This is the credit analysis and prediction of German Credit Data available on https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
## Importing packages
library(tidyverse)
## ── Attaching packages ──────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.0.0 ✔ purrr 0.2.5
## ✔ tibble 1.4.2 ✔ dplyr 0.7.7
## ✔ tidyr 0.8.1 ✔ stringr 1.3.1
## ✔ readr 1.1.1 ✔ forcats 0.3.0
## ── Conflicts ─────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
## The following object is masked from 'package:purrr':
##
## some
library(caret)
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
## lift
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
##
## combine
## The following object is masked from 'package:ggplot2':
##
## margin
library(ROCR)
## Loading required package: gplots
##
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
## lowess
library(e1071)
## Loading data into environment
creditData <- read.table("german.data")
creditDataNum <- read.table("german.data-numeric")
## check data
head(creditData)
## V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17
## 1 A11 6 A34 A43 1169 A65 A75 4 A93 A101 4 A121 67 A143 A152 2 A173
## 2 A12 48 A32 A43 5951 A61 A73 2 A92 A101 2 A121 22 A143 A152 1 A173
## 3 A14 12 A34 A46 2096 A61 A74 2 A93 A101 3 A121 49 A143 A152 1 A172
## 4 A11 42 A32 A42 7882 A61 A74 2 A93 A103 4 A122 45 A143 A153 1 A173
## 5 A11 24 A33 A40 4870 A61 A73 3 A93 A101 4 A124 53 A143 A153 2 A173
## 6 A14 36 A32 A46 9055 A65 A73 2 A93 A101 4 A124 35 A143 A153 1 A172
## V18 V19 V20 V21
## 1 1 A192 A201 1
## 2 1 A191 A201 2
## 3 2 A191 A201 1
## 4 2 A191 A201 1
## 5 2 A191 A201 2
## 6 2 A192 A201 1
str(creditData)
## 'data.frame': 1000 obs. of 21 variables:
## $ V1 : Factor w/ 4 levels "A11","A12","A13",..: 1 2 4 1 1 4 4 2 4 2 ...
## $ V2 : int 6 48 12 42 24 36 24 36 12 30 ...
## $ V3 : Factor w/ 5 levels "A30","A31","A32",..: 5 3 5 3 4 3 3 3 3 5 ...
## $ V4 : Factor w/ 10 levels "A40","A41","A410",..: 5 5 8 4 1 8 4 2 5 1 ...
## $ V5 : int 1169 5951 2096 7882 4870 9055 2835 6948 3059 5234 ...
## $ V6 : Factor w/ 5 levels "A61","A62","A63",..: 5 1 1 1 1 5 3 1 4 1 ...
## $ V7 : Factor w/ 5 levels "A71","A72","A73",..: 5 3 4 4 3 3 5 3 4 1 ...
## $ V8 : int 4 2 2 2 3 2 3 2 2 4 ...
## $ V9 : Factor w/ 4 levels "A91","A92","A93",..: 3 2 3 3 3 3 3 3 1 4 ...
## $ V10: Factor w/ 3 levels "A101","A102",..: 1 1 1 3 1 1 1 1 1 1 ...
## $ V11: int 4 2 3 4 4 4 4 2 4 2 ...
## $ V12: Factor w/ 4 levels "A121","A122",..: 1 1 1 2 4 4 2 3 1 3 ...
## $ V13: int 67 22 49 45 53 35 53 35 61 28 ...
## $ V14: Factor w/ 3 levels "A141","A142",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ V15: Factor w/ 3 levels "A151","A152",..: 2 2 2 3 3 3 2 1 2 2 ...
## $ V16: int 2 1 1 1 2 1 1 1 1 2 ...
## $ V17: Factor w/ 4 levels "A171","A172",..: 3 3 2 3 3 2 3 4 2 4 ...
## $ V18: int 1 1 2 2 2 2 1 1 1 1 ...
## $ V19: Factor w/ 2 levels "A191","A192": 2 1 1 1 1 2 1 2 1 1 ...
## $ V20: Factor w/ 2 levels "A201","A202": 1 1 1 1 1 1 1 1 1 1 ...
## $ V21: int 1 2 1 1 2 1 1 1 1 2 ...
head(creditDataNum)
## V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20
## 1 1 6 4 12 5 5 3 4 1 67 3 2 1 2 1 0 0 1 0 0
## 2 2 48 2 60 1 3 2 2 1 22 3 1 1 1 1 0 0 1 0 0
## 3 4 12 4 21 1 4 3 3 1 49 3 1 2 1 1 0 0 1 0 0
## 4 1 42 2 79 1 4 3 4 2 45 3 1 2 1 1 0 0 0 0 0
## 5 1 24 3 49 1 3 3 4 4 53 3 2 2 1 1 1 0 1 0 0
## 6 4 36 2 91 5 3 3 4 4 35 3 1 2 2 1 0 0 1 0 0
## V21 V22 V23 V24 V25
## 1 1 0 0 1 1
## 2 1 0 0 1 2
## 3 1 0 1 0 1
## 4 0 0 0 1 1
## 5 0 0 0 1 2
## 6 0 0 1 0 1
str(creditDataNum)
## 'data.frame': 1000 obs. of 25 variables:
## $ V1 : int 1 2 4 1 1 4 4 2 4 2 ...
## $ V2 : int 6 48 12 42 24 36 24 36 12 30 ...
## $ V3 : int 4 2 4 2 3 2 2 2 2 4 ...
## $ V4 : int 12 60 21 79 49 91 28 69 31 52 ...
## $ V5 : int 5 1 1 1 1 5 3 1 4 1 ...
## $ V6 : int 5 3 4 4 3 3 5 3 4 1 ...
## $ V7 : int 3 2 3 3 3 3 3 3 1 4 ...
## $ V8 : int 4 2 3 4 4 4 4 2 4 2 ...
## $ V9 : int 1 1 1 2 4 4 2 3 1 3 ...
## $ V10: int 67 22 49 45 53 35 53 35 61 28 ...
## $ V11: int 3 3 3 3 3 3 3 3 3 3 ...
## $ V12: int 2 1 1 1 2 1 1 1 1 2 ...
## $ V13: int 1 1 2 2 2 2 1 1 1 1 ...
## $ V14: int 2 1 1 1 1 2 1 2 1 1 ...
## $ V15: int 1 1 1 1 1 1 1 1 1 1 ...
## $ V16: int 0 0 0 0 1 0 0 0 0 1 ...
## $ V17: int 0 0 0 0 0 0 0 1 0 0 ...
## $ V18: int 1 1 1 0 1 1 1 1 1 1 ...
## $ V19: int 0 0 0 0 0 0 0 0 0 0 ...
## $ V20: int 0 0 0 0 0 0 0 1 0 0 ...
## $ V21: int 1 1 1 0 0 0 1 0 1 1 ...
## $ V22: int 0 0 0 0 0 0 0 0 0 0 ...
## $ V23: int 0 0 1 0 0 1 0 0 1 0 ...
## $ V24: int 1 1 0 1 1 0 1 0 0 0 ...
## $ V25: int 1 2 1 1 2 1 1 1 1 2 ...
## create proper column names
colnames(creditData) <- c('existingcheckingstatus', 'duration', 'credithistory', 'purpose', 'creditamount',
'savings', 'employmentlength', 'installmentrate', 'marriagesex', 'otherdebtors',
'presentresidencelength', 'property', 'age', 'otherinstallmentplans', 'housing',
'existingcredits', 'job', 'peopleliableno', 'telephone', 'foreignworker', 'classification')
## check
head(creditData)
## existingcheckingstatus duration credithistory purpose creditamount
## 1 A11 6 A34 A43 1169
## 2 A12 48 A32 A43 5951
## 3 A14 12 A34 A46 2096
## 4 A11 42 A32 A42 7882
## 5 A11 24 A33 A40 4870
## 6 A14 36 A32 A46 9055
## savings employmentlength installmentrate marriagesex otherdebtors
## 1 A65 A75 4 A93 A101
## 2 A61 A73 2 A92 A101
## 3 A61 A74 2 A93 A101
## 4 A61 A74 2 A93 A103
## 5 A61 A73 3 A93 A101
## 6 A65 A73 2 A93 A101
## presentresidencelength property age otherinstallmentplans housing
## 1 4 A121 67 A143 A152
## 2 2 A121 22 A143 A152
## 3 3 A121 49 A143 A152
## 4 4 A122 45 A143 A153
## 5 4 A124 53 A143 A153
## 6 4 A124 35 A143 A153
## existingcredits job peopleliableno telephone foreignworker
## 1 2 A173 1 A192 A201
## 2 1 A173 1 A191 A201
## 3 1 A172 2 A191 A201
## 4 1 A173 2 A191 A201
## 5 2 A173 2 A191 A201
## 6 1 A172 2 A192 A201
## classification
## 1 1
## 2 2
## 3 1
## 4 1
## 5 2
## 6 1
str(creditData)
## 'data.frame': 1000 obs. of 21 variables:
## $ existingcheckingstatus: Factor w/ 4 levels "A11","A12","A13",..: 1 2 4 1 1 4 4 2 4 2 ...
## $ duration : int 6 48 12 42 24 36 24 36 12 30 ...
## $ credithistory : Factor w/ 5 levels "A30","A31","A32",..: 5 3 5 3 4 3 3 3 3 5 ...
## $ purpose : Factor w/ 10 levels "A40","A41","A410",..: 5 5 8 4 1 8 4 2 5 1 ...
## $ creditamount : int 1169 5951 2096 7882 4870 9055 2835 6948 3059 5234 ...
## $ savings : Factor w/ 5 levels "A61","A62","A63",..: 5 1 1 1 1 5 3 1 4 1 ...
## $ employmentlength : Factor w/ 5 levels "A71","A72","A73",..: 5 3 4 4 3 3 5 3 4 1 ...
## $ installmentrate : int 4 2 2 2 3 2 3 2 2 4 ...
## $ marriagesex : Factor w/ 4 levels "A91","A92","A93",..: 3 2 3 3 3 3 3 3 1 4 ...
## $ otherdebtors : Factor w/ 3 levels "A101","A102",..: 1 1 1 3 1 1 1 1 1 1 ...
## $ presentresidencelength: int 4 2 3 4 4 4 4 2 4 2 ...
## $ property : Factor w/ 4 levels "A121","A122",..: 1 1 1 2 4 4 2 3 1 3 ...
## $ age : int 67 22 49 45 53 35 53 35 61 28 ...
## $ otherinstallmentplans : Factor w/ 3 levels "A141","A142",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ housing : Factor w/ 3 levels "A151","A152",..: 2 2 2 3 3 3 2 1 2 2 ...
## $ existingcredits : int 2 1 1 1 2 1 1 1 1 2 ...
## $ job : Factor w/ 4 levels "A171","A172",..: 3 3 2 3 3 2 3 4 2 4 ...
## $ peopleliableno : int 1 1 2 2 2 2 1 1 1 1 ...
## $ telephone : Factor w/ 2 levels "A191","A192": 2 1 1 1 1 2 1 2 1 1 ...
## $ foreignworker : Factor w/ 2 levels "A201","A202": 1 1 1 1 1 1 1 1 1 1 ...
## $ classification : int 1 2 1 1 2 1 1 1 1 2 ...
## convert existingcredits to 0,1 except 1,2
creditData <- creditData %>% mutate(existingcredits = ifelse(existingcredits == 1, 0, 1))
## convert classification top 0,1 except 1,2
creditData <- creditData %>% mutate(classification = ifelse(classification == 1, 0, 1))
str(creditData)
## 'data.frame': 1000 obs. of 21 variables:
## $ existingcheckingstatus: Factor w/ 4 levels "A11","A12","A13",..: 1 2 4 1 1 4 4 2 4 2 ...
## $ duration : int 6 48 12 42 24 36 24 36 12 30 ...
## $ credithistory : Factor w/ 5 levels "A30","A31","A32",..: 5 3 5 3 4 3 3 3 3 5 ...
## $ purpose : Factor w/ 10 levels "A40","A41","A410",..: 5 5 8 4 1 8 4 2 5 1 ...
## $ creditamount : int 1169 5951 2096 7882 4870 9055 2835 6948 3059 5234 ...
## $ savings : Factor w/ 5 levels "A61","A62","A63",..: 5 1 1 1 1 5 3 1 4 1 ...
## $ employmentlength : Factor w/ 5 levels "A71","A72","A73",..: 5 3 4 4 3 3 5 3 4 1 ...
## $ installmentrate : int 4 2 2 2 3 2 3 2 2 4 ...
## $ marriagesex : Factor w/ 4 levels "A91","A92","A93",..: 3 2 3 3 3 3 3 3 1 4 ...
## $ otherdebtors : Factor w/ 3 levels "A101","A102",..: 1 1 1 3 1 1 1 1 1 1 ...
## $ presentresidencelength: int 4 2 3 4 4 4 4 2 4 2 ...
## $ property : Factor w/ 4 levels "A121","A122",..: 1 1 1 2 4 4 2 3 1 3 ...
## $ age : int 67 22 49 45 53 35 53 35 61 28 ...
## $ otherinstallmentplans : Factor w/ 3 levels "A141","A142",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ housing : Factor w/ 3 levels "A151","A152",..: 2 2 2 3 3 3 2 1 2 2 ...
