#REGRESION

Caso: dependiente numerica

Abrir la data:

library(foreign)
filename="pract25nov.csv"
perudat=read.csv(filename)
names(perudat)
##  [1] "SP_ID"      "IDPROV"     "IDDPTO"     "NOMBDEP"    "NOMBPROV"  
##  [6] "SUP_INSULA" "SUP_LACUST" "SUP_INS_D"  "IDH"        "esperanza" 
## [11] "secundaria" "educa"      "percapitaf" "IDE"        "identidad" 
## [16] "salud"      "educacion"  "saneamient" "electrific" "costa"     
## [21] "capital"    "tamano"     "fecundidad" "desnutrici" "densidadpo"
## [26] "mortalidad" "analfa"     "analfa1"    "analfa2"    "analfa3"   
## [31] "analfa4"    "pob"        "pob_ur"     "pob_rural"  "pob_h"     
## [36] "pob_m"      "TOTAL"      "INTEL"      "AUDIT"      "CEGUE"     
## [41] "BAJAVISI"   "SORDCEGUE"  "MOTORA"     "AUTIS"      "ARPERG"    
## [46] "OTRO"       "EBR"
str(perudat)
## 'data.frame':    196 obs. of  47 variables:
##  $ SP_ID     : int  7 6 5 4 1 3 2 27 26 25 ...
##  $ IDPROV    : int  107 106 105 104 101 103 102 220 219 218 ...
##  $ IDDPTO    : int  1 1 1 1 1 1 1 2 2 2 ...
##  $ NOMBDEP   : Factor w/ 25 levels "AMAZONAS","ANCASH",..: 1 1 1 1 1 1 1 2 2 2 ...
##  $ NOMBPROV  : Factor w/ 196 levels "ABANCAY","ACOBAMBA",..: 187 157 116 59 46 24 19 194 172 167 ...
##  $ SUP_INSULA: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ SUP_LACUST: int  0 0 0 0 0 0 0 0 0 0 ...
##  $ SUP_INS_D : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ IDH       : num  0.274 0.27 0.251 0.169 0.334 ...
##  $ esperanza : num  72.8 74.6 71.2 70.1 72.5 ...
##  $ secundaria: num  33.44 26.69 34.6 8.02 45.69 ...
##  $ educa     : num  5.77 5.77 5.17 5.25 7.4 ...
##  $ percapitaf: num  242 249 211 148 307 ...
##  $ IDE       : num  0.61 0.631 0.605 0.46 0.774 ...
##  $ identidad : num  95.2 97.3 96.2 86.2 98.6 ...
##  $ salud     : num  10.11 14.88 12.42 8.56 25.45 ...
##  $ educacion : num  77.2 79.4 74.7 52.2 91.5 ...
##  $ saneamient: num  52.5 46.5 43.3 37.7 70.3 ...
##  $ electrific: num  63.1 67.5 67.4 39.5 84 ...
##  $ costa     : Factor w/ 2 levels "NO","SI": 1 1 1 1 1 1 1 1 1 2 ...
##  $ capital   : Factor w/ 2 levels "NO","SI": 1 1 1 1 2 1 1 1 1 1 ...
##  $ tamano    : int  3 1 2 2 2 1 2 2 1 4 ...
##  $ fecundidad: num  2.74 2.39 3.07 4.81 2.32 2.47 2.81 2.63 3.72 2.09 ...
##  $ desnutrici: num  32.5 23.5 30.6 56.8 20.7 ...
##  $ densidadpo: num  28.25 11.18 14.93 2.42 15 ...
##  $ mortalidad: num  19.4 14.3 24.5 28.5 20.4 21.4 16.9 37.4 25.6 12.9 ...
##  $ analfa    : num  12.85 7.85 14.27 18.97 7.97 ...
##  $ analfa1   : num  7.82 4.27 11.71 7.09 5.2 ...
##  $ analfa2   : Factor w/ 186 levels "#N/A","0.15",..: 60 185 53 84 45 35 59 140 123 31 ...
##  $ analfa3   : num  7.11 4.96 8.27 8.57 4.28 ...
##  $ analfa4   : num  19.3 11.1 20.8 29.6 11.4 ...
