_FLAG,y=insurance_data\)TARGET_AMT))+geom_violin()+ylim(50000,75000)+ scale_color_manual(values=c(“#022082”, “#a3204e”))+ theme(panel.background = element_rect(fill =’#b5c6fc’))+coord_flip()+ylab(‘Claim Sizes’)+xlab(‘’) plotd<-ggplot(data=insurance_data,aes(x=insurance_data\(TARGET_FLAG,y=insurance_data\)TARGET_AMT))+geom_violin()+ylim(75000,100000)+ scale_color_manual(values=c(“#022082”, “#a3204e”))+ theme(panel.background = element_rect(fill =’#b5c6fc’))+coord_flip()+ylab(‘Claim Sizes’)+xlab(’’) grid.arrange(plota,nrow = 1)
predictions<-as.data.frame(predict(max_model,testing_set)) plota<-ggplot(data=predictions,aes(x=1,y=predictions))+geom_violin(draw_quantiles = c(0.25, 0.5, 0.75),bw=.7)+ scale_color_manual(values=c(“#022082”, “#a3204e”))+ theme(panel.background = element_rect(fill = ‘palegoldenrod’))+coord_flip()+ylab(‘Claim Sizes’)+xlab(‘Predicted’)+ylim(1,25000) plotb<-ggplot(data=predictions,aes(x=1,y=predictions))+geom_violin(draw_quantiles = c(0.25, 0.5, 0.75),bw=.7)+ scale_color_manual(values=c(“#022082”, “#a3204e”))+ theme(panel.background = element_rect(fill = ‘goldenrod’))+coord_flip()+ylab(‘Claim Sizes’)+xlab(‘Pridicted-Zoomed’)+ylim(-2000,5000) grid.arrange(plota,plotb,nrow = 2)
predictions<-cbind(predictions,testing_set$TARGET_AMT)
colnames(predictions)<-c(‘predictions’,‘true_value’) predictions %>% mutate(diff_pred=predictions - true_value)->predictions diff_pred_df<-as.data.frame(predictions$diff_pred) plota<-ggplot()+geom_point(aes(x=seq(1,2040),y=diff_pred_df),color=‘cornsilk’)+ theme(panel.background = element_rect(fill = ‘Darkcyan’))+ylab(‘Claim Size Difference’)+xlab(’’) grid.arrange(plota,nrow = 1)
training_set %>% filter(!(TARGET_AMT==0)) %>% mutate(LOGGED_TARGET=log(TARGET_AMT))->logged_set logged_model<-lm(data=logged_set, LOGGED_TARGET~ KIDSDRIV +AGE+HOMEKIDS +YOJ + INCOME + PARENT1+ HOME_VAL + MSTATUS + SEX + EDUCATION + TRAVTIME+ CAR_USE + BLUEBOOK + TIF + RED_CAR + OLDCLAIM + CLM_FREQ + REVOKED + MVR_PTS + CAR_AGE + work + Panel_Truck + Pickup + Sports_Car + Van + SUV + Clerical + Doctor + Homemaker + Lawyer + Manager + Professional + Student + BlueCollar) summary(logged_model)
means_group<-matrix(kmeans(testing_set[,c(6,7,12,21,28,33,24,25)],2)) testing_set<-cbind(testing_set,means_group[1]) colnames(testing_set)[37]<-’means_group’ kmeans_predictions<-predict(kmeans_model,testing_set) ROC_set<-cbind(testing_set$TARGET_FLAG,kmeans_predictions) roc_function_object<-roc(ROC_set[,1],ROC_set[,2]) plot(roc_function_object) print(‘k-means model’) auc(roc_function_object) ——————————————–
forward_step_predictions<-predict(forward_step_model,testing_set) ROC_set<-cbind(testing_set$TARGET_FLAG,forward_step_predictions) roc_function_object<-roc(ROC_set[,1],ROC_set[,2]) plot(roc_function_object) print(‘forward step model’) auc(roc_function_object) ——————————————–
small_predictions<-predict(small_model,testing_set) ROC_set<-cbind(testing_set$TARGET_FLAG,small_predictions) roc_function_object<-roc(ROC_set[,1],ROC_set[,2]) plot(roc_function_object) print(‘small model’) auc(roc_function_object)
plota<-ggplot()+geom_point(aes(x=seq_along(resid(step_claimSize_model)),y=resid(step_claimSize_model)),color=‘blue’,shape=20,size=2)+ theme(panel.background = element_rect(fill = ‘#d3dded’))+labs(x=‘Forward Step Model’,y=‘Residuals’) plotb<-ggplot()+geom_point(aes(x=seq_along(cooks.distance(step_claimSize_model)),y=cooks.distance(step_claimSize_model)),color=‘blue’,shape=20,size=2)+ theme(panel.background = element_rect(fill = ‘#d3dded’))+labs(x=‘Forward Step Model’,y=“Cook’s Distance”) grid.arrange(plota,plotb,nrow = 1)
results_from_step_model<-predict(step_claimSize_model,testing_set) Metrics::rmse(results_from_step_model,testing_set[,2])