## $ existingcredits : num 1 0 0 0 1 0 0 0 0 1 ...
## $ job : Factor w/ 4 levels "A171","A172",..: 3 3 2 3 3 2 3 4 2 4 ...
## $ peopleliableno : int 1 1 2 2 2 2 1 1 1 1 ...
## $ telephone : Factor w/ 2 levels "A191","A192": 2 1 1 1 1 2 1 2 1 1 ...
## $ foreignworker : Factor w/ 2 levels "A201","A202": 1 1 1 1 1 1 1 1 1 1 ...
## $ classification : num 0 1 0 0 1 0 0 0 0 1 ...
## summarise the data
summary(creditData)
## existingcheckingstatus duration credithistory purpose
## A11:274 Min. : 4.0 A30: 40 A43 :280
## A12:269 1st Qu.:12.0 A31: 49 A40 :234
## A13: 63 Median :18.0 A32:530 A42 :181
## A14:394 Mean :20.9 A33: 88 A41 :103
## 3rd Qu.:24.0 A34:293 A49 : 97
## Max. :72.0 A46 : 50
## (Other): 55
## creditamount savings employmentlength installmentrate marriagesex
## Min. : 250 A61:603 A71: 62 Min. :1.000 A91: 50
## 1st Qu.: 1366 A62:103 A72:172 1st Qu.:2.000 A92:310
## Median : 2320 A63: 63 A73:339 Median :3.000 A93:548
## Mean : 3271 A64: 48 A74:174 Mean :2.973 A94: 92
## 3rd Qu.: 3972 A65:183 A75:253 3rd Qu.:4.000
## Max. :18424 Max. :4.000
##
## otherdebtors presentresidencelength property age
## A101:907 Min. :1.000 A121:282 Min. :19.00
## A102: 41 1st Qu.:2.000 A122:232 1st Qu.:27.00
## A103: 52 Median :3.000 A123:332 Median :33.00
## Mean :2.845 A124:154 Mean :35.55
## 3rd Qu.:4.000 3rd Qu.:42.00
## Max. :4.000 Max. :75.00
##
## otherinstallmentplans housing existingcredits job
## A141:139 A151:179 Min. :0.000 A171: 22
## A142: 47 A152:713 1st Qu.:0.000 A172:200
## A143:814 A153:108 Median :0.000 A173:630
## Mean :0.367 A174:148
## 3rd Qu.:1.000
## Max. :1.000
##
## peopleliableno telephone foreignworker classification
## Min. :1.000 A191:596 A201:963 Min. :0.0
## 1st Qu.:1.000 A192:404 A202: 37 1st Qu.:0.0
## Median :1.000 Median :0.0
## Mean :1.155 Mean :0.3
## 3rd Qu.:1.000 3rd Qu.:1.0
## Max. :2.000 Max. :1.0
##
## existingcheckingstatus
ggplot(creditData, aes(x = creditData$existingcheckingstatus)) + geom_bar(fill = 'coral') + labs(title = 'Status of existing checking account', x = 'existingcheckingstatus', y = 'Count')
## duration
ggplot(creditData, aes(x = creditData$duration)) + geom_histogram(fill = 'lightblue', binwidth = 3) + labs(title = 'Duration in months', x = 'duration', y = 'Count')
boxplot(creditData$duration)
## impute the outliers
quantile(creditData$duration,seq(0,1,0.01))
## 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11%
## 4.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 8.00 9.00 9.00
## 12% 13% 14% 15% 16% 17% 18% 19% 20% 21% 22% 23%
## 9.00 9.00 9.00 10.00 10.00 10.00 11.82 12.00 12.00 12.00 12.00 12.00
## 24% 25% 26% 27% 28% 29% 30% 31% 32% 33% 34% 35%
## 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
## 36% 37% 38% 39% 40% 41% 42% 43% 44% 45% 46% 47%
## 13.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 18.00 18.00 18.00 18.00
## 48% 49% 50% 51% 52% 53% 54% 55% 56% 57% 58% 59%
## 18.00 18.00 18.00 18.00 18.00 18.00 18.00 20.00 21.00 21.00 21.00 24.00
## 60% 61% 62% 63% 64% 65% 66% 67% 68% 69% 70% 71%
## 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00
## 72% 73% 74% 75% 76% 77% 78% 79% 80% 81% 82% 83%
## 24.00 24.00 24.00 24.00 24.00 24.46 27.00 30.00 30.00 30.00 30.00 33.51
## 84% 85% 86% 87% 88% 89% 90% 91% 92% 93% 94% 95%
## 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 42.00 42.21 48.00 48.00
## 96% 97% 98% 99% 100%
## 48.00 48.00 48.00 60.00 72.00
creditData$duration[which(creditData$duration > 48)] <- 48
## credithistory
ggplot(creditData, aes(x = creditData$credithistory)) + geom_bar(fill = 'coral') + labs(title = 'Credit history', x = 'credithistory', y = 'Count')
## purpose
ggplot(creditData, aes(x = creditData$purpose)) + geom_bar(fill = 'coral') + labs(title = 'Purpose of loan', x = 'purpose', y = 'Count')
## creditamount
ggplot(creditData, aes(x = creditData$creditamount)) + geom_histogram(fill = 'lightblue', binwidth = 500) + labs(title = 'Credit amount', x = 'creditamount', y = 'Count')
## boxplot
boxplot(creditData$creditamount)
## outlier treatment
quantile(creditData$creditamount,seq(0,1,0.01))
## 0% 1% 2% 3% 4% 5% 6% 7%
## 250.00 425.83 570.02 638.70 682.96 708.95 744.76 782.86
## 8% 9% 10% 11% 12% 13% 14% 15%
## 845.60 901.82 932.00 973.35 1037.88 1074.96 1121.60 1157.55
## 16% 17% 18% 19% 20% 21% 22% 23%
## 1192.52 1208.66 1230.46 1243.24 1262.00 1282.00 1296.56 1321.08
## 24% 25% 26% 27% 28% 29% 30% 31%
## 1344.76 1365.50 1384.96 1409.00 1424.00 1454.42 1479.40 1509.83
## 32% 33% 34% 35% 36% 37% 38% 39%
## 1533.00 1551.01 1573.32 1602.65 1730.60 1788.71 1832.72 1870.05
## 40% 41% 42% 43% 44% 45% 46% 47%
## 1906.80 1931.54 1951.74 1985.71 2039.00 2100.55 2135.08 2176.30
## 48% 49% 50% 51% 52% 53% 54% 55%
## 2236.56 2278.51 2319.50 2341.41 2389.48 2440.41 2512.84 2578.00
## 56% 57% 58% 59% 60% 61% 62% 63%
## 2626.76 2681.15 2746.84 2780.23 2852.40 2923.39 2997.90 3059.37
## 64% 65% 66% 67% 68% 69% 70% 71%
## 3106.08 3187.40 3334.74 3384.66 3446.32 3529.48 3590.00 3621.29
## 72% 73% 74% 75% 76% 77% 78% 79%
## 3721.64 3832.81 3913.26 3972.25 4110.72 4254.29 4442.30 4591.63
## 80% 81% 82% 83% 84% 85% 86% 87%
## 4720.00 4848.94 5150.36 5389.84 5800.16 5969.95 6224.70 6366.46
## 88% 89% 90% 91% 92% 93% 94% 95%
## 6583.20 6852.42 7179.40 7419.26 7687.88 7985.95 8471.96 9162.70
## 96% 97% 98% 99% 100%
## 9966.68 10961.39 12169.70 14180.39 18424.00
creditData$creditamount[which(creditData$creditamount > 9162.70000000001)] <- 9162.70000000001
## savings
ggplot(creditData, aes(x = creditData$savings)) + geom_bar(fill = 'coral') + labs(title = 'Savings account/bonds', x = 'savings', y = 'Count')
## employmentlength
ggplot(creditData, aes(x = creditData$employmentlength)) + geom_bar(fill = 'coral') + labs(title = 'Present employment since', x = 'employmentlength', y = 'Count')
## installmentrate
ggplot(creditData, aes(x = creditData$installmentrate)) + geom_histogram(fill = 'lightblue', binwidth = 1) + labs(title = 'Installment rate in percentage of disposable income', x = 'installmentrate', y = 'Count')
## boxplot
boxplot(creditData$installmentrate)
## no outliers
## marriagesex
ggplot(creditData, aes(x = creditData$marriagesex)) + geom_bar(fill = 'coral') + labs(title = 'Personal status and sex', x = 'marriagesex', y = 'Count')
## otherdebtors
ggplot(creditData, aes(x = creditData$otherdebtors)) + geom_bar(fill = 'coral') + labs(title = 'Other debtors / guarantors', x = 'otherdebtors', y = 'Count')
## almost all the people have not any othe debtors/ guarantorsw
## presentresidencelength
ggplot(creditData, aes(x = creditData$presentresidencelength)) + geom_histogram(fill = 'lightblue', binwidth = 1) + labs(title = 'Present residence since', x = 'presentresidencelength', y = 'Count')
## boxplot
boxplot(creditData$presentresidencelength)
## no outlier
## property
ggplot(creditData, aes(x = creditData$property)) + geom_bar(fill = 'coral') + labs(title = 'Property', x = 'property', y = 'Count')
## age
ggplot(creditData, aes(x = creditData$age)) + geom_histogram(fill = 'lightblue', binwidth = 10) + labs(title = 'Age in years', x = 'age', y = 'Count')
## boxplot
boxplot(creditData$age)
## outlier treatment
quantile(creditData$age,seq(0,1,0.01))
## 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11%
## 19.00 20.00 21.00 21.97 22.00 22.00 23.00 23.00 23.00 23.00 23.00 24.00
## 12% 13% 14% 15% 16% 17% 18% 19% 20% 21% 22% 23%
## 24.00 24.00 24.00 25.00 25.00 25.00 25.00 25.81 26.00 26.00 26.00 26.00
## 24% 25% 26% 27% 28% 29% 30% 31% 32% 33% 34% 35%
## 26.76 27.00 27.00 27.00 27.00 27.00 28.00 28.00 28.00 28.00 29.00 29.00
## 36% 37% 38% 39% 40% 41% 42% 43% 44% 45% 46% 47%
## 29.00 29.00 30.00 30.00 30.00 30.00 31.00 31.00 31.00 32.00 32.00 32.00
## 48% 49% 50% 51% 52% 53% 54% 55% 56% 57% 58% 59%
## 32.00 33.00 33.00 33.00 34.00 34.00 34.00 35.00 35.00 35.00 35.00 36.00
## 60% 61% 62% 63% 64% 65% 66% 67% 68% 69% 70% 71%
## 36.00 36.00 36.00 37.00 37.00 37.00 38.00 38.00 38.32 39.00 39.00 40.00
## 72% 73% 74% 75% 76% 77% 78% 79% 80% 81% 82% 83%
## 40.00 41.00 41.00 42.00 42.00 43.00 43.00 44.00 45.00 45.00 46.00 46.00
## 84% 85% 86% 87% 88% 89% 90% 91% 92% 93% 94% 95%
## 47.00 48.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00 56.00 57.00 60.00
## 96% 97% 98% 99% 100%
## 61.00 63.00 65.00 67.01 75.00
creditData$age[which(creditData$age > 67)] <- 67
## otherinstallmentplans
ggplot(creditData, aes(x = creditData$otherinstallmentplans)) + geom_bar(fill = 'coral') + labs(title = 'Other installment plans', x = 'otherinstallmentplans', y = 'Count')
## none outnumbers all the others
## housing
ggplot(creditData, aes(x = creditData$housing)) + geom_bar(fill = 'coral') + labs(title = 'Housing', x = 'housing', y = 'Count')
## own outnumbers all of the others
## existingcredits
ggplot(creditData, aes(x = creditData$existingcredits)) + geom_histogram(fill = 'lightblue', binwidth = .5) + labs(title = 'Number of existing credits at this bank', x = 'existingcredits', y = 'Count')
## boxplot
boxplot(creditData$existingcredits)
## no outliers
## existing credits as factor
ggplot(creditData, aes(x = as.factor(creditData$existingcredits))) + geom_bar(fill = 'coral') + labs(title = 'Number of existing credits at this bank', x = 'existingcredits', y = 'Count')
## job
ggplot(creditData, aes(x = creditData$job)) + geom_bar(fill = 'coral') + labs(title = 'Job', x = 'job', y = 'Count')
## unemployed/ unskilled - non-resident is vewry low in count
## peopleliableno
ggplot(creditData, aes(x = creditData$peopleliableno)) + geom_histogram(fill = 'lightblue', binwidth = 1) + labs(title = 'Number of people being liable to provide maintenance for', x = 'no.of peopleliable', y = 'Count')
## boxplot
boxplot(creditData$peopleliableno)
## outlier treatment
quantile(creditData$peopleliableno,seq(0,1,0.01))
## 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14%
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 15% 16% 17% 18% 19% 20% 21% 22% 23% 24% 25% 26% 27% 28% 29%
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 30% 31% 32% 33% 34% 35% 36% 37% 38% 39% 40% 41% 42% 43% 44%
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 45% 46% 47% 48% 49% 50% 51% 52% 53% 54% 55% 56% 57% 58% 59%
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 60% 61% 62% 63% 64% 65% 66% 67% 68% 69% 70% 71% 72% 73% 74%
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 75% 76% 77% 78% 79% 80% 81% 82% 83% 84% 85% 86% 87% 88% 89%
## 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
## 90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 100%
## 2 2 2 2 2 2 2 2 2 2 2
# no need
## telephone
ggplot(creditData, aes(x = creditData$telephone)) + geom_bar(fill = 'coral') + labs(title = 'Telephone present', x = 'telephone', y = 'Count')
## foreignworker
ggplot(creditData, aes(x = creditData$foreignworker)) + geom_bar(fill = 'coral') + labs(title = 'Foreign worker', x = 'foreignworker', y = 'Count')
## yes outnumbers no with a large margin
## check status of good and bad
ggplot(creditData, aes(x = as.factor(creditData$classification))) + geom_bar(fill = 'coral') + labs(title = 'Good vs Bad', x = 'classification', y = 'Count')
## age vs credit amount for various purposes
ggplot(creditData, aes(x = age, y = creditamount)) + geom_point(aes(color=as.factor(classification))) + facet_wrap(~purpose)
## age vs employment length
ggplot(creditData, aes(y = age, x = employmentlength, fill = as.factor(classification))) + stat_summary(fun.y="mean", geom="bar", position = 'dodge')
## not much relation between age and employment length
## employment length vs savings
ggplot(creditData, aes(x = employmentlength)) + geom_bar(aes(fill = savings), position = 'dodge') + facet_wrap(~classification)
## all follow almost similar trends
## convert telephone and foreignworker into 0 and 1, as they are factors with 2 levels
levels(creditData$telephone) <- c(0,1)
creditData$telephone <- as.numeric(levels(creditData$telephone))[creditData$telephone]
levels(creditData$foreignworker) <- c(0,1)
creditData$foreignworker <- as.numeric(levels(creditData$foreignworker))[creditData$foreignworker]
str(creditData)
## 'data.frame': 1000 obs. of 21 variables:
## $ existingcheckingstatus: Factor w/ 4 levels "A11","A12","A13",..: 1 2 4 1 1 4 4 2 4 2 ...
## $ duration : num 6 48 12 42 24 36 24 36 12 30 ...
## $ credithistory : Factor w/ 5 levels "A30","A31","A32",..: 5 3 5 3 4 3 3 3 3 5 ...
## $ purpose : Factor w/ 10 levels "A40","A41","A410",..: 5 5 8 4 1 8 4 2 5 1 ...
## $ creditamount : num 1169 5951 2096 7882 4870 ...
## $ savings : Factor w/ 5 levels "A61","A62","A63",..: 5 1 1 1 1 5 3 1 4 1 ...
## $ employmentlength : Factor w/ 5 levels "A71","A72","A73",..: 5 3 4 4 3 3 5 3 4 1 ...
## $ installmentrate : int 4 2 2 2 3 2 3 2 2 4 ...
## $ marriagesex : Factor w/ 4 levels "A91","A92","A93",..: 3 2 3 3 3 3 3 3 1 4 ...
## $ otherdebtors : Factor w/ 3 levels "A101","A102",..: 1 1 1 3 1 1 1 1 1 1 ...
## $ presentresidencelength: int 4 2 3 4 4 4 4 2 4 2 ...
## $ property : Factor w/ 4 levels "A121","A122",..: 1 1 1 2 4 4 2 3 1 3 ...
## $ age : num 67 22 49 45 53 35 53 35 61 28 ...
## $ otherinstallmentplans : Factor w/ 3 levels "A141","A142",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ housing : Factor w/ 3 levels "A151","A152",..: 2 2 2 3 3 3 2 1 2 2 ...
