\(\int 4 e^{-7x}dx\)
Solution -
let u = -7x
du/dx = -7
dx = du/-7
By substitution -
\(\int 4 e^{-7x}dx\) = 4\(\int e^u du/-7\) = \(-4/7\int e^udu\) = -4/7 * e\(^u\) + C = -4/7 * e\(^{-7x}\) + C
Solution -
First find the general function for N(t) -
\(\int-3150/t^4-220\, dt\) = -3150 * (t\(^-3\)/-3) - 220t + C = N
After 1 day, N = 6530, solving for C
C = 6530 + 3150 * (1^-3)/-3 + 220*(1)
C
## [1] 5700
N(t) = -3150 * (t\(^{-3}\)/-3) - 220t + 5700 = 1050 t\(^{-3}\) - 220t + 5700
A = (5.5 - 4.5) * (1 - 0) + (6.5 - 5.5) * (3 - 0) + (7.5 - 6.5) * (5 - 0) + (7.5 - 6.5) * (7 - 0)
A
## [1] 16
x1 = c(-5:5)
y1 = x1^2 - 2*x1 - 2
x2 = c(-5:5)
y2 = x2 + 2
plot(x1,y1,type="l", xlab="x1,x2", ylab="y1, y2")
lines(x2,y2,type="l")
y = x\(^2\) - 2x - 2
y = x + 2
Solving for x -
x + 2 = x\(^2\) - 2x - 2
0 = x\(^2\) - 3x - 4
= (x -4) (x + 1)
x = 5, -1
Solving for y - y = x + 2
y = 7, 1
Instersection points are - (5, 7) and (-1, 1)
\(\int_{-1}^{5} (x+2) - (x^2 - 2x - 2)dx\) = \(\int_{-1}^{5} -x^2+3x+4\)
\(-x^3/3 = 3x2/2 + 4x\), from x =5 to x=-1
-(5)^3/3 + (3*(5)^2)/2+ 4*(5) - (-(-1)^3/3 + (3*(-1)^2)/2+ 4*(-1))
## [1] 18
Solution -
Let -
x - number of orders/year
y - lot size per order
then x * y - total number of irons ordered for the year
x*y >= 110, valid values for x are > = 1 (since we need a minimum order of 1 per year to ship the inventory)
Cost of inventory per year = 3.75 (yx - 110) + 8.75x = 3.75yx + 8.75*x - 412.5
Since our objective is to keep our cost of inventory per year at the minimum, we need to minimize x and maximize y. From the cost fucntion above, the mimumum value for x is 1 and since y = 110/x, y = 110.
By substitution, minimum cost is -
C = 3.75 * ((110)*(1) - 110) + 8.75*(1)
C
## [1] 8.75
x - number of orders/year = 1
y - lot size per order = 110
\(\int ln(9x) x^6 dx\)
Solution -
using integration by parts -
\(\int u*dv/dx*dx\) = u*v - \(\int v*du/dx*dx\)
u = ln(9x)
du/dx, using chain rule -
u = 9x d/du[ln u * d/dx(9x)] = 1/u* d/dx (9X) = 1/9x * 9
du/dx = 1/x
dv/dx = \(x^6\)
v = \(x^7\)/7
= ln (9x) * \(x^7\)/7 - \(\int x^7/7 * 1/x* dx\) = \(x^7\)*(ln (9x)/7 - 1)
Solution -
\(\int_{1}^{e^6} 1/(6x) dx\)
1/6 * ln x from [1, e\(^6\)], =
PDF = (1/6) * log(exp(6)) - ((1/6) * log(1))
PDF
## [1] 1
f (x) is a probability density function on the interval [1, e\(^6\)] - with the area of the curve as 1 (100% probabily for the interval)