Calculus Taylor Series

library(pracma)

Key Idea 32 gives the nth term of the Taylor series of common func􏰀ons. In Exercises 3 – 6, verify the formula given in the Key Idea by finding the first few terms of the Taylor series of the given functi􏰀on and idtifying a ptarteen�fy.

\[f(x)=sinx; c=0\]

\[\begin{equation} \sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n + 1)!} \end{equation}\] \[\begin{equation} f(x) = 1 * \frac{x^{1}}{(1)!} + -1 * \frac{x^{3}}{(3)!} + 1 * \frac{x^{5}}{(5)!} + -1 * \frac{x^{7}}{(7)!} + ... \end{equation}\]

\[\begin{equation} f(x) = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + ... \end{equation}\]

taylor(sin, 0, 7)
## [1] -0.0001983869  0.0000000000  0.0083332754  0.0000000000 -0.1666666439
## [6]  0.0000000000  1.0000000000  0.0000000000

Nicholas Schettini

11/28/2018