## $ existingcredits : num 1 0 0 0 1 0 0 0 0 1 ...
## $ job : Factor w/ 4 levels "A171","A172",..: 3 3 2 3 3 2 3 4 2 4 ...
## $ peopleliableno : int 1 1 2 2 2 2 1 1 1 1 ...
## $ telephone : num 1 0 0 0 0 1 0 1 0 0 ...
## $ foreignworker : num 0 0 0 0 0 0 0 0 0 0 ...
## $ classification : num 0 1 0 0 1 0 0 0 0 1 ...
## convert other factores with more than 2 levels into dummies
creditDataNumeric <- as.data.frame(model.matrix(~ ., data = creditData, contrasts.arg = lapply(creditData[,sapply(creditData, is.factor)], contrasts, contrasts=FALSE)))[,-1]
creditDataNumeric
## existingcheckingstatusA11 existingcheckingstatusA12
## 1 1 0
## 2 0 1
## 3 0 0
## 4 1 0
## 5 1 0
## 6 0 0
## 7 0 0
## 8 0 1
## 9 0 0
## 10 0 1
## 11 0 1
## 12 1 0
## 13 0 1
## 14 1 0
## 15 1 0
## 16 1 0
## 17 0 0
## 18 1 0
## 19 0 1
## 20 0 0
## 21 0 0
## 22 1 0
## 23 1 0
## 24 0 1
## 25 0 0
## 26 1 0
## 27 0 0
## 28 0 0
## 29 0 1
## 30 1 0
## 31 0 1
## 32 1 0
## 33 0 1
## 34 0 0
## 35 0 0
## 36 0 1
## 37 0 0
## 38 0 0
## 39 0 0
## 40 0 1
## 41 0 0
## 42 0 1
## 43 0 1
## 44 1 0
## 45 1 0
## 46 0 0
## 47 0 0
## 48 1 0
## 49 0 0
## 50 0 0
## 51 0 1
## 52 0 1
## 53 0 0
## 54 0 0
## 55 0 1
## 56 0 0
## 57 0 1
## 58 0 0
## 59 0 0
## 60 1 0
## 61 0 1
## 62 0 1
## 63 0 1
## 64 0 1
## 65 0 0
## 66 0 0
## 67 0 0
## 68 0 1
## 69 0 0
## 70 0 0
## 71 0 0
## 72 0 0
## 73 1 0
## 74 0 1
## 75 1 0
## 76 1 0
## 77 1 0
## 78 0 1
## 79 0 0
## 80 0 1
## 81 0 0
## 82 0 0
## 83 0 0
## 84 1 0
## 85 1 0
## 86 0 0
## 87 0 1
## 88 0 1
## 89 1 0
## 90 1 0
## 91 0 0
## 92 1 0
## 93 0 0
## 94 0 0
## 95 0 1
## 96 0 1
## 97 0 0
## 98 0 1
## 99 0 1
## 100 0 1
## 101 0 0
## 102 0 1
## 103 0 0
## 104 0 1
## 105 0 0
## 106 0 1
## 107 0 0
## 108 0 1
## 109 1 0
## 110 0 1
## 111 0 1
## 112 0 0
## 113 0 1
## 114 0 0
## 115 1 0
## 116 0 0
## 117 1 0
## 118 1 0
## 119 1 0
## 120 0 1
## 121 1 0
## 122 0 0
## 123 0 0
## 124 0 0
## 125 0 1
## 126 1 0
## 127 1 0
## 128 0 1
## 129 0 1
## 130 1 0
## 131 0 1
## 132 1 0
## 133 0 0
## 134 0 0
## 135 0 0
## 136 0 0
## 137 0 0
## 138 0 1
## 139 0 1
## 140 0 0
## 141 0 0
## 142 0 1
## 143 1 0
## 144 1 0
## 145 0 0
## 146 0 1
## 147 1 0
## 148 0 0
## 149 1 0
## 150 0 0
## 151 0 0
## 152 0 0
## 153 0 0
## 154 0 1
## 155 0 1
## 156 1 0
## 157 1 0
## 158 1 0
## 159 0 1
## 160 0 0
## 161 0 0
## 162 0 0
## 163 0 0
## 164 0 1
## 165 0 0
## 166 0 0
## 167 1 0
## 168 0 1
## 169 0 0
## 170 0 1
## 171 1 0
## 172 0 0
## 173 0 1
## 174 0 1
## 175 1 0
## 176 0 0
## 177 1 0
## 178 1 0
## 179 0 0
## 180 1 0
## 181 0 0
## 182 0 1
## 183 1 0
## 184 0 0
## 185 0 1
## 186 0 0
## 187 0 1
## 188 0 1
## 189 1 0
## 190 0 1
## 191 0 0
## 192 0 1
## 193 0 1
## 194 0 0
## 195 0 1
## 196 0 1
## 197 0 0
## 198 0 1
## 199 0 1
## 200 0 1
## 201 0 0
## 202 1 0
## 203 0 0
## 204 1 0
## 205 0 0
## 206 1 0
## 207 0 0
## 208 0 1
## 209 1 0
## 210 0 0
## 211 0 0
## 212 0 0
## 213 1 0
## 214 0 0
## 215 0 0
## 216 0 1
## 217 1 0
## 218 0 0
## 219 1 0
## 220 0 0
## 221 0 1
## 222 1 0
## 223 0 0
## 224 0 0
## 225 0 0
## 226 0 0
## 227 0 1
## 228 1 0
## 229 0 0
## 230 1 0
## 231 0 0
## 232 0 0
## 233 0 0
## 234 0 1
## 235 0 0
## 236 1 0
## 237 0 1
## 238 0 1
## 239 0 0
## 240 1 0
## 241 1 0
## 242 0 0
## 243 1 0
## 244 0 0
## 245 0 0
## 246 0 0
## 247 0 0
## 248 0 0
## 249 0 0
## 250 0 0
## 251 1 0
## 252 0 0
## 253 0 1
## 254 0 0
## 255 0 1
## 256 0 1
## 257 0 0
## 258 1 0
## 259 0 0
## 260 0 0
## 261 1 0
## 262 1 0
## 263 1 0
## 264 0 0
## 265 0 0
## 266 0 1
## 267 0 0
## 268 0 0
## 269 1 0
## 270 0 0
## 271 0 0
## 272 0 0
## 273 0 1
## 274 0 1
## 275 1 0
## 276 0 0
## 277 0 0
## 278 1 0
## 279 0 0
## 280 0 0
## 281 0 0
## 282 0 0
## 283 0 0
## 284 0 0
## 285 0 1
## 286 1 0
## 287 1 0
## 288 0 1
## 289 0 1
## 290 1 0
## 291 0 0
## 292 0 1
## 293 1 0
## 294 0 0
## 295 0 0
## 296 0 1
## 297 0 0
## 298 0 0
## 299 0 0
## 300 0 1
## 301 0 0
## 302 0 1
## 303 0 0
## 304 1 0
## 305 0 0
## 306 0 0
## 307 0 0
## 308 1 0
## 309 0 1
## 310 0 1
## 311 0 1
## 312 0 0
## 313 0 0
## 314 0 1
## 315 0 0
## 316 1 0
## 317 1 0
## 318 0 1
## 319 0 0
## 320 1 0
## 321 0 1
## 322 1 0
## 323 1 0
## 324 1 0
## 325 0 0
## 326 1 0
## 327 0 0
## 328 0 0
## 329 0 0
## 330 0 1
## 331 1 0
## 332 0 0
## 333 0 1
## 334 0 0
## 335 1 0
## 336 1 0
## 337 0 1
## 338 1 0
## 339 1 0
## 340 0 1
## 341 0 1
## 342 1 0
## 343 0 1
## 344 0 1
## 345 0 0
## 346 0 0
## 347 0 1
## 348 0 1
## 349 0 0
## 350 0 1
## 351 0 0
## 352 0 1
## 353 0 0
## 354 1 0
## 355 0 0
## 356 0 1
## 357 0 0
## 358 0 0
## 359 0 0
## 360 1 0
## 361 0 1
## 362 0 0
## 363 0 0
## 364 0 0
## 365 1 0
## 366 0 0
## 367 0 0
## 368 1 0
## 369 1 0
## 370 0 1
## 371 0 0
## 372 0 0
## 373 0 0
## 374 0 0
## 375 0 1
## 376 1 0
## 377 0 0
## 378 0 0
## 379 0 1
## 380 0 0
## 381 1 0
## 382 0 1
## 383 0 0
## 384 0 0
## 385 0 0
## 386 0 0
## 387 0 0
## 388 0 1
## 389 0 1
## 390 0 0
## 391 0 0
## 392 0 1
## 393 1 0
## 394 1 0
## 395 0 0
## 396 0 1
## 397 1 0
## 398 1 0
## 399 0 1
## 400 0 0
## 401 0 0
## 402 0 1
## 403 0 0
## 404 0 0
## 405 0 1
## 406 0 1
## 407 0 0
## 408 1 0
## 409 0 0
## 410 0 0
## 411 0 1
## 412 0 0
## 413 0 0
## 414 0 0
## 415 1 0
## 416 0 0
## 417 1 0
## 418 1 0
## 419 0 0
## 420 0 1
## 421 0 0
## 422 0 1
## 423 0 1
## 424 0 0
## 425 0 1
## 426 0 1
## 427 0 0
## 428 0 0
## 429 0 0
## 430 1 0
## 431 0 0
## 432 0 1
## 433 1 0
## 434 0 0
## 435 1 0
## 436 0 1
## 437 0 0
## 438 0 0
## 439 1 0
## 440 0 0
## 441 0 0
## 442 1 0
## 443 0 1
## 444 0 0
## 445 0 1
## 446 0 0
## 447 1 0
## 448 0 1
## 449 0 0
## 450 0 1
## 451 0 0
## 452 0 0
## 453 0 0
## 454 0 0
## 455 1 0
## 456 0 0
## 457 1 0
## 458 1 0
## 459 1 0
## 460 0 0
## 461 1 0
## 462 1 0
## 463 0 1
## 464 0 1
## 465 0 0
## 466 1 0
## 467 1 0
## 468 0 0
## 469 0 0
## 470 0 0
## 471 0 1
## 472 1 0
## 473 1 0
## 474 0 0
## 475 0 1
## 476 1 0
## 477 0 0
## 478 0 0
## 479 0 1
## 480 1 0
## 481 0 1
## 482 0 1
## 483 1 0
## 484 0 0
## 485 0 0
## 486 0 1
## 487 0 0
## 488 0 0
## 489 0 0
## 490 0 0
## 491 0 0
## 492 0 1
## 493 0 0
## 494 0 1
## 495 1 0
## 496 1 0
## 497 0 1
## 498 0 0
## 499 0 1
## 500 0 0
## 501 1 0
## 502 1 0
## 503 0 0
## 504 0 1
## 505 1 0
## 506 0 0
## 507 0 0
## 508 0 1
## 509 0 0
## 510 0 0
## 511 1 0
## 512 0 0
## 513 0 0
## 514 0 1
## 515 0 0
## 516 1 0
## 517 1 0
## 518 0 0
## 519 1 0
## 520 0 0
## 521 0 0
## 522 1 0
## 523 1 0
## 524 0 0
## 525 0 1
## 526 0 1
## 527 0 0
## 528 0 0
## 529 1 0
## 530 1 0
## 531 0 1
## 532 0 1
## 533 0 0
## 534 0 0
## 535 0 0
## 536 0 0
## 537 1 0
## 538 0 1
## 539 1 0
## 540 0 0
## 541 0 1
## 542 0 0
## 543 1 0
## 544 0 0
## 545 0 0
## 546 1 0
## 547 0 0
## 548 0 0
## 549 1 0
## 550 0 0
## 551 0 0
## 552 0 0
## 553 1 0
## 554 0 1
## 555 0 1
## 556 0 1
## 557 0 1
## 558 0 0
## 559 1 0
## 560 0 1
## 561 1 0
## 562 1 0
## 563 0 0
## 564 0 1
## 565 0 1
## 566 0 1
## 567 1 0
## 568 0 0
## 569 0 1
## 570 1 0
## 571 1 0
## 572 0 0
## 573 0 0
## 574 1 0
## 575 0 1
## 576 0 0
## 577 0 1
## 578 0 0
## 579 0 1
## 580 0 0
## 581 0 1
## 582 0 1
## 583 0 0
## 584 0 1
## 585 0 0
## 586 1 0
## 587 1 0
## 588 1 0
## 589 1 0
## 590 1 0
## 591 1 0
## 592 0 1
## 593 0 0
## 594 0 1
## 595 1 0
## 596 0 1
## 597 1 0
## 598 0 1
## 599 0 0
## 600 0 0
## 601 0 1
## 602 0 1
## 603 0 1
## 604 0 0
## 605 0 0
## 606 1 0
## 607 0 0
## 608 0 1
## 609 0 0
## 610 0 0
## 611 1 0
## 612 0 0
## 613 1 0
## 614 1 0
## 615 0 0
## 616 0 1
## 617 0 1
## 618 1 0
## 619 0 1
## 620 0 0
## 621 0 1
## 622 0 0
## 623 0 0
## 624 1 0
## 625 1 0
## 626 0 0
## 627 0 0
## 628 0 1
## 629 0 0
## 630 0 0
## 631 1 0
## 632 1 0
## 633 0 1
## 634 0 0
## 635 0 1
## 636 0 0
## 637 0 0
## 638 0 0
## 639 0 0
## 640 1 0
## 641 1 0
## 642 0 1
## 643 0 0
## 644 0 0
## 645 1 0
## 646 0 0
## 647 1 0
## 648 0 0
## 649 0 0
## 650 1 0
## 651 1 0
## 652 0 1
## 653 1 0
## 654 0 1
## 655 0 0
## 656 1 0
## 657 0 1
## 658 0 0
## 659 0 1
## 660 0 1
## 661 0 0
## 662 1 0
## 663 0 0
## 664 0 1
## 665 0 0
## 666 0 0
## 667 0 1
## 668 0 0
## 669 1 0
## 670 0 0
## 671 0 0
## 672 0 0
## 673 0 0
## 674 0 0
## 675 0 0
## 676 0 0
## 677 0 0
## 678 0 1
## 679 1 0
## 680 0 0
## 681 0 0
## 682 0 0
## 683 0 0
## 684 0 0
## 685 0 1
## 686 0 0
## 687 0 0
## 688 0 1
## 689 0 0
## 690 1 0
## 691 1 0
## 692 0 1
## 693 0 1
## 694 1 0
## 695 0 0
## 696 0 0
## 697 0 1
## 698 0 0
## 699 0 0
## 700 0 0
## 701 0 0
## 702 1 0
## 703 0 0
## 704 0 1
## 705 0 1
## 706 0 0
## 707 0 1
## 708 0 1
## 709 0 1
## 710 0 1
## 711 0 0
## 712 1 0
## 713 0 0
## 714 1 0
## 715 0 1
## 716 0 0
## 717 0 0
## 718 0 0
## 719 0 0
## 720 0 1
## 721 0 0
## 722 0 1
## 723 1 0
## 724 0 1
## 725 0 0
## 726 0 0
## 727 0 0
## 728 1 0
## 729 0 1
## 730 0 0
## 731 0 1
## 732 1 0
## 733 0 1
## 734 0 0
## 735 0 0
## 736 0 1
## 737 0 1
## 738 1 0
## 739 0 0
## 740 0 1
## 741 1 0
## 742 0 1
## 743 0 0
## 744 1 0
## 745 1 0
## 746 1 0
## 747 1 0
## 748 1 0
## 749 0 0
## 750 0 0
## 751 1 0
## 752 1 0
## 753 0 1
## 754 0 0
## 755 0 0
## 756 1 0
## 757 0 0
## 758 0 0
## 759 0 0
## 760 1 0
## 761 0 0
## 762 1 0
## 763 1 0
## 764 0 0
## 765 0 0
## 766 0 1
## 767 1 0
## 768 0 0
## 769 0 1
## 770 0 0
## 771 1 0
## 772 1 0
## 773 0 0
## 774 0 0
## 775 0 0
## 776 1 0
## 777 0 0
## 778 1 0
## 779 0 0
## 780 0 1
## 781 0 1
## 782 0 0
## 783 0 1
## 784 0 1
## 785 0 1
## 786 0 1
## 787 0 0
## 788 0 0
## 789 0 1
## 790 1 0
## 791 0 1
## 792 0 0
## 793 0 0
## 