##  $ pob       : int  109043 26389 48328 43311 49700 27465 71757 54963 30700 396434 ...
##  $ pob_ur    : int  47064 8593 19526 6458 34343 16460 33559 13268 7977 370476 ...
##  $ pob_rural : int  61979 17796 28802 36853 15357 11005 38198 41695 22723 25958 ...
##  $ pob_h     : int  56969 13903 24968 21806 24433 14148 36713 27043 15106 197865 ...
##  $ pob_m     : int  52074 12486 23360 21505 25267 13317 35044 27920 15594 198569 ...
##  $ TOTAL     : int  113 82 1 8 25 1 96 187 164 481 ...
##  $ INTEL     : int  75 78 1 8 18 1 65 187 160 417 ...
##  $ AUDIT     : int  14 4 0 0 2 0 11 0 0 19 ...
##  $ CEGUE     : int  8 0 0 0 0 0 4 0 0 12 ...
##  $ BAJAVISI  : int  0 0 0 0 2 0 6 0 0 5 ...
##  $ SORDCEGUE : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ MOTORA    : int  16 0 0 0 1 0 6 0 4 10 ...
##  $ AUTIS     : int  0 0 0 0 0 0 4 0 0 14 ...
##  $ ARPERG    : int  0 0 0 0 0 0 0 0 0 1 ...
##  $ OTRO      : int  0 0 0 0 2 0 0 0 0 3 ...
##  $ EBR       : int  5 7 9 2 5 7 9 2 7 3 ...
names(perudat)
##  [1] "SP_ID"      "IDPROV"     "IDDPTO"     "NOMBDEP"    "NOMBPROV"  
##  [6] "SUP_INSULA" "SUP_LACUST" "SUP_INS_D"  "IDH"        "esperanza" 
## [11] "secundaria" "educa"      "percapitaf" "IDE"        "identidad" 
## [16] "salud"      "educacion"  "saneamient" "electrific" "costa"     
## [21] "capital"    "tamano"     "fecundidad" "desnutrici" "densidadpo"
## [26] "mortalidad" "analfa"     "analfa1"    "analfa2"    "analfa3"   
## [31] "analfa4"    "pob"        "pob_ur"     "pob_rural"  "pob_h"     
## [36] "pob_m"      "TOTAL"      "INTEL"      "AUDIT"      "CEGUE"     
## [41] "BAJAVISI"   "SORDCEGUE"  "MOTORA"     "AUTIS"      "ARPERG"    
## [46] "OTRO"       "EBR"
#VD:ebr
#VIs:intel, audit, cegue, bajavisi,sordcegue,motora,autis,arperg,
#VCs: total
regreData1=perudat[,c(37,41,45)]
names(regreData1)
## [1] "TOTAL"    "BAJAVISI" "ARPERG"
modelo1=glm(TOTAL~.,
            data=regreData1,
            family ="gaussian")
summary(modelo1)
## 
## Call:
## glm(formula = TOTAL ~ ., family = "gaussian", data = regreData1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -805.14   -30.37   -13.19    20.63   674.31  
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   31.369     10.940   2.867   0.0046 ** 
## BAJAVISI      13.662      2.600   5.254 3.91e-07 ***
## ARPERG        52.938      2.598  20.374  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 19817.96)
## 
##     Null deviance: 47671527  on 195  degrees of freedom
## Residual deviance:  3824865  on 193  degrees of freedom
## AIC: 2500.5
## 
## Number of Fisher Scoring iterations: 2

Tiene mayor influencia el asperger y la baja visión siendo la tipología de asperger el que tiene mayor influencia Donde hay más niños con baja visión hay mayor población de niños con discapacidad.