A die is rolled until the first time T that a six turns up
Chance of getting 6 while rolling a dice is \(\frac {1}{6}\)
Now use formula: \(P(T = n) = q^{n-1}\times p\) where \(q = 1-p\)
\(P(n) = q^{n-1}\times p\)
\(P(n) = (1-\frac{1}{6})^{n-1}\times\frac{1}{6}\)
\(P(n) = (\frac{5}{6})^{n-1}\times\frac{1}{6}\)
curve((1/6)*((5/6)^(x-1)), from = 0, to=50)
\(P(T > k) = q^{k}\)
\(P(T > 3) = (1-\frac{1}{6})^{3}\)
\(P(T > 3) = {(\frac{5}{6})}^{3} = \frac {125}{216}\)
Let’s use text book formula \(P(T>r+s|T>s) = q^{s}\)
\(P(T>6|T>3) = (1-p)^{3}\)
\(P(T>6|T>3) = (1-\frac{1}{6})^{3}\)
\(P(T>6|T>3) = {(\frac{5}{6})}^{3} = \frac {125}{216}\)