794 0 0
## 795 0 0
## 796 0 0
## 797 1 0
## 798 0 0
## 799 0 0
## 800 0 1
## 801 0 0
## 802 0 1
## 803 1 0
## 804 0 0
## 805 0 1
## 806 1 0
## 807 0 1
## 808 0 0
## 809 0 1
## 810 0 1
## 811 0 1
## 812 0 1
## 813 1 0
## 814 1 0
## 815 1 0
## 816 0 1
## 817 0 0
## 818 0 0
## 819 1 0
## 820 1 0
## 821 0 0
## 822 0 0
## 823 1 0
## 824 1 0
## 825 0 0
## 826 1 0
## 827 1 0
## 828 0 0
## 829 1 0
## 830 0 1
## 831 0 0
## 832 1 0
## 833 1 0
## 834 0 1
## 835 0 0
## 836 1 0
## 837 0 0
## 838 0 0
## 839 1 0
## 840 0 0
## 841 1 0
## 842 0 0
## 843 0 0
## 844 0 0
## 845 0 0
## 846 0 1
## 847 0 0
## 848 0 0
## 849 1 0
## 850 1 0
## 851 1 0
## 852 0 0
## 853 0 0
## 854 1 0
## 855 0 0
## 856 0 0
## 857 0 0
## 858 0 0
## 859 1 0
## 860 0 0
## 861 0 0
## 862 0 0
## 863 1 0
## 864 0 0
## 865 0 0
## 866 0 0
## 867 1 0
## 868 0 0
## 869 0 0
## 870 1 0
## 871 0 0
## 872 0 0
## 873 1 0
## 874 0 0
## 875 1 0
## 876 0 1
## 877 1 0
## 878 0 0
## 879 1 0
## 880 0 0
## 881 0 0
## 882 0 0
## 883 0 1
## 884 0 0
## 885 0 1
## 886 1 0
## 887 0 1
## 888 0 1
## 889 0 0
## 890 0 0
## 891 1 0
## 892 0 0
## 893 1 0
## 894 0 1
## 895 0 0
## 896 0 0
## 897 1 0
## 898 0 0
## 899 0 0
## 900 1 0
## 901 1 0
## 902 0 0
## 903 0 0
## 904 0 0
## 905 0 0
## 906 1 0
## 907 1 0
## 908 0 1
## 909 0 0
## 910 0 1
## 911 0 0
## 912 0 1
## 913 0 1
## 914 0 0
## 915 1 0
## 916 0 1
## 917 0 0
## 918 1 0
## 919 1 0
## 920 1 0
## 921 0 0
## 922 0 0
## 923 1 0
## 924 0 1
## 925 1 0
## 926 1 0
## 927 1 0
## 928 1 0
## 929 0 0
## 930 1 0
## 931 1 0
## 932 0 1
## 933 0 0
## 934 0 0
## 935 1 0
## 936 0 1
## 937 0 0
## 938 0 1
## 939 0 1
## 940 0 0
## 941 0 0
## 942 0 0
## 943 0 0
## 944 0 0
## 945 1 0
## 946 0 1
## 947 1 0
## 948 0 0
## 949 0 0
## 950 0 0
## 951 0 1
## 952 1 0
## 953 0 1
## 954 0 0
## 955 1 0
## 956 1 0
## 957 0 0
## 958 0 1
## 959 1 0
## 960 0 1
## 961 0 0
## 962 0 1
## 963 0 0
## 964 0 0
## 965 0 1
## 966 0 1
## 967 0 1
## 968 0 0
## 969 0 0
## 970 1 0
## 971 0 1
## 972 0 0
## 973 1 0
## 974 1 0
## 975 0 0
## 976 0 0
## 977 0 1
## 978 0 1
## 979 0 0
## 980 0 1
## 981 0 1
## 982 0 0
## 983 0 0
## 984 1 0
## 985 0 0
## 986 1 0
## 987 0 0
## 988 0 0
## 989 1 0
## 990 0 1
## 991 0 0
## 992 0 0
## 993 1 0
## 994 1 0
## 995 0 0
## 996 0 0
## 997 1 0
## 998 0 0
## 999 1 0
## 1000 0 1
## existingcheckingstatusA13 existingcheckingstatusA14 duration
## 1 0 0 6
## 2 0 0 48
## 3 0 1 12
## 4 0 0 42
## 5 0 0 24
## 6 0 1 36
## 7 0 1 24
## 8 0 0 36
## 9 0 1 12
## 10 0 0 30
## 11 0 0 12
## 12 0 0 48
## 13 0 0 12
## 14 0 0 24
## 15 0 0 15
## 16 0 0 24
## 17 0 1 24
## 18 0 0 30
## 19 0 0 24
## 20 0 1 24
## 21 0 1 9
## 22 0 0 6
## 23 0 0 10
## 24 0 0 12
## 25 0 1 10
## 26 0 0 6
## 27 0 1 6
## 28 1 0 12
## 29 0 0 7
## 30 0 0 48
## 31 0 0 18
## 32 0 0 24
## 33 0 0 18
## 34 0 1 12
## 35 1 0 12
## 36 0 0 45
## 37 0 1 48
## 38 1 0 18
## 39 1 0 10
## 40 0 0 9
## 41 0 1 30
## 42 0 0 12
## 43 0 0 18
## 44 0 0 30
## 45 0 0 48
## 46 0 1 11
## 47 0 1 36
## 48 0 0 6
## 49 0 1 11
## 50 0 1 12
## 51 0 0 24
## 52 0 0 27
## 53 0 1 12
## 54 0 1 18
## 55 0 0 36
## 56 0 1 6
## 57 0 0 12
## 58 0 1 36
## 59 1 0 18
## 60 0 0 36
## 61 0 0 9
## 62 0 0 15
## 63 0 0 36
## 64 0 0 48
## 65 0 1 24
## 66 0 1 27
## 67 0 1 12
## 68 0 0 12
## 69 0 1 36
## 70 0 1 36
## 71 0 1 36
## 72 0 1 7
## 73 0 0 8
## 74 0 0 42
## 75 0 0 36
## 76 0 0 12
## 77 0 0 42
## 78 0 0 11
## 79 0 1 48
## 80 0 0 30
## 81 0 1 24
## 82 0 1 15
## 83 0 1 18
## 84 0 0 24
## 85 0 0 10
## 86 0 1 12
## 87 0 0 18
## 88 0 0 36
## 89 0 0 18
## 90 0 0 12
## 91 0 1 12
## 92 0 0 12
## 93 0 1 12
## 94 1 0 24
## 95 0 0 12
## 96 0 0 48
## 97 0 1 12
## 98 0 0 18
## 99 0 0 36
## 100 0 0 20
## 101 0 1 24
## 102 0 0 36
## 103 0 1 6
## 104 0 0 9
## 105 0 1 12
## 106 0 0 24
## 107 0 1 18
## 108 0 0 12
## 109 0 0 24
## 110 0 0 14
## 111 0 0 6
## 112 1 0 15
## 113 0 0 18
## 114 0 1 36
## 115 0 0 12
## 116 0 1 48
## 117 0 0 42
## 118 0 0 10
## 119 0 0 33
## 120 0 0 12
## 121 0 0 21
## 122 0 1 24
## 123 0 1 12
## 124 1 0 10
## 125 0 0 18
## 126 0 0 12
## 127 0 0 12
## 128 0 0 12
## 129 0 0 12
## 130 0 0 12
## 131 0 0 48
## 132 0 0 36
## 133 0 1 15
## 134 0 1 18
## 135 0 1 48
## 136 0 1 12
## 137 0 1 27
## 138 0 0 12
## 139 0 0 15
## 140 1 0 12
## 141 1 0 6
## 142 0 0 36
## 143 0 0 27
## 144 0 0 18
## 145 0 1 21
## 146 0 0 48
## 147 0 0 6
## 148 0 1 12
## 149 0 0 36
## 150 0 1 18
## 151 0 1 6
## 152 0 1 10
## 153 1 0 36
## 154 0 0 24
## 155 0 0 24
## 156 0 0 12
## 157 0 0 9
## 158 0 0 12
## 159 0 0 24
## 160 0 1 6
## 161 0 1 24
## 162 0 1 18
## 163 0 1 15
## 164 0 0 10
## 165 0 1 36
## 166 0 1 6
## 167 0 0 18
## 168 0 0 11
## 169 0 1 24
## 170 0 0 24
## 171 0 0 15
## 172 0 1 12
## 173 0 0 24
## 174 0 0 8
## 175 0 0 21
## 176 0 1 30
## 177 0 0 12
## 178 0 0 6
## 179 0 1 12
## 180 0 0 21
## 181 0 1 36
## 182 0 0 36
## 183 0 0 21
## 184 0 1 24
## 185 0 0 18
## 186 0 1 15
## 187 0 0 9
## 188 0 0 16
## 189 0 0 12
## 190 0 0 18
## 191 0 1 24
## 192 0 0 48
## 193 0 0 27
## 194 0 1 6
## 195 0 0 45
## 196 0 0 9
## 197 0 1 6
## 198 0 0 12
## 199 0 0 24
## 200 0 0 18
## 201 0 1 9
## 202 0 0 12
## 203 0 1 27
## 204 0 0 12
## 205 0 1 12
## 206 0 0 30
## 207 0 1 12
## 208 0 0 12
## 209 0 0 24
## 210 0 1 12
## 211 0 1 9
## 212 0 1 36
## 213 0 0 27
## 214 1 0 30
## 215 0 1 36
## 216 0 0 6
## 217 0 0 18
## 218 1 0 36
## 219 0 0 24
## 220 0 1 10
## 221 0 0 12
## 222 0 0 12
## 223 0 1 12
## 224 0 1 24
## 225 0 1 15
## 226 0 1 36
## 227 0 0 48
## 228 0 0 12
## 229 0 1 9
## 230 0 0 24
## 231 1 0 36
## 232 0 1 9
## 233 0 1 12
## 234 0 0 18
## 235 0 1 4
## 236 0 0 24
## 237 0 0 6
## 238 0 0 21
## 239 0 1 12
## 240 0 0 30
## 241 0 0 24
## 242 0 1 6
## 243 0 0 48
## 244 0 1 12
## 245 0 1 12
## 246 0 1 24
## 247 0 1 12
## 248 0 1 6
## 249 1 0 24
## 250 0 1 18
## 251 0 0 6
## 252 1 0 12
## 253 0 0 30
## 254 0 1 24
## 255 0 0 9
## 256 0 0 48
## 257 0 1 24
## 258 0 0 12
## 259 0 1 15
## 260 0 1 11
## 261 0 0 12
## 262 0 0 24
## 263 0 0 18
## 264 0 1 12
## 265 0 1 10
## 266 0 0 15
## 267 0 1 36
## 268 0 1 24
## 269 0 0 14
## 270 0 1 24
## 271 0 1 18
## 272 0 1 12
## 273 0 0 48
## 274 0 0 48
## 275 0 0 30
## 276 0 1 9
## 277 0 1 18
## 278 0 0 12
## 279 0 1 6
## 280 0 1 24
## 281 0 1 15
## 282 0 1 12
## 283 1 0 18
## 284 0 1 15
## 285 0 0 24
## 286 0 0 47
## 287 0 0 48
## 288 0 0 48
## 289 0 0 12
## 290 0 0 24
## 291 0 1 12
## 292 0 0 36
## 293 0 0 24
## 294 1 0 42
## 295 0 1 48
## 296 0 0 48
## 297 0 1 12
## 298 0 1 10
## 299 0 1 18
## 300 0 0 21
## 301 0 1 6
## 302 0 0 36
## 303 1 0 24
## 304 0 0 10
## 305 0 1 48
## 306 0 1 6
## 307 0 1 30
## 308 0 0 12
## 309 0 0 8
## 310 0 0 9
## 311 0 0 48
## 312 0 1 24
## 313 1 0 24
## 314 0 0 12
## 315 1 0 4
## 316 0 0 36
## 317 0 0 12
## 318 0 0 24
## 319 0 1 12
## 320 0 0 15
## 321 0 0 30
## 322 0 0 24
## 323 0 0 24
## 324 0 0 18
## 325 0 1 18
## 326 0 0 8
## 327 0 1 12
## 328 0 1 24
## 329 1 0 36
## 330 0 0 6
## 331 0 0 24
## 332 0 1 18
## 333 0 0 48
## 334 0 1 48
## 335 0 0 24
## 336 0 0 6
## 337 0 0 13
## 338 0 0 15
## 339 0 0 24
## 340 0 0 10
## 341 0 0 24
## 342 0 0 21
## 343 0 0 18
## 344 0 0 18
## 345 1 0 10
## 346 0 1 15
## 347 0 0 13
## 348 0 0 24
## 349 0 1 6
## 350 0 0 9
## 351 0 1 9
## 352 0 0 9
## 353 0 1 18
## 354 0 0 12
## 355 0 1 10
## 356 0 0 24
## 357 0 1 12
## 358 0 1 36
## 359 0 1 12
## 360 0 0 30
## 361 0 0 18
## 362 1 0 12
## 363 1 0 12
## 364 0 1 6
## 365 0 0 18
## 366 0 1 12
## 367 0 1 18
## 368 0 0 18
## 369 0 0 36
## 370 0 0 18
## 371 0 1 36
## 372 0 1 18
## 373 0 1 10
## 374 0 1 48
## 375 0 0 48
## 376 0 0 48
## 377 0 1 18
## 378 0 1 7
## 379 0 0 36
## 380 0 1 6
## 381 0 0 20
## 382 0 0 18
## 383 0 1 22
## 384 1 0 12
## 385 0 1 30
## 386 0 1 18
## 387 0 1 18
## 388 0 0 18
## 389 0 0 15
## 390 0 1 9
## 391 0 1 18
## 392 0 0 12
## 393 0 0 36
## 394 0 0 6
## 395 0 1 9
## 396 0 0 39
## 397 0 0 12
## 398 0 0 36
## 399 0 0 12
## 400 0 1 24
## 401 0 1 18
## 402 0 0 18
## 403 0 1 24
## 404 0 1 14
## 405 0 0 18
## 406 0 0 24
## 407 0 1 24
## 408 0 0 15
## 409 0 1 24
## 410 1 0 12
## 411 0 0 24
## 412 0 1 33
## 413 0 1 12
## 414 0 1 10
## 415 0 0 24
## 416 0 1 36
## 417 0 0 12
## 418 0 0 18
## 419 0 1 21
## 420 0 0 18
## 421 0 1 15
## 422 0 0 12
## 423 0 0 12
## 424 0 1 21
## 425 0 0 12
## 426 0 0 18
## 427 0 1 28
## 428 0 1 18
## 429 0 1 9
## 430 0 0 18
## 431 0 1 5
## 432 0 0 24
## 433 0 0 6
## 434 0 1 24
## 435 0 0 9
## 436 0 0 12
## 437 0 1 6
## 438 0 1 24
## 439 0 0 42
## 440 1 0 12
## 441 0 1 12
## 442 0 0 12
## 443 0 0 20
## 444 0 1 12
## 445 0 0 48
## 446 0 1 9
## 447 0 0 36
## 448 0 0 7
## 449 1 0 12
## 450 0 0 15
## 451 0 1 36
## 452 0 1 6
## 453 0 1 12
## 454 0 1 24
## 455 0 0 24
## 456 0 1 24
## 457 0 0 11
## 458 0 0 12
## 459 0 0 6
## 460 0 1 18
## 461 0 0 36
## 462 0 0 15
## 463 0 0 12
## 464 0 0 12
## 465 0 1 18
## 466 0 0 24
## 467 0 0 24
## 468 0 1 48
## 469 0 1 33
## 470 0 1 24
## 471 0 0 24
## 472 0 0 6
## 473 0 0 9
## 474 0 1 6
## 475 0 0 18
## 476 0 0 18
## 477 0 1 39
## 478 1 0 24
## 479 0 0 12
## 480 0 0 15
## 481 0 0 12
## 482 0 0 24
## 483 0 0 30
## 484 0 1 15
## 485 0 1 12
## 486 0 0 6
## 487 0 1 12
## 488 0 1 24
## 489 0 1 10
## 490 0 1 6
## 491 0 1 12
## 492 0 0 27
## 493 0 1 6
## 494 0 0 6
## 495 0 0 12
## 496 0 0 24
## 497 0 0 36
## 498 0 1 24
## 499 0 0 18
## 500 1 0 6
## 501 0 0 24
## 502 0 0 36
## 503 1 0 9
## 504 0 0 24
## 505 0 0 24
## 506 0 1 10
## 507 