library(Deriv)
Solution -
First, draw a model of adjacent, equally sized rectangular pens -
Y (length)
------------------
| | | X (width)
| | |
------------------
Area = X * Y Perimeter = 3x + 2y
Since we want to maximize the area enclosed by the fence, we express the Area in terms of X using the perimeter equal to 1000 feet and then solve for the crtical value of the Area A’.
1000 = 3x + 2y
y = (1000 - 3x)/2
Area = (1000x - 3x$^2$)/2
= 500x - (3/2)x$^2$
Area' = 500 -3X (point where area is maximum)
fx <- function(x) {
500 - (3*x)
}
a <- uniroot(fx, c(200, -200))
a$root
## [1] 166.6667
x = a$root
x
## [1] 166.6667
y = (1000 - 3*x)/2
y
## [1] 250
Area = x*y
Area #maximum
## [1] 41666.67