evaluation_data<-as_data_frame(read.csv(‘https://raw.githubusercontent.com/WigodskyD/data-sets/master/insurance-evaluation-data.csv’),stringsAsFactors=FALSE) evaluation_data\(OLDCLAIM<-as.numeric(gsub('\\\)|,‘,’‘, evaluation_data\(OLDCLAIM)) evaluation_data\)INCOME<-as.numeric(gsub(’\\(|,', '', evaluation_data\)INCOME)) conditional_oldclaim<-evaluation_data\(OLDCLAIM[which(evaluation_data\)OLDCLAIM!=0)] evaluation_data\(OLDCLAIM<-cut(evaluation_data\)OLDCLAIM,breaks=c(-.1,.1,3660,6050,9866,max(evaluation_data\(OLDCLAIM)),labels=c(1:5)) evaluation_data %>% separate(URBANICITY, sep='/ ',into=c('home','work'))->evaluation_data evaluation_data\)home<- as.factor(gsub(‘z_’,‘’,evaluation_data\(home)) evaluation_data\)INCOME[is.na(evaluation_data$INCOME)]<-61898 evaluation_data\(INCOME<-cut(evaluation_data\)INCOME,breaks=c(-.1,22345,43660,65260,95555,max(evaluation_data\(INCOME)),labels=c(1:5)) evaluation_data %>% spread(key=CAR_TYPE,value=CAR_TYPE)->evaluation_data evaluation_data<-evaluation_data[,-c(25,27)] colnames(evaluation_data)[26]<-'Panel_Truck' colnames(evaluation_data)[30]<-'SUV' colnames(evaluation_data)[28]<-'Sports_Car' evaluation_data\)Panel_Truck<-as.character(evaluation_data\(Panel_Truck) evaluation_data\)Panel_Truck[evaluation_data$Panel_Truck==’Panel Truck’]<-1 evaluation_data\(Panel_Truck[is.na(evaluation_data\)Panel_Truck)]<-0 evaluation_data\(Sports_Car<-as.character(evaluation_data\)Sports_Car) evaluation_data\(Sports_Car[evaluation_data\)Sports_Car==’Sports Car’]<-1 evaluation_data\(Sports_Car[is.na(evaluation_data\)Sports_Car)]<-0 evaluation_data\(Pickup<-as.character(evaluation_data\)Pickup) evaluation_data\(Pickup[evaluation_data\)Pickup==‘Pickup’]<-1 evaluation_data\(Pickup[is.na(evaluation_data\)Pickup)]<-0 evaluation_data\(Van<-as.character(evaluation_data\)Van) evaluation_data\(Van[evaluation_data\)Van==‘Van’]<-1 evaluation_data\(Van[is.na(evaluation_data\)Van)]<-0 evaluation_data\(SUV<-as.character(evaluation_data\)SUV) evaluation_data\(SUV[evaluation_data\)SUV==‘z_SUV’]<-1 evaluation_data\(SUV[is.na(evaluation_data\)SUV)]<-0 cols<-c(‘work’,‘Panel_Truck’,‘Pickup’,‘Sports_Car’,‘Van’,‘SUV’) evaluation_data[cols] <- lapply(evaluation_data[cols], factor) evaluation_data\(BLUEBOOK<-as.numeric(gsub('\\\)|,‘,’‘, evaluation_data\(BLUEBOOK)) evaluation_data\)JOB<-as.character(evaluation_data\(JOB) evaluation_data\)JOB[evaluation_data$JOB==’’]<-’None’ evaluation_data %>% spread(key=JOB,value=JOB,fill=‘0’)->evaluation_data colnames(evaluation_data)[32]<-’Homemaker’ colnames(evaluation_data)[38]<-’BlueCollar’ evaluation_data\(Clerical %>% recode('Clerical' = '1')->evaluation_data\)Clerical evaluation_data\(Doctor %>% recode('Doctor' = '1')->evaluation_data\)Doctor evaluation_data\(Homemaker %>% recode('Home Maker' = '1')->evaluation_data\)Homemaker evaluation_data\(Lawyer %>% recode('Lawyer' = '1')->evaluation_data\)Lawyer evaluation_data\(Manager %>% recode('Manager' = '1')->evaluation_data\)Manager evaluation_data\(Professional %>% recode('Professional' = '1')->evaluation_data\)Professional evaluation_data\(Student %>% recode('Student' = '1')->evaluation_data\)Student evaluation_data\(BlueCollar %>% recode('z_Blue Collar' = '1')->evaluation_data\)BlueCollar evaluation_data\(YOJ[is.na(evaluation_data\)YOJ)]<-0 evaluation_data<-evaluation_data[,-c(1,35)] evaluation_data\(KIDSDRIV<-as.factor(evaluation_data\)KIDSDRIV) evaluation_data\(HOME_VAL<-as.numeric(gsub('\\\)|,‘,’‘, evaluation_data\(HOME_VAL)) '<High School'='1','Bachelors'='3','Masters'='4','PhD'='5','z_High School'='2' evaluation_data\)EDUCATION %>% recode(’<High School’=‘1’,‘Bachelors’=‘3’,‘Masters’=‘4’,‘PhD’=‘5’,‘z_High School’=‘2’) evaluation_data\(SEX<-as.character(evaluation_data\)SEX) evaluation_data\(MSTATUS<-as.character(evaluation_data\)MSTATUS) evaluation_data\(SEX[evaluation_data\)SEX==‘z_F’]<-‘F’ evaluation_data\(MSTATUS[evaluation_data\)MSTATUS==‘z_No’]<-‘No’ evaluation_data\(EDUCATION<-as.numeric(evaluation_data\)EDUCATION) evaluation_data\(Manager<-as.numeric(evaluation_data\)Manager) evaluation_data\(Sports_Car<-as.numeric(evaluation_data\)Sports_Car) evaluation_data\(Van<-as.numeric(evaluation_data\)Van) evaluation_data\(KIDSDRIV<-as.numeric(evaluation_data\)KIDSDRIV) evaluation_data\(SUV<-as.numeric(evaluation_data\)SUV) results_to_report<-predict(step_claimSize_model,evaluation_data) results_to_report[is.na(results_to_report)]<-2000 results_to_report write.csv(results_to_report,‘C:/Users/dawig/Desktop/Data621/Homework_4/WigodskyDanpredictions4.csv’)