1 0 15
## 508 0 0 15
## 509 0 1 24
## 510 0 1 39
## 511 0 0 12
## 512 0 1 36
## 513 1 0 15
## 514 0 0 12
## 515 0 1 24
## 516 0 0 6
## 517 0 0 6
## 518 0 1 36
## 519 0 0 6
## 520 0 1 6
## 521 0 1 24
## 522 0 0 18
## 523 0 0 48
## 524 0 1 24
## 525 0 0 18
## 526 0 0 26
## 527 0 1 15
## 528 0 1 4
## 529 0 0 36
## 530 0 0 6
## 531 0 0 36
## 532 0 0 15
## 533 0 1 12
## 534 0 1 24
## 535 0 1 24
## 536 1 0 21
## 537 0 0 6
## 538 0 0 18
## 539 0 0 48
## 540 1 0 18
## 541 0 0 12
## 542 0 1 24
## 543 0 0 30
## 544 1 0 18
## 545 0 1 12
## 546 0 0 24
## 547 0 1 24
## 548 0 1 24
## 549 0 0 12
## 550 0 1 48
## 551 0 1 12
## 552 0 1 6
## 553 0 0 48
## 554 0 0 12
## 555 0 0 9
## 556 0 0 12
## 557 0 0 18
## 558 0 1 21
## 559 0 0 24
## 560 0 0 18
## 561 0 0 24
## 562 0 0 24
## 563 1 0 6
## 564 0 0 36
## 565 0 0 24
## 566 0 0 24
## 567 0 0 12
## 568 0 1 24
## 569 0 0 48
## 570 0 0 48
## 571 0 0 24
## 572 0 1 30
## 573 0 1 24
## 574 0 0 15
## 575 0 0 9
## 576 0 1 15
## 577 0 0 12
## 578 0 1 24
## 579 0 0 36
## 580 0 1 24
## 581 0 0 18
## 582 0 0 12
## 583 0 1 9
## 584 0 0 36
## 585 0 1 12
## 586 0 0 18
## 587 0 0 9
## 588 0 0 12
## 589 0 0 18
## 590 0 0 12
## 591 0 0 12
## 592 0 0 24
## 593 0 1 21
## 594 0 0 24
## 595 0 0 24
## 596 0 0 6
## 597 0 0 24
## 598 0 0 24
## 599 0 1 18
## 600 0 1 24
## 601 0 0 7
## 602 0 0 9
## 603 0 0 24
## 604 0 1 36
## 605 1 0 10
## 606 0 0 24
## 607 0 1 24
## 608 0 0 36
## 609 0 1 18
## 610 0 1 15
## 611 0 0 12
## 612 1 0 10
## 613 0 0 21
## 614 0 0 24
## 615 0 1 18
## 616 0 0 48
## 617 0 0 48
## 618 0 0 6
## 619 0 0 30
## 620 0 1 12
## 621 0 0 21
## 622 0 1 18
## 623 0 1 48
## 624 0 0 12
## 625 0 0 18
## 626 0 1 15
## 627 1 0 6
## 628 0 0 9
## 629 0 1 42
## 630 0 1 9
## 631 0 0 24
## 632 0 0 18
## 633 0 0 15
## 634 0 1 9
## 635 0 0 24
## 636 0 1 12
## 637 0 1 24
## 638 0 1 48
## 639 0 1 12
## 640 0 0 42
## 641 0 0 18
## 642 0 0 15
## 643 0 1 15
## 644 0 1 24
## 645 0 0 18
## 646 0 1 36
## 647 0 0 30
## 648 0 1 12
## 649 1 0 24
## 650 0 0 12
## 651 0 0 48
## 652 0 0 12
## 653 0 0 24
## 654 0 0 36
## 655 0 1 24
## 656 0 0 14
## 657 0 0 12
## 658 0 1 48
## 659 0 0 30
## 660 0 0 18
## 661 1 0 12
## 662 0 0 12
## 663 0 1 21
## 664 0 0 6
## 665 1 0 6
## 666 0 1 24
## 667 0 0 30
## 668 0 1 48
## 669 0 0 12
## 670 1 0 30
## 671 0 1 24
## 672 0 1 36
## 673 0 1 48
## 674 0 1 6
## 675 0 1 21
## 676 0 1 30
## 677 0 1 24
## 678 0 0 48
## 679 0 0 24
## 680 0 1 18
## 681 0 1 6
## 682 0 1 12
## 683 0 1 15
## 684 0 1 24
## 685 0 0 36
## 686 0 1 48
## 687 1 0 10
## 688 0 0 36
## 689 0 1 9
## 690 0 0 12
## 691 0 0 15
## 692 0 0 15
## 693 0 0 24
## 694 0 0 6
## 695 0 1 24
## 696 0 1 6
## 697 0 0 12
## 698 0 1 12
## 699 0 1 18
## 700 1 0 15
## 701 0 1 12
## 702 0 0 48
## 703 1 0 24
## 704 0 0 30
## 705 0 0 27
## 706 0 1 15
## 707 0 0 48
## 708 0 0 12
## 709 0 0 9
## 710 0 0 9
## 711 0 1 18
## 712 0 0 6
## 713 0 1 21
## 714 0 0 9
## 715 0 0 48
## 716 0 1 30
## 717 0 1 30
## 718 0 1 18
## 719 1 0 24
## 720 0 0 20
## 721 1 0 9
## 722 0 0 6
## 723 0 0 12
## 724 0 0 9
## 725 0 1 27
## 726 0 1 6
## 727 0 1 15
## 728 0 0 18
## 729 0 0 48
## 730 1 0 24
## 731 0 0 24
## 732 0 0 24
## 733 0 0 8
## 734 0 1 24
## 735 0 1 4
## 736 0 0 36
## 737 0 0 24
## 738 0 0 18
## 739 0 1 6
## 740 0 0 30
## 741 0 0 24
## 742 0 0 10
## 743 0 1 21
## 744 0 0 24
## 745 0 0 39
## 746 0 0 13
## 747 0 0 15
## 748 0 0 12
## 749 0 1 21
## 750 0 1 15
## 751 0 0 6
## 752 0 0 18
## 753 0 0 12
## 754 0 1 30
## 755 0 1 12
## 756 0 0 24
## 757 1 0 6
## 758 1 0 15
## 759 0 1 24
## 760 0 0 12
## 761 0 1 15
## 762 0 0 18
## 763 0 0 12
## 764 0 1 21
## 765 0 1 24
## 766 0 0 12
## 767 0 0 30
## 768 0 1 10
## 769 0 0 12
## 770 0 1 12
## 771 0 0 24
## 772 0 0 36
## 773 0 1 21
## 774 0 1 24
## 775 1 0 12
## 776 0 0 24
## 777 0 1 36
## 778 0 0 18
## 779 0 1 36
## 780 0 0 18
## 781 0 0 39
## 782 0 1 24
## 783 0 0 12
## 784 0 0 12
## 785 0 0 20
## 786 0 0 18
## 787 0 1 22
## 788 0 1 48
## 789 0 0 48
## 790 0 0 40
## 791 0 0 21
## 792 0 1 24
## 793 0 1 6
## 794 1 0 24
## 795 0 1 24
## 796 0 1 9
## 797 0 0 18
## 798 0 1 12
## 799 0 1 24
## 800 0 0 9
## 801 0 1 24
## 802 0 0 18
## 803 0 0 20
## 804 0 1 12
## 805 0 0 12
## 806 0 0 36
## 807 0 0 6
## 808 0 1 12
## 809 0 0 42
## 810 0 0 15
## 811 0 0 8
## 812 0 0 6
## 813 0 0 36
## 814 0 0 48
## 815 0 0 48
## 816 0 0 36
## 817 0 1 6
## 818 0 1 6
## 819 0 0 36
## 820 0 0 18
## 821 0 1 12
## 822 1 0 12
## 823 0 0 36
## 824 0 0 8
## 825 0 1 18
## 826 0 0 21
## 827 0 0 18
## 828 0 1 18
## 829 0 0 36
## 830 0 0 48
## 831 0 1 24
## 832 0 0 18
## 833 0 0 45
## 834 0 0 24
## 835 1 0 15
## 836 0 0 12
## 837 0 1 12
## 838 0 1 4
## 839 0 0 24
## 840 0 1 24
## 841 0 0 36
## 842 0 1 21
## 843 0 1 18
## 844 0 1 24
## 845 0 1 18
## 846 0 0 21
## 847 0 1 18
## 848 0 1 24
## 849 0 0 9
## 850 0 0 12
## 851 0 0 20
## 852 0 1 24
## 853 0 1 15
## 854 0 0 18
## 855 0 1 36
## 856 0 1 24
## 857 0 1 10
## 858 0 1 15
## 859 0 0 15
## 860 0 1 9
## 861 0 1 24
## 862 0 1 18
## 863 0 0 24
## 864 0 1 27
## 865 0 1 10
## 866 0 1 15
## 867 0 0 18
## 868 0 1 12
## 869 0 1 36
## 870 0 0 12
## 871 0 1 36
## 872 1 0 6
## 873 0 0 24
## 874 0 1 15
## 875 0 0 12
## 876 0 0 11
## 877 0 0 18
## 878 0 1 36
## 879 0 0 9
## 880 0 1 30
## 881 0 1 24
## 882 0 1 24
## 883 0 0 30
## 884 0 1 18
## 885 0 0 24
## 886 0 0 12
## 887 0 0 24
## 888 0 0 48
## 889 0 1 36
## 890 0 1 28
## 891 0 0 27
## 892 0 1 15
## 893 0 0 12
## 894 0 0 36
## 895 0 1 18
## 896 0 1 36
## 897 0 0 21
## 898 0 1 12
## 899 0 1 15
## 900 0 0 18
## 901 0 0 16
## 902 0 1 20
## 903 0 1 36
## 904 0 1 15
## 905 0 1 24
## 906 0 0 12
## 907 0 0 21
## 908 0 0 36
## 909 0 1 15
## 910 0 0 9
## 911 0 1 36
## 912 0 0 24
## 913 0 0 30
## 914 0 1 11
## 915 0 0 24
## 916 0 0 48
## 917 0 1 10
## 918 0 0 6
## 919 0 0 24
## 920 0 0 24
## 921 0 1 18
## 922 0 1 48
## 923 0 0 9
## 924 0 0 12
## 925 0 0 24
## 926 0 0 12
## 927 0 0 18
## 928 0 0 48
## 929 0 1 30
## 930 0 0 12
## 931 0 0 24
## 932 0 0 9
## 933 0 1 9
## 934 0 1 12
## 935 0 0 12
## 936 0 0 30
## 937 1 0 9
## 938 0 0 6
## 939 0 0 48
## 940 0 1 24
## 941 0 1 12
## 942 0 1 10
## 943 0 1 24
## 944 0 1 4
## 945 0 0 15
## 946 0 0 48
## 947 0 0 24
## 948 0 1 12
## 949 0 1 18
## 950 0 1 24
## 951 0 0 18
## 952 0 0 36
## 953 0 0 24
## 954 0 1 36
## 955 0 0 12
## 956 0 0 24
## 957 1 0 30
## 958 0 0 9
## 959 0 0 28
## 960 0 0 24
## 961 0 1 6
## 962 0 0 21
## 963 0 1 15
## 964 0 1 24
## 965 0 0 6
## 966 0 0 30
## 967 0 0 27
## 968 0 1 15
## 969 0 1 42
## 970 0 0 11
## 971 0 0 15
## 972 0 1 24
## 973 0 0 24
## 974 0 0 48
## 975 0 1 30
## 976 1 0 24
## 977 0 0 6
## 978 0 0 18
## 979 0 1 24
## 980 0 0 15
## 981 0 0 30
## 982 0 1 48
## 983 1 0 21
## 984 0 0 36
## 985 0 1 24
## 986 0 0 15
## 987 1 0 42
## 988 0 1 13
## 989 0 0 24
## 990 0 0 24
## 991 0 1 12
## 992 0 1 15
## 993 0 0 18
## 994 0 0 36
## 995 0 1 12
## 996 0 1 12
## 997 0 0 30
## 998 0 1 12
## 999 0 0 45
## 1000 0 0 45
## credithistoryA30 credithistoryA31 credithistoryA32 credithistoryA33
## 1 0 0 0 0
## 2 0 0 1 0
## 3 0 0 0 0
## 4 0 0 1 0
## 5 0 0 0 1
## 6 0 0 1 0
## 7 0 0 1 0
## 8 0 0 1 0
## 9 0 0 1 0
## 10 0 0 0 0
## 11 0 0 1 0
## 12 0 0 1 0
## 13 0 0 1 0
## 14 0 0 0 0
## 15 0 0 1 0
## 16 0 0 1 0
## 17 0 0 0 0
## 18 1 0 0 0
## 19 0 0 1 0
## 20 0 0 1 0
## 21 0 0 0 0
## 22 0 0 1 0
## 23 0 0 0 0
## 24 0 0 0 0
## 25 0 0 0 0
## 26 0 0 1 0
## 27 1 0 0 0
## 28 0 1 0 0
## 29 0 0 1 0
## 30 0 0 0 1
## 31 0 0 1 0
## 32 0 0 1 0
## 33 0 0 1 0
## 34 0 0 0 0
## 35 0 0 1 0
## 36 0 0 0 0
## 37 0 0 0 0
## 38 0 0 1 0
## 39 0 0 1 0
## 40 0 0 1 0
## 41 0 0 1 0
## 42 0 0 1 0
## 43 0 0 0 1
## 44 0 0 0 0
## 45 0 0 0 0
## 46 0 0 0 0
## 47 0 0 1 0
## 48 0 0 1 0
## 49 0 0 0 0
## 50 0 0 1 0
## 51 0 0 0 1
## 52 0 0 0 1
## 53 0 0 1 0
## 54 0 0 1 0
## 55 0 0 0 1
## 56 0 1 0 0
## 57 0 0 1 0
## 58 0 0 0 0
## 59 0 0 1 0
## 60 0 0 0 0
## 61 0 0 1 0
## 62 0 0 0 0
## 63 1 0 0 0
## 64 1 0 0 0
## 65 0 0 1 0
## 66 0 0 1 0
## 67 0 0 1 0
## 68 0 0 1 0
## 69 0 0 1 0
## 70 0 0 1 0
## 71 0 0 1 0
## 72 0 0 0 0
## 73 0 0 0 0
## 74 0 0 0 0
## 75 0 0 1 0
## 76 0 0 0 0
## 77 0 0 1 0
## 78 0 0 0 1
## 79 1 0 0 0
## 80 0 0 1 0
## 81 0 0 1 0
## 82 0 0 1 0
## 83 0 0 1 0
## 84 0 0 1 0
## 85 0 0 1 0
## 86 0 0 0 0
## 87 0 0 0 0
## 88 0 0 1 0
## 89 0 0 1 0
## 90 1 0 0 0
## 91 0 0 0 0
## 92 0 0 0 0
## 93 0 0 0 0
## 94 0 0 0 0
## 95 0 0 1 0
## 96 1 0 0 0
## 97 0 0 0 0
## 98 0 0 1 0
## 99 0 0 0 0
## 100 0 0 0 1
## 101 0 0 1 0
## 102 0 0 1 0
## 103 0 0 0 1
## 104 0 0 0 0
## 105 0 0 1 0
## 106 0 0 0 0
## 107 0 1 0 0
## 108 0 0 1 0
## 109 0 0 1 0
## 110 0 0 1 0
## 111 0 0 0 1
## 112 0 0 1 0
## 113 0 0 1 0
## 114 0 0 0 0
## 115 0 0 1 0
## 116 0 0 0 0
## 117 0 0 1 0
## 118 0 0 0 0
## 119 0 0 0 0
## 120 0 0 0 0
## 121 0 0 1 0
## 122 0 0 0 0
## 123 0 0 1 0
## 124 0 0 0 0
## 125 0 0 1 0
## 126 0 0 0 0
## 127 0 0 1 0
## 128 0 0 1 0
## 129 0 0 0 0
## 130 0 0 0 0
## 131 0 0 1 0
## 132 0 0 0 1
## 133 0 0 1 0
## 134 0 0 1 0
## 135 0 0 1 0
## 136 0 0 0 0
## 137 0 0 0 1
## 138 0 0 1 0
## 139 0 0 0 0
## 140 0 0 1 0
## 141 0 0 1 0
## 142 0 0 1 0
## 143 0 0 1 0
## 144 0 0 1 0
## 145 0 0 0 0
## 146 0 1 0 0
## 147 0 0 0 0
## 148 0 0 0 0
## 149 0 0 0 0
## 150 0 0 0 0
## 151 0 0 1 0
## 152 0 0 1 0
## 153 0 0 1 0
## 154 0 0 0 0
## 155 0 0 0 1
## 156 0 0 1 0
## 157 0 0 0 0
## 158 0 1 0 0
## 159 0 0 1 0
## 160 0 0 0 0
## 161 0 0 0 0
## 162 0 0 0 0
## 163 0 0 1 0
## 164 0 0 1 0
## 165 0 0 1 0
## 166 0 0 1 0
## 167 0 0 1 0
## 168 0 0 1 0
## 169 0 0 1 0
## 170 0 0 0 0
## 171 1 0 0 0
## 172 0 0 1 0
## 173 0 0 0 1
## 174 0 0 1 0
## 175 0 0 0 1
## 176 0 1 0 0
## 177 0 0 1 0
## 178 0 0 0 0
## 179 0 0 1 0
## 180 0 0 0 0
## 181 0 0 0 1
## 182 0 0 0 1
## 183 0 1 0 0
## 184 0 0 0 0
## 185 0 0 0 0
## 186 0 0 0 0
## 187 0 1 0 0
## 188 0 0 0 0
## 189 0 0 1 0
## 190 1 0 0 0
## 191 0 0 1 0
## 192 1 0 0 0
## 193 0 0 1 0
## 194 0 0 1 0
## 195 0 0 1 0
## 196 0 0 0 0
## 197 0 0 0 0
## 198 0 0 1 0
## 199 0 0 1 0
## 200 0 0 0 1
## 201 0 0 0 0
## 202 0 0 1 0
## 203 0 0 0 1
## 204 0 0 1 0
## 205 0 0 0 0
## 206 0 0 0 0
## 207 0 0 0 0
## 208 0 0 0 0
## 209 0 0 1 0
## 210 0 0 1 0
## 211 0 0 0 0
## 212 0 0 1 0
## 213 1 0 0 0
## 214 0 0 0 1
## 215 0 0 0 0
## 216 0 0 0 0
## 217 1 0 0 0
## 218 0 0 1 0
## 219 0 0 1 0
## 220 0 0 1 0
## 221 0 0 1 0
## 222 0 0 1 0
## 223 0 0 1 0
## 224 0 0 0 1
## 225 0 0 1 0
## 226 1 0 0 0
## 227 0 0 1 0
## 228 0 0 1 0
## 229 0 0 1 0
## 230 0 0 1 0
## 231 0 0 1 0
## 232 0 0 1 0
## 233 0 0 1 0
## 234 0 0 1 0
## 235 0 0 0 0
## 236 0 0 1 0
## 237 0 0 1 0
## 238 0 0 1 0
## 239 0 0 0 0
## 240 0 0 1 0
## 241 0 0 1 0
## 242 0 0 1 0
## 243 1 0 0 0
## 244 0 0 0 0
## 245 0 1 0 0
## 246 0 0 1 0
## 247 0 0 0 0
## 248 1 0 0 0
## 249 0 0 1 0
## 250 0 0 1 0
## 251 0 0 0 0
## 252 0 0 1 0
## 253 0 0 1 0
## 254 0 0 0 1
## 255 0 0 1 0
## 256 0 0 0 1
## 257 0 0 0 0
## 258 0 1 0 0
## 259 0 0 1 0
## 260 0 0 0 0
## 261 0 0 1 0
## 262 0 0 1 0
## 263 0 0 0 0
## 264 0 0 0 0
## 265 0 0 0 0
## 266 0 0 1 0
## 267 0 0 0 0
## 268 0 0 1 0
## 269 0 0 1 0
## 270 0 0 1 0
## 271 0 0 1 0
## 272 0 0 0 0
## 273 0 1 0 0
## 274 0 0 1 0
## 275 0 0 1 0
## 276 0 0 1 0
## 277 0 0 0 0
## 278 0 0 1 0
## 279 0 0 1 0
## 280 0 0 1 0
## 281 0 0 0 0
## 282 0 0 1 0
## 283 0 1 0 0
## 284 0 0 0 0
## 285 0 0 0 0
## 286 0 0 1 0
## 287 0 0 1 0
## 288 0 0 0 1
## 289 0 0 1 0
## 290 0 0 0 1
## 291 0 0 1 0
## 292 0 0 1 0
## 293 0 0 0 0
## 294 0 0 0 0
## 295 0 0 0 0
## 296 0 0 1 0
## 297 0 0 1 0
## 298 0 0 1 0
## 299 0 0 1 0
## 300 0 0 0 0
## 301 0 0 1 0
## 302 1 0 0 0
## 303 0 0 0 0
## 304 0 0 0 0
## 305 0 0 0 0
## 306 0 0 1 0
## 307 0 0 1 0
## 308 0 0 1 0
## 309 0 0 1 0
## 310 0 0 1 0
## 311 0 0 1 0
## 312 0 0 1 0
## 313 0 0 1 0
## 314 0 0 1 0
## 315 0 0 1 0
## 316 0 1 0 0
## 317 0 0 1 0
## 318 0 0 1 0
## 319 0 0 0 0
## 320 0 0 0 1
## 321 0 0 0 0
## 322 0 0 1 0
## 323 0 0 1 0
## 324 0 0 1 0
## 325 0 0 0 0
## 326 0 0 0 0
## 327 0 0 0 0
## 328 0 0 1 0
## 329 0 0 1 0
## 330 0 0 1 0
## 331 0 0 0 0
## 332 0 0 0 0
## 333 0 0 1 0
## 334 0 0 0 0
## 335 1 0 0 0
## 336 0 0 0 0
## 337 0 0 1 0
## 338 0 0 1 0
## 339 0 0 1 0
## 340 0 0 1 0
## 341 0 0 0 0
## 342 0 0 1 0
## 343 0 0 1 0
## 344 0 0 1 0
## 345 0 0 1 0
## 346 0 0 0 0
## 347 0 0 0 0
## 348 0 0 1 0
## 349 0 0 0 1
## 350 0 0 0 0
## 351 0 0 1 0
## 352 0 0 1 0
## 353 0 0 0 0
## 354 1 0 0 0
## 355 0 0 1 0
## 356 0 0 1 0
## 357 0 0 0 0
## 358 0 0 0 1
## 359 0 0 1 0
## 360 0 0 1 0
## 361 0 0 1 0
## 362 0 0 1 0
## 363 0 0 0 1
## 364 0 0 1 0
## 365 0 0 1 0
## 366 0 0 1 0
## 367 0 0 0 0
## 368 0 0 1 0
## 369 0 0 1 0
## 370 0 0 1 0
## 371 0 0 1 0
## 372 0 0 0 0
## 373 0 0 0 0
## 374 0 0 0 0
## 375 0 1 0 0
## 376 0 1 0 0
## 377 0 0 0 1
## 378 0 0 0 1
## 379 0 0 1 0
## 380 0 0 0 0
## 381 0 0 1 0
## 382 0 0 1 0
## 383 0 0 1 0
## 384 0 0 1 0
## 385 0 0 0 1
## 386 0 0 0 0
## 387 0 0 1 0
## 388 0 0 0 0
## 389 0 0 0 0
## 390 0 0 1 0
## 391 0 0 1 0
## 392 0 0 1 0
## 393 0 0 1 0
## 394 0 0 0 0
## 395 0 0 0 0
## 396 0 0 0 1
## 397 0 0 1 0
## 398 0 0 0 0
## 399 0 0 1 0
## 400 0 0 0 0
## 401 0 0 1 0
## 402 0 0 0 0
## 403 0 0 0 1
## 404 0 0 0 1
## 405 0 0 0 1
## 406 0 0 1 0
## 407 0 0 0 0
## 408 0 0 1 0
## 409 0 0 1 0
## 410 0 0 0 0
## 411 0 0 1 0
## 412 0 0 0 0
## 413 0 0 0 0
## 414 0 0 1 0
## 415 0 0 1 0
## 416 0 0 0 0
## 417 0 0 1 0
## 418 0 0 0 1
## 419 0 0 1 0
## 420 0 0 1 0
## 421 0 0 1 0
## 422 0 0 1 0
## 423 0 0 0 0
## 424 0 0 0 1
## 425 0 0 1 0
## 426 0 0 1 0
## 427 0 0 0 0
## 428 0 0 0 0
## 429 0 0 1 0
## 430 0 0 0 0
## 431 0 0 1 0
## 432 0 0 1 0
## 433 0 0 0 0
## 434 0 0 0 0
## 435 0 0 1 0
## 436 0 0 1 0
## 437 0 0 1 0
## 438 0 0 0 0
## 439 0 0 0 0
## 440 0 1 0 0
## 441 0 0 1 0
## 442 0 0 1 0
## 443 0 0 0 1
## 444 0 0 1 0
## 445 0 0 0 0
## 446 0 0 0 0
## 447 0 0 1 0
## 448 0 0 1 0
## 449 0 0 1 0
## 450 0 0 0 1
## 451 0 0 0 0
## 452 0 0 1 0
## 453 1 0 0 0
## 454 0 0 1 0
## 455 0 0 1 0
## 456 0 0 1 0
## 457 0 0 0 0
## 458 0 0 1 0
## 459 0 0 1 0
## 460 0 0 1 0
## 461 0 0 1 0
## 462 0 0 1 0
## 463 0 0 1 0
## 464 0 0 1 0
## 465 0 0 1 0
## 466 0 0 1 0
## 467 0 0 0 1
## 468 0 0 0 1
## 469 0 0 0 1
## 470 0 0 0 1
## 471 0 0 1 0
## 472 0 0 1 0
## 473 0 0 1 0
## 474 0 0 1 0
## 475 0 0 0 0
## 476 1 0 0 0
## 477 0 0 1 0
## 478 0 0 1 0
## 479 0 0 1 0
## 480 0 0 0 0
## 481 0 0 0 0
## 482 0 0 1 0
## 483 0 0 1 0
## 484 0 0 0 1
## 485 0 0 0 0
## 486 0 0 0 1
## 487 0 0 1 0
## 488 0 0 1 0
## 489 0 0 1 0
## 490 0 0 1 0
## 491 0 0 0 0
## 492 1 0 0 0
## 493 0 0 0 0
## 494 0 0 1 0
## 495 0 0 0 0
## 496 0 0 1 0
## 497 0 0 1 0
## 498 0 0 0 0
## 499 0 0 1 0
## 500 0 0 0 0
## 501 0 0 1 0
## 502 0 0 1 0
## 503 0 0 1 0
## 504 0 0 0 0
## 505 0 0 1 0
## 506 0 0 1 0
## 507 0 0 0 0
## 508 0 1 0 0
## 509 0 0 1 0
## 510 0 0 1 0
## 511 0 0 1 0
## 512 0 0 1 0
## 513 0 0 1 0
## 514 0 0 0 1
## 515 0 0 1 0
## 516 0 0 0 0
## 517 0 0 0 0
## 518 0 0 0 0
## 519 0 0 1 0
## 520 0 0 0 0
## 521 0 0 0 0
## 522 0 0 1 0
## 523 1 0 0 0
## 524 0 0 1 0
## 525 0 0 1 0
## 526 0 0 1 0
## 527 0 0 0 0
## 528 0 0 0 0
## 529 0 0 1 0
## 530 0 0 1 0
## 531 0 0 1 0
## 532 0 0 1 0
## 533 0 0 0 1
## 534 0 0 1 0
## 535 0 0 1 0
## 536 0 0 0 0
## 537 0 0 1 0
## 538 0 0 0 0
## 539 0 0 1 0
## 540 0 0 1 0
## 541 0 0 1 0
## 542 0 0 0 1
## 543 0 0 1 0
## 544 0 0 1 0
## 545 0 0 0 0
## 546 0 0 0 1
## 547 0 0 0 0
## 548 0 0 1 0
## 549 0 1 0 0
## 550 0 0 0 0
## 551 0 0 0 0
## 552 0 1 0 0
## 553 0 0 1 0
## 554 0 0 0 0
## 555 0 0 1 0
## 556 0 0 1 0
## 557 1 0 0 0
## 558 1 0 0 0
## 559 0 1 0 0
## 560 0 0 0 0
## 561 0 0 1 0
## 562 0 1 0 0
## 563 0 0 0 1
## 564 0 0 1 0
## 565 0 0 0 1
## 566 0 0 0 1
## 567 0 0 1 0
## 568 0 0 0 0
## 569 0 0 1 0
## 570 0 0 1 0
## 571 0 0 1 0
## 572 0 0 0 0
## 573 0 0 1 0
## 574 0 0 1 0
## 575 0 0 1 0
## 576 0 0 0 0
## 577 0 0 1 0
## 578 0 0 0 0
## 579 0 0 0 0
## 580 0 0 1 0
## 581 0 0 0 0
## 582 0 0 0 0
## 583 0 0 1 0
## 584 0 0 1 0
## 585 0 0 1 0
## 586 0 0 1 0
## 587 0 0 0 0
## 588 0 0 1 0
## 589 0 0 1 0
## 590 0 0 0 0
## 591 0 0 0 0
## 592 0 0 0 1
## 593 0 0 1 0
## 594 0 0 1 0
## 595 0 1 0 0
## 596 0 1 0 0
## 597 0 0 1 0
## 598 1 0 0 0
## 599 0 0 0 0
## 600 0 0 0 1
## 601 0 0 1 0
## 602 0 0 1 0
## 603 0 1 0 0
## 604 0 0 1 0
## 605 0 0 1 0
## 606 0 1 0 0
## 607 0 0 0 0
## 608 0 0 1 0
## 609 0 0 1 0
## 610 0 0 1 0
## 611 0 0 1 0
## 612 0 0 1 0
## 613 0 0 1 0
## 614 0 1 0 0
## 615 0 0 0 1
## 616 1 0 0 0
## 617 0 0 0 1
## 618 0 0 0 0
## 619 0 0 1 0
## 620 0 0 1 0
## 621 0 0 0 0
## 622 0 0 0 0
## 623 0 0 1 0
## 624 0 0 1 0
## 625 0 0 1 0
## 626 0 0 1 0
## 627 0 0 1 0
## 628 0 1 0 0
## 629 0 0 0 0
## 630 0 0 1 0
## 631 0 0 1 0
## 632 0 1 0 0
## 633 0 0 1 0
## 634 0 0 1 0
## 635 0 0 1 0
## 636 0 0 1 0
## 637 0 0 1 0
## 638 0 0 0 1
## 639 0 0 1 0
## 640 0 0 0 1
## 641 0 0 1 0
## 642 0 0 1 0
## 643 0 0 1 0
## 644 0 0 0 0
## 645 0 0 0 0
## 646 0 0 0 1
## 647 1 0 0 0
## 648 0 0 1 0
## 649 0 0 1 0
## 650 0 0 1 0
## 651 0 0 1 0
## 652 0 0 1 0
## 653 0 0 1 0
## 654 0 0 0 1
## 655 0 0 0 0
## 656 0 0 1 0
## 657 0 0 1 0
## 658 0 0 1 0
## 659 1 0 0 0
## 660 0 0 0 0
## 661 0 0 1 0
## 662 0 0 1 0
## 663 0 0 1 0
## 664 0 0 0 1
## 665 0 0 0 0
## 666 0 0 0 0
## 667 0 1 0 0
## 668 0 1 0 0
## 669 0 0 0 0
## 670 0 0 0 0
## 671 0 0 0 0
## 672 0 0 1 0
## 673 0 0 1 0
## 674 0 0 0 0
## 675 0 0 0 1
## 676 0 0 0 0
## 677 0 0 0 0
## 678 0 0 1 0
## 679 0 0 1 0
## 680 0 0 1 0
## 681 0 0 1 0
## 682 0 0 1 0
## 683 0 0 0 1
## 684 0 0 0 0
## 685 0 0 0 1
## 686 0 0 1 0
## 687 0 0 0 0
## 688 0 0 0 1
## 689 0 0 1 0
## 690 0 0 1 0
## 691 0 0 0 0
## 692 0 0 1 0
## 693 0 0 1 0
## 694 0 0 0 0
## 695 0 0 1 0
## 696 0 0 1 0
## 697 0 0 1 0
## 698 0 0 0 0
## 699 0 0 0 0
## 700 0 0 1 0
## 701 0 0 1 0
## 702 0 0 0 0
## 703 0 0 1 0
## 704 0 0 0 1
## 705 0 0 1 0
## 706 0 0 1 0
## 707 0 0 1 0
## 708 1 0 0 0
## 709 0 0 1 0
## 710 0 0 1 0
## 711 0 0 0 0
## 712 0 1 0 0
## 713 0 0 1 0
## 714 0 0 0 0
## 715 0 0 1 0
## 716 0 0 0 0
## 717 0 0 0 0
## 718 0 0 1 0
## 719 0 0 0 0
## 720 1 0 0 0
## 721 1 0 0 0
## 722 0 1 0 0
## 723 0 0 1 0
## 724 0 0 1 0
## 725 0 0 1 0
## 726 0 0 0 0
## 727 0 0 0 0
## 728 0 0 1 0
## 729 0 1 0 0
## 730 0 0 0 0
## 731 0 0 0 1
## 732 0 0 1 0
## 733 0 0 1 0
## 734 0 0 1 0
## 735 0 0 0 0
## 736 0 1 0 0
## 737 0 0 1 0
## 738 0 0 1 0
## 739 0 0 0 0
## 740 1 0 0 0
## 741 0 1 0 0
## 742 0 1 0 0
## 743 0 0 1 0
## 744 0 1 0 0
## 745 0 0 0 0
## 746 0 0 0 0
## 747 0 0 1 0
## 748 0 0 1 0
## 749 0 0 1 0
## 750 0 0 1 0
## 751 0 0 1 0
## 752 0 0 1 0
## 753 0 0 1 0
## 754 0 0 0 0
## 755 0 0 0 1
## 756 0 0 1 0
## 757 0 0 0 0
## 758 0 0 0 0
## 759 0 0 1 0
## 760 0 0 0 0
## 761 0 0 0 0
## 762 0 0 0 0
## 763 0 0 1 0
## 764 0 0 0 0
## 765 0 0 0 0
## 766 0 0 1 0
## 767 0 0 1 0
## 768 0 0 1 0
## 769 0 0 0 0
## 770 0 0 0 0
## 771 0 0 1 0
## 772 0 0 0 0
## 773 0 0 0 0
## 774 0 0 0 0
## 775 0 0 0 0
## 776 0 0 1 0
## 777 0 0 0 0
## 778 0 0 1 0
## 779 0 0 0 0
## 780 0 0 1 0
## 781 0 0 0 0
## 782 0 0 0 0
## 783 1 0 0 0
## 784 0 0 1 0
## 785 0 0 1 0
## 786 0 0 1 0
## 787 0 0 1 0
## 788 0 0 0 0
## 789 0 0 0 1
## 790 0 0 0 0
## 791 0 0 1 0
## 792 0 0 1 0
## 793 0 0 0 0
## 794 0 0 1 0
## 795 0 0 1 0
## 796 0 0 1 0
## 797 0 0 1 0
## 798 0 0 0 0
## 799 0 0 0 1
## 800 0 0 1 0
## 801 0 0 0 0
## 802 0 0 0 0
## 803 0 0 0 0
## 804 0 0 0 0
## 805 0 0 1 0
## 806 0 0 1 0
## 807 0 0 1 0
## 808 0 0 0 0
## 809 0 1 0 0
## 810 1 0 0 0
## 811 0 0 1 0
## 812 0 0 1 0
## 813 0 0 0 0
## 814 0 0 1 0
## 815 0 0 1 0
## 816 0 0 0 1
## 817 0 0 1 0
## 818 0 0 0 0
## 819 0 0 1 0
## 820 0 0 1 0
## 821 0 0 1 0
## 822 0 0 1 0
## 823 0 0 1 0
## 824 0 0 0 0
## 825 0 0 0 0
## 826 0 0 0 0
## 827 0 0 0 0
## 828 1 0 0 0
## 829 0 0 1 0
## 830 0 0 0 1
## 831 0 0 0 1
## 832 0 0 1 0
## 833 1 0 0 0
## 834 0 0 1 0
## 835 0 0 1 0
## 836 1 0 0 0
## 837 0 0 1 0
## 838 0 0 1 0
## 839 0 0 0 0
## 840 0 0 0 0
## 841 0 0 1 0
## 842 0 0 0 1
## 843 0 0 1 0
## 844 0 1 0 0
## 845 0 0 1 0
## 846 0 0 1 0
## 847 0 0 1 0
## 848 0 0 1 0
## 849 0 0 1 0
## 850 0 0 1 0
## 851 0 0 0 0
## 852 0 0 0 0
## 853 0 0 0 0
## 854 0 1 0 0
## 855 0 0 0 1
## 856 0 0 1 0
## 857 0 0 1 0
## 858 0 0 0 0
## 859 0 0 1 0
## 860 0 0 1 0
## 861 0 0 0 0
## 862 0 0 0 1
## 863 0 0 1 0
## 864 0 0 0 0
## 865 0 0 1 0
## 866 0 0 1 0
## 867 0 0 1 0
## 868 0 0 0 0
## 869 0 0 1 0
## 870 0 0 1 0
## 871 0 0 0 1
## 872 0 0 0 0
## 873 0 0 0 0
## 874 0 0 1 0
## 875 0 0 1 0
## 876 0 0 0 0
## 877 0 1 0 0
## 878 0 0 1 0
## 879 0 0 1 0
## 880 0 0 0 0
## 881 0 0 1 0
## 882 0 0 1 0
## 883 0 0 0 0
## 884 0 0 0 0
## 885 0 0 1 0
## 886 0 0 1 0
## 887 0 0 0 0
## 888 0 0 1 0
## 889 0 0 0 0
## 890 0 1 0 0
## 891 0 0 0 0
## 892 0 0 0 0
## 893 0 0 0 0
## 894 0 0 0 0
## 895 0 0 0 0
## 896 0 0 0 1
## 897 0 0 1 0
## 898 0 0 0 0
## 899 0 0 1 0
## 900 0 0 1 0
## 901 0 0 0 0
## 902 0 0 0 0
## 903 0 0 0 0
## 904 0 0 1 0
## 905 0 0 1 0
## 906 0 0 1 0
## 907 0 0 1 0
## 908 0 0 1 0
## 909 0 0 0 1
## 910 0 0 1 0
## 911 0 0 0 1
## 912 0 0 0 0
## 913 0 0 1 0
## 914 0 0 1 0
## 915 0 1 0 0
## 916 1 0 0 0
## 917 0 0 1 0
## 918 0 0 1 0
## 919 0 0 1 0
## 920 0 0 1 0
## 921 0 0 0 0
## 922 0 0 0 1
## 923 0 0 1 0
## 924 0 0 1 0
## 925 0 1 0 0
## 926 0 1 0 0
## 927 0 0 0 0
## 928 0 0 1 0
## 929 0 0 1 0
## 930 0 0 0 1
## 931 0 0 1 0
## 932 0 0 1 0
## 933 0 0 0 0
## 934 0 0 0 0
## 935 0 0 1 0
## 936 0 0 0 1
## 937 0 0 1 0
## 938 0 0 1 0
## 939 0 0 1 0
## 940 0 0 0 0
## 941 0 0 1 0
## 942 0 0 1 0
## 943 0 0 1 0
## 944 0 0 0 0
## 945 0 0 1 0
## 946 1 0 0 0
## 947 0 1 0 0
## 948 0 0 1 0
## 949 0 0 1 0
## 950 0 0 1 0
## 951 0 0 0 0
## 952 0 0 0 1
## 953 0 0 1 0
## 954 0 0 1 0
## 955 0 0 1 0
## 956 0 0 0 0
## 957 0 0 0 0
## 958 0 0 0 0
## 959 0 0 1 0
## 960 0 0 1 0
## 961 0 0 0 0
## 962 0 0 0 1
## 963 0 0 1 0
## 964 0 0 1 0
## 965 0 0 1 0
## 966 0 0 1 0
## 967 0 0 0 0
## 968 0 0 1 0
## 969 0 0 1 0
## 970 0 0 0 0
## 971 0 0 1 0
## 972 0 0 1 0
## 973 0 1 0 0
## 974 0 0 1 0
## 975 0 0 0 0
## 976 0 0 1 0
## 977 0 0 1 0
## 978 0 0 0 1
## 979 0 0 0 1
## 980 0 1 0 0
## 981 0 0 0 0
## 982 0 0 1 0
## 983 0 0 1 0
## 984 0 0 1 0
## 985 0 0 0 0
## 986 0 0 0 0
## 987 1 0 0 0
## 988 0 0 1 0
## 989 0 0 1 0
## 990 0 0 0 0
## 991 0 0 0 0
## 992 0 1 0 0
## 993 0 0 1 0
## 994 0 0 1 0
## 995 0 0 1 0
## 996 0 0 1 0
## 997 0 0 1 0
## 998 0 0 1 0
## 999 0 0 1 0
## 1000 0 0 0 0
## credithistoryA34 purposeA40 purposeA41 purposeA410 purposeA42
## 1 1 0 0 0 0
## 2 0 0 0 0 0
## 3 1 0 0 0 0
## 4 0 0 0 0 1
## 5 0 1 0 0 0
## 6 0 0 0 0 0
## 7 0 0 0 0 1
## 8 0 0 1 0 0
## 9 0 0 0 0 0
## 10 1 1 0 0 0
## 11 0 1 0 0 0
## 12 0 0 0 0 0
## 13 0 0 0 0 0
## 14 1 1 0 0 0
## 15 0 1 0 0 0
## 16 0 0 0 0 0
## 17 1 0 0 0 0
## 18 0 0 0 0 0
## 19 0 0 1 0 0
## 20 0 0 0 0 0
## 21 1 1 0 0 0
## 22 0 0 0 0 0
## 23 1 1 0 0 0
## 24 1 0 1 0 0
## 25 1 0 0 0 1
## 26 0 0 0 0 1
## 27 0 0 0 0 0
## 28 0 0 0 0 0
## 29 0 0 0 0 0
## 30 0 0 0 0 0
## 31 0 0 0 0 0
## 32 0 0 0 0 1
## 33 0 1 0 0 0
## 34 1 0 0 0 0
## 35 0 0 0 0 1
## 36 1 0 0 0 0
## 37 1 0 0 0 0
## 38 0 0 0 0 0
## 39 0 0 0 0 0
## 40 0 0 0 0 0
## 41 0 0 0 0 0
## 42 0 0 0 0 0
## 43 0 0 0 0 0
## 44 1 0 1 0 0
## 45 1 0 1 0 0
## 46 1 1 0 0 0
## 47 0 0 0 0 0
## 48 0 0 1 0 0
## 49 1 1 0 0 0
## 50 0 0 0 0 0
## 51 0 0 0 0 1
## 52 0 0 1 0 0
## 53 0 0 0 0 0
## 54 0 0 1 0 0
## 55 0 1 0 0 0
## 56 0 1 0 0 0
## 57 0 0 0 0 0
## 58 1 0 0 0 0
## 59 0 1 0 0 0
## 60 1 0 0 0 1
## 61 0 0 0 0 0
## 62 1 0 0 0 0
## 63 0 0 0 0 0
## 64 0 0 0 0 0
## 65 0 0 0 0 0
## 66 0 0 0 0 0
## 67 0 0 0 0 0
## 68 0 1 0 0 0
## 69 0 0 0 0 0
## 70 0 0 0 0 0
## 71 0 0 1 0 0
## 72 1 0 0 0 0
## 73 1 0 0 1 0
## 74 1 0 0 0 0
## 75 0 0 0 0 0
## 76 1 0 1 0 0
## 77 0 0 0 0 0
## 78 0 0 0 0 0
## 79 0 0 1 0 0
## 80 0 0 0 0 1
## 81 0 0 0 0 0
## 82 0 0 0 0 0
## 83 0 0 0 0 0
## 84 0 0 0 1 0
## 85 0 0 0 0 0
## 86 1 0 0 0 0
## 87 1 0 0 0 1
## 88 0 0 0 0 0
## 89 0 1 0 0 0
## 90 0 0 0 0 0
## 91 1 0 0 0 0
## 92 1 0 1 0 0
## 93 1 0 0 0 0
## 94 1 0 0 0 1
## 95 0 1 0 0 0
## 96 0 0 0 0 0
## 97 1 0 0 0 0
## 98 0 0 0 0 0
## 99 1 0 0 0 0
## 100 0 0 1 0 0
## 101 0 1 0 0 0
## 102 0 0 0 0 0
## 103 0 0 0 0 0
## 104 1 0 0 0 1
## 105 0 0 1 0 0
## 106 1 0 0 1 0
## 107 0 1 0 0 0
## 108 0 1 0 0 0
## 109 0 0 0 0 1
## 110 0 0 0 0 0
## 111 0 0 0 0 0
## 112 0 0 0 0 0
## 113 0 1 0 0 0
## 114 1 1 0 0 0
## 115 0 0 0 0 0
## 116 1 0 0 0 0
## 117 0 0 0 0 0
## 118 1 0 0 0 1
## 119 1 0 0 0 1
## 120 1 1 0 0 0
## 121 0 0 0 0 0
## 122 1 0 1 0 0
## 123 0 0 0 0 1
## 124 1 1 0 0 0
## 125 0 0 0 0 1
## 126 1 1 0 0 0
## 127 0 0 0 0 0
## 128 0 0 0 0 0
## 129 1 0 1 0 0
## 130 1 1 0 0 0
## 131 0 1 0 0 0
## 132 0 0 0 0 0
## 133 0 0 0 0 1
## 134 0 0 0 0 1
## 135 0 0 0 0 0
## 136 1 0 0 0 0
## 137 0 0 1 0 0
## 138 0 0 0 0 0
## 139 1 0 0 0 0
## 140 0 0 0 0 0
## 141 0 1 0 0 0
## 142 0 0 0 0 0
## 143 0 0 0 0 0
## 144 0 0 0 0 1
## 145 1 0 0 0 1
## 146 0 0 0 0 0
## 147 1 1 0 0 0
## 148 1 1 0 0 0
## 149 1 0 0 0 1
## 150 1 0 0 0 0
## 151 0 0 0 0 0
## 152 0 0 0 0 0
## 153 0 0 0 0 0
## 154 1 0 1 0 0
## 155 0 0 0 0 0
## 156 0 0 0 0 1
## 157 1 0 0 0 0
## 158 0 0 0 0 0
## 159 0 1 0 0 0
## 160 1 0 0 0 0
## 161 1 0 0 0 0
## 162 1 1 0 0 0
## 163 0 0 0 0 0
## 164 0 1 0 0 0
## 165 0 1 0 0 0
## 166 0 0 0 0 1
## 167 0 0 0 0 1
## 168 0 0 0 0 1
## 169 0 0 0 0 1
## 170 1 0 0 0 0
## 171 0 1 0 0 0
## 172 0 0 0 0 1
## 173 0 0 0 0 1
## 174 0 0 0 0 0
## 175 0 0 0 0 0
## 176 0 0 1 0 0
## 177 0 0 0 0 1
## 178 1 0 0 0 0
## 179 0 0 0 0 0
## 180 1 1 0 0 0
## 181 0 0 0 0 0
## 182 0 0 0 0 0
## 183 0 1 0 0 0
## 184 1 0 0 0 1
## 185 1 1 0 0 0
## 186 1 0 0 0 0
## 187 0 0 1 0 0
## 188 1 1 0 0 0
## 189 0 0 0 0 0
## 190 0 0 0 0 1
## 191 0 0 0 0 0
## 192 0 0 0 0 0
## 193 0 0 0 0 0
## 194 0 0 0 0 0
## 195 0 0 0 0 0
## 196 1 0 0 0 0
## 197 1 0 0 0 0
## 198 0 0 0 0 1
## 199 0 0 1 0 0
## 200 0 0 0 0 1
## 201 1 0 0 0 0
## 202 0 1 0 0 0
## 203 0 0 0 0 0
## 204 0 0 0 0 0
## 205 1 1 0 0 0
## 206 1 0 1 0 0
## 207 1 0 0 0 1
## 208 1 0 0 0 0
## 209 0 0 0 0 0
## 210 0 0 1 0 0
## 211 1 0 0 0 0
## 212 0 0 0 0 0
## 213 0 0 0 0 0
## 214 0 0 0 0 0
## 215 1 0 0 0 0
## 216 1 0 0 0 0
## 217 0 0 0 0 0
## 218 0 0 0 0 0
## 219 0 0 0 0 1
## 220 0 1 0 0 0
## 221 0 0 0 0 0
## 222 0 0 0 0 0
## 223 0 0 0 0 0
## 224 0 0 0 0 0
## 225 0 0 1 0 0
## 226 0 0 0 0 0
## 227 0 0 0 0 0
## 228 0 0 0 0 1
## 229 0 0 0 0 0
## 230 0 0 0 0 1
## 231 0 0 0 0 0
## 232 0 1 0 0 0
## 233 0 0 0 0 0
## 234 0 0 0 0 0
## 235 1 0 0 0 0
## 236 0 0 0 0 0
## 237 0 1 0 0 0
## 238 0 0 0 0 0
## 239 1 0 0 0 0
## 240 0 0 0 0 0
## 241 0 1 0 0 0
## 242 0 0 0 0 0
## 243 0 0 1 0 0
## 244 1 0 0 0 0
## 245 0 0 0 0 0
## 246 0 0 0 0 0
## 247 1 0 0 0 0
## 248 0 1 0 0 0
## 249 0 0 0 0 1
## 250 0 0 0 0 0
## 251 1 1 0 0 0
## 252 0 0 0 0 1
## 253 0 1 0 0 0
## 254 0 0 0 0 1
## 255 0 0 0 0 1
## 256 0 0 0 0 0
## 257 1 0 0 0 0
## 258 0 0 0 0 0
## 259 0 0 1 0 0
## 260 1 0 0 0 0
## 261 0 0 0 0 1
## 262 0 0 0 0 0
## 263 1 1 0 0 0
## 264 1 0 0 0 0
## 265 1 1 0 0 0
## 266 0 0 0 0 0
## 267 1 0 0 0 0
## 268 0 0 0 0 0
## 269 0 1 0 0 0
## 270 0 0 0 0 0
## 271 0 1 0 0 0
## 272 1 0 0 0 1
## 273 0 1 0 0 0
## 274 0 0 0 0 0
## 275 0 0 0 0 0
## 276 0 0 0 0 0
## 277 1 0 0 0 0
## 278 0 0 0 0 1
## 279 0 0 0 0 1
## 280 0 0 0 0 0
## 281 1 0 1 0 0
## 282 0 0 0 0 1
## 283 0 0 0 0 0
## 284 1 0 0 0 1
## 285 1 1 0 0 0
## 286 0 1 0 0 0
## 287 0 0 1 0 0
## 288 0 0 0 1 0
## 289 0 0 0 0 0
## 290 0 0 0 0 0
## 291 0 0 0 0 0
## 292 0 0 1 0 0
## 293 1 0 1 0 0
## 294 1 0 1 0 0
## 295 1 0 0 0 0
## 296 0 0 0 0 1
## 297 0 0 1 0 0
## 298 0 1 0 0 0
## 299 0 0 0 0 1
## 300 1 0 0 0 1
## 301 0 1 0 0 0
## 302 0 0 0 0 0
## 303 1 1 0 0 0
## 304 1 1 0 0 0
## 305 1 1 0 0 0
## 306 0 0 0 0 1
## 307 0 0 1 0 0
## 308 0 0 0 0 0
## 309 0 0 0 0 1
## 310 0 1 0 0 0
## 311 0 0 0 1 0
## 312 0 0 0 0 1
## 313 0 0 0 0 1
## 314 0 1 0 0 0
## 315 0 1 0 0 0
## 316 0 0 0 0 1
## 317 0 0 0 0 1
## 318 0 0 0 0 1
## 319 1 0 0 0 0
## 320 0 0 0 0 1
## 321 1 1 0 0 0
## 322 0 0 0 0 0
## 323 0 0 1 0 0
## 324 0 0 0 0 1
## 325 1 1 0 0 0
## 326 1 1 0 0 0
## 327 1 0 0 0 1
## 328 0 1 0 0 0
## 329 0 0 0 0 0
## 330 0 0 0 0 0
## 331 1 0 1 0 0
## 332 1 0 0 0 0
## 333 0 1 0 0 0
## 334 1 0 1 0 0
## 335 0 0 0 0 1
## 336 1 0 0 0 1
## 337 0 0 0 0 0
## 338 0 0 0 0 0
## 339 0 0 0 0 1
## 340 0 0 0 0 1
## 341 1 0 0 0 0
## 342 0 0 0 0 1
## 343 0 0 0 0 0
## 344 0 0 0 0 0
## 345 0 1 0 0 0
## 346 1 0 0 0 0
## 347 1 0 0 0 0
## 348 0 0 0 0 0
## 349 0 0 0 0 0
## 350 1 0 0 0 0
## 351 0 0 0 0 0
## 352 0 0 0 0 1
## 353 1 0 1 0 0
## 354 0 0 0 0 0
## 355 0 0 0 0 0
## 356 0 1 0 0 0
## 357 1 0 0 0 0
## 358 0 0 0 0 0
## 359 0 0 0 0 0
## 360 0 0 0 0 1
## 361 0 0 0 0 0
## 362 0 0 0 0 0
## 363 0 1 0 0 0
## 364 0 0 0 0 1
## 365 0 0 0 0 1
## 366 0 0 0 0 0
## 367 1 0 1 0 0
## 368 0 0 0 0 1
## 369 0 0 0 0 1
## 370 0 0 0 0 1
## 371 0 1 0 0 0
## 372 1 0 0 0 0
## 373 1 0 0 0 1
## 374 1 1 0 0 0
## 375 0 0 0 1 0
## 376 0 0 0 0 0
## 377 0 0 0 0 0
## 378 0 0 0 0 0
## 379 0 1 0 0 0
## 380 1 1 0 0 0
## 381 0 0 0 0 1
## 382 0 0 1 0 0
## 383 0 1 0 0 0
## 384 0 1 0 0 0
## 385 0 0 0 0 0
## 386 1 0 0 0 0
## 387 0 0 0 0 0
## 388 1 0 0 0 1
## 389 1 0 0 0 0
## 390 0 0 0 0 0
## 391 0 1 0 0 0
## 392 0 0 0 0 1
## 393 0 1 0 0 0
## 394 1 0 0 0 0
## 395 1 0 0 0 1
## 396 0 0 0 0 0
## 397 0 0 0 0 1
## 398 1 0 0 0 1
## 399 0 1 0 0 0
## 400 1 0 0 0 0
## 401 0 0 0 0 0
## 402 1 0 0 0 0
## 403 0 0 0 0 0
## 404 0 1 0 0 0
## 405 0 1 0 0 0
## 406 0 0 0 0 0
## 407 1 0 1 0 0
## 408 0 0 0 0 0
## 409 0 0 0 0 0
## 410 1 1 0 0 0
## 411 0 0 0 0 0
## 412 1 0 1 0 0
## 413 1 0 0 0 0
## 414 0 1 0 0 0
## 415 0 1 0 0 0
## 416 1 0 1 0 0
## 417 0 1 0 0 0
## 418 0 0 0 0 0
## 419 0 1 0 0 0
## 420 0 1 0 0 0
## 421 0 1 0 0 0
## 422 0 0 1 0 0
## 423 1 1 0 0 0
## 424 0 0 0 0 1
## 425 0 0 0 0 1
## 426 0 0 1 0 0
## 427 1 0 0 0 0
## 428 1 0 0 0 0
## 429 0 0 0 0 1
## 430 1 0 0 0 0
## 431 0 0 0 0 0
## 432 0 0 0 1 0
## 433 1 0 0 0 1
## 434 1 0 0 0 0
## 435 0 0 0 0 1
## 436 0 0 0 0 0
## 437 0 0 0 0 0
## 438 1 1 0 0 0
## 439 1 0 0 0 0
## 440 0 0 0 0 0
## 441 0 1 0 0 0
## 442 0 0 0 0 1
## 443 0 0 0 1 0
## 444 0 0 0 0 0
## 445 1 0 0 0 1
## 446 1 0 0 0 0
## 447 0 1 0 0 0
## 448 0 0 0 0 0
## 449 0 0 0 0 1
## 450 0 0 0 0 0
## 451 1 0 1 0 0
## 452 0 0 0 0 0
## 453 0 0 0 0 1
## 454 0 0 1 0 0
## 455 0 1 0 0 0
## 456 0 0 1 0 0
## 457 1 1 0 0 0
## 458 0 0 1 0 0
## 459 0 0 0 0 0
## 460 0 0 0 0 0
## 461 0 0 0 0 1
## 462 0 1 0 0 0
## 463 0 0 0 0 1
## 464 0 0 0 0 0
## 465 0 0 0 0 0
## 466 0 0 1 0 0
## 467 0 0 0 0 0
## 468 0 0 0 0 0
## 469 0 0 0 0 0
## 470 0 0 1 0 0
## 471 0 0 0 0 0
## 472 0 0 0 0 0
## 473 0 1 0 0 0
## 474 0 0 0 0 0
## 475 1 0 0 0 0
## 476 0 0 0 0 1
## 477 0 0 1 0 0
## 478 0 0 0 0 0
## 479 0 0 0 0 0
## 480 1 0 0 0 1
## 481 1 0 0 0 0
## 482 0 1 0 0 0
## 483 0 0 0 0 1
## 484 0 0 0 0 1
## 485 1 1 0 0 0
## 486 0 1 0 0 0
## 487 0 0 0 0 0
## 488 0 1 0 0 0
## 489 0 1 0 0 0
## 490 0 1 0 0 0
## 491 1 0 0 0 0
## 492 0 0 0 0 0
## 493 1 0 0 0 0
## 494 0 0 0 0 0
## 495 1 1 0 0 0
## 496 0 0 0 0 1
## 497 0 0 0 0 1
## 498 1 0 0 0 1
## 499 0 0 0 0 0
## 500 1 1 0 0 0
## 501 0 1 0 0 0
## 502 0 0 1 0 0
## 503 0 0 0 0 0
## 504 1 0 0 0 0
## 505 0 1 0 0 0
## 506 0 1 0 0 0
## 507 1 0 1 0 0
## 508 0 1 0 0 0
## 509 0 0 0 0 0
## 510 0 0 1 0 0
## 511 0 1 0 0 0
## 512 0 0 1 0 0
## 513 0 0 0 0 0
## 514 0 0 0 0 0
## 515 0 1 0 0 0
## 516 1 1 0 0 0
## 517 1 1 0 0 0
## 518 1 0 0 0 1
## 519 0 1 0 0 0
## 520 1 0 0 0 0
## 521 1 0 0 0 0
## 522 0 0 0 0 0
## 523 0 0 0 0 1
## 524 0 0 1 0 0
## 525 0 0 0 0 0
## 526 0 0 1 0 0
## 527 1 0 0 0 0
## 528 1 0 0 0 0
## 529 0 0 0 0 0
## 530 0 1 0 0 0
## 531 0 0 0 0 0
## 532 0 1 0 0 0
## 533 0 0 1 0 0
## 534 0 0 0 0 0
## 535 0 0 0 0 0
## 536 1 0 0 0 0
## 537 0 1 0 0 0
## 538 1 0 0 0 1
## 539 0 1 0 0 0
## 540 0 0 0 0 1
## 541 0 0 0 0 0
## 542 0 1 0 0 0
## 543 0 0 0 0 1
## 544 0 0 0 0 1
## 545 1 1 0 0 0
## 546 0 1 0 0 0
## 547 1 1 0 0 0
## 548 0 0 0 0 0
## 549 0 0 0 0 0
## 550 1 0 1 0 0
## 551 1 0 0 0 0
## 552 0 0 0 0 0
## 553 0 0 0 0 0
## 554 1 1 0 0 0
## 555 0 0 0 0 0
## 556 0 0 0 0 0
## 557 0 1 0 0 0
## 558 0 1 0 0 0
## 559 0 0 0 0 1
## 560 1 0 0 0 1
## 561 0 0 1 0 0
## 562 0 0 0 0 0
## 563 0 0 0 0 0
## 564 0 1 0 0 0
## 565 0 0 0 0 0
## 566 0 0 0 0 0
## 567 0 1 0 0 0
## 568 1 0 0 0 0
## 569 0 0 0 0 0
## 570 0 0 0 0 0
## 571 0 0 0 0 1
## 572 1 0 0 0 0
## 573 0 0 1 0 0
## 574 0 0 0 0 0
## 575 0 0 0 0 0
## 576 1 0 0 0 1
## 577 0 0 0 0 0
## 578 1 0 0 0 0
## 579 1 1 0 0 0
## 580 0 0 0 0 0
## 581 1 1 0 0 0
## 582 1 1 0 0 0
## 583 0 0 0 0 1
## 584 0 0 0 0 0
## 585 0 1 0 0 0
## 586 0 0 0 0 1
## 587 1 1 0 0 0
## 588 0 0 0 0 1
## 589 0 0 0 0 0
## 590 1 0 0 0 1
## 591 1 0 0 0 0
## 592 0 1 0 0 0
## 593 0 0 0 0 0
## 594 0 1 0 0 0
## 595 0 0 0 1 0
## 596 0 1 0 0 0
## 597 0 1 0 0 0
## 598 0 0 0 0 0
## 599 1 1 0 0 0
## 600 0 0 0 0 0
## 601 0 0 0 0 0
## 602 0 0 0 0 1
## 603 0 0 0 0 0
## 604 0 0 0 0 1
## 605 0 0 0 0 1
## 606 0 0 0 0 1
## 607 1 0 0 0 0
## 608 0 0 0 0 0
## 609 0 0 0 0 0
## 610 0 0 1 0 0
## 611 0 0 0 0 0
## 612 0 1 0 0 0
## 613 0 0 0 0 0
## 614 0 0 1 0 0
## 615 0 0 0 0 1
## 616 0 0 0 0 0
## 617 0 0 0 0 0
## 618 1 1 0 0 0
## 619 0 0 0 0 1
## 620 0 1 0 0 0
## 621 1 0 0 0 0
## 622 1 1 0 0 0
## 623 0 0 0 0 0
## 624 0 0 0 0 1
## 625 0 0 0 0 0
## 626 0 0 0 0 0
## 627 0 0 0 0 1
## 628 0 1 0 0 0
## 629 1 0 0 0 1
## 630 0 0 0 0 0
## 631 0 0 0 0 0
## 632 0 0 0 0 1
## 633 0 0 0 0 0
## 634 0 0 0 0 1
## 635 0 1 0 0 0
## 636 0 0 0 0 0
## 637 0 0 0 0 0
## 638 0 0 0 0 0
## 639 0 0 0 0 0
## 640 0 0 0 0 0
## 641 0 0 0 0 0
## 642 0 0 0 0 0
## 643 0 0 0 0 0
## 644 1 0 0 0 0
## 645 1 0 0 0 0
## 646 0 0 0 0 0
## 647 0 0 0 0 1
## 648 0 1 0 0 0
## 649 0 1 0 0 0
## 650 0 0 0 0 0
## 651 0 0 0 0 0
## 652 0 0 0 0 1
## 653 0 1 0 0 0
## 654 0 1 0 0 0
## 655 1 0 1 0 0
## 656 0 1 0 0 0
## 657 0 1 0 0 0
## 658 0 0 0 0 0
## 659 0 0 0 0 0
## 660 1 0 0 0 1
## 661 0 0 0 0 0
## 662 0 1 0 0 0
## 663 0 0 0 0 1
## 664 0 0 0 0 1
## 665 1 0 0 0 0
## 666 1 0 0 1 0
## 667 0 0 0 0 1
## 668 0 0 0 0 0
## 669 1 1 0 0 0
## 670 1 0 0 0 0
## 671 1 0 0 0 0
## 672 0 0 0 0 0
## 673 0 1 0 0 0
## 674 1 1 0 0 0
## 675 0 0 0 0 0
## 676 1 0 0 0 0
## 677 1 0 0 0 1
## 678 0 0 0 0 0
## 679 0 0 0 0 0
## 680 0 0 0 0 0
## 681 0 0 0 0 0
## 682 0 0 0 0 0
## 683 0 0 0 0 0
## 684 1 0 0 0 0
## 685 0 0 0 0 0
## 686 0 1 0 0 0
## 687 1 0 0 0 0
## 688 0 1 0 0 0
## 689 0 0 0 0 0
## 690 0 1 0 0 0
## 691 1 0 0 0 1
## 692 0 0 0 0 0
## 693 0 0 0 0 0
## 694 1 1 0 0 0
## 695 0 0 0 0 0
## 696 0 0 1 0 0
## 697 0 0 0 0 0
## 698 1 1 0 0 0
## 699 1 0 0 0 0
## 700 0 0 0 0 0
## 701 0 0 0 0 1
## 702 1 0 1 0 0
## 703 0 0 0 0 0
## 704 0 0 0 0 0
## 705 0 0 0 0 0
## 706 0 1 0 0 0
## 707 0 1 0 0 0
## 708 0 0 0 0 1
## 709 0 0 0 0 0
## 710 0 0 0 0 0
## 711 1 0 0 0 0
## 712 0 0 0 0 0
## 713 0 0 1 0 0
## 714 1 0 0 0 0
## 715 0 1 0 0 0
## 716 1 0 1 0 0
## 717 1 0 0 0 0
## 718 0 0 0 0 0
## 719 1 0 0 0 0
## 720 0 0 1 0 0
## 721 0 0 0 0 0
## 722 0 0 0 0 0
## 723 0 1 0 0 0
## 724 0 0 0 0 0
## 725 0 1 0 0 0
## 726 1 1 0 0 0
## 727 1 0 0 0 0
## 728 0 0 0 0 0
## 729 0 0 0 0 0
## 730 1 0 0 0 0
## 731 0 0 0 0 0
## 732 0 0 0 0 0
## 733 0 0 0 0 0
## 734 0 0 1 0 0
## 735 1 1 0 0 0
## 736 0 0 0 0 0
## 737 0 0 1 0 0
## 738 0 1 0 0 0
## 739 1 1 0 0 0
## 740 0 0 0 0 0
## 741 0 1 0 0 0
## 742 0 0 0 0 0
## 743 0 0 0 0 0
## 744 0 0 0 0 1
## 745 1 0 0 0 1
## 746 1 0 0 0 0
## 747 0 1 0 0 0
## 748 0 1 0 0 0
## 749 0 0 1 0 0
## 750 0 0 1 0 0
## 751 0 0 0 0 1
## 752 0 1 0 0 0
## 753 0 0 0 0 0
## 754 1 0 0 0 0
## 755 0 0 0 0 0
## 756 0 1 0 0 0
## 757 1 1 0 0 0
## 758 1 0 0 0 0
## 759 0 1 0 0 0
## 760 1 1 0 0 0
## 761 1 1 0 0 0
## 762 1 0 0 0 1
## 763 0 0 0 0 0
## 764 1 1 0 0 0
## 765 1 1 0 0 0
## 766 0 0 0 0 0
## 767 0 0 0 0 1
## 768 0 0 1 0 0
## 769 1 0 0 0 1
## 770 1 0 0 0 0
## 771 0 0 1 0 0
## 772 1 0 0 0 0
## 773 1 0 1 0 0
## 774 1 0 0 0 0
## 775 1 1 0 0 0
## 776 0 1 0 0 0
## 777 1 1 0 0 0
## 778 0 0 0 0 0
## 779 1 0 1 0 0
## 780 0 0 0 0 0
## 781 1 0 0 0 0
## 782 1 1 0 0 0
## 783 0 0 0 0 0
## 784 0 1 0 0 0
## 785 0 0 1 0 0
## 786 0 0 0 0 0
## 787 0 0 0 0 0
## 788 1 0 1 0 0
## 789 0 0 0 0 0
## 790 1 0 0 0 0
## 791 0 0 0 0 0
## 792 0 0 1 0 0
## 793 1 0 0 0 1
## 794 0 0 0 0 1
## 795 0 0 0 0 1
## 796 0 0 0 0 1
## 797 0 0 1 0 0
## 798 1 0 0 0 1
## 799 0 1 0 0 0
## 800 0 1 0 0 0
## 801 1 0 0 0 0
## 802 1 0 0 0 0
## 803 1 0 0 0 1
## 804 1 0 0 0 0
## 805 0 1 0 0 0
## 806 0 1 0 0 0
## 807 0 0 0 0 0
## 808 1 0 0 0 0
## 809 0 0 1 0 0
## 810 0 1 0 0 0
## 811 0 0 0 0 0
## 812 0 0 0 0 0
## 813 1 0 1 0 0
## 814 0 0 0 0 0
## 815 0 1 0 0 0
## 816 0 1 0 0 0
## 817 0 0 0 0 0
## 818 1 0 0 0 0
## 819 0 0 0 1 0
## 820 0 0 0 0 0
## 821 0 1 0 0 0
## 822 0 0 0 0 0
## 823 0 0 0 0 1
## 824 1 1 0 0 0
## 825 1 0 0 0 1
## 826 1 1 0 0 0
## 827 1 1 0 0 0
## 828 0 0 0 0 0
## 829 0 0 1 0 0
## 830 0 0 0 0 0
## 831 0 0 0 0 0
## 832 0 1 0 0 0
## 833 0 0 0 0 0
## 834 0 0 0 0 0
## 835 0 0 0 0 0
## 836 0 1 0 0 0
## 837 0 0 0 0 0
## 838 0 0 0 0 1
## 839 1 0 1 0 0
## 840 1 0 0 0 0
## 841 0 0 0 0 1
## 842 0 0 1 0 0
## 843 0 0 0 0 0
## 844 0 0 0 0 0
## 845 0 0 0 0 1
## 846 0 0 0 0 1
## 847 0 1 0 0 0
## 848 0 1 0 0 0
## 849 0 0 0 0 0
## 850 0 0 0 0 0
## 851 1 1 0 0 0
## 852 1 0 1 0 0
## 853 1 0 0 0 0
## 854 0 1 0 0 0
## 855 0 1 0 0 0
## 856 0 1 0 0 0
## 857 0 0 0 0 0
## 858 1 0 0 0 1
## 859 0 1 0 0 0
## 860 0 1 0 0 0
## 861 1 0 1 0 0
## 862 0 0 0 0 0
## 863 0 0 0 0 0
## 864 1 0 0 0 1
## 865 0 0 0 0 1
## 866 0 0 0 0 1
## 867 0 0 0 0 0
## 868 1 0 0 0 1
## 869 0 0 0 0 0
## 870 0 0 0 0 1
## 871 0 0 0 0 1
## 872 1 1 0 0 0
## 873 1 0 0 0 0
## 874 0 0 0 0 0
## 875 0 0 0 0 1
## 876 1 1 0 0 0
## 877 0 0 0 0 0
## 878 0 0 0 0 0
## 879 0 1 0 0 0
## 880 1 0 0 0 0
## 881 0 0 1 0 0
## 882 0 0 1 0 0
## 883 1 1 0 0 0
## 884 1 0 0 0 0
## 885 0 0 0 0 1
## 886 0 0 0 0 0
## 887 1 0 0 0 0
## 888 0 0 0 0 0
## 889 1 1 0 0 0
## 890 0 0 1 0 0
## 891 1 0 0 0 0
## 892 1 0 0 0 0
## 893 1 1 0 0 0
## 894 1 0 1 0 0
## 895 1 0 0 0 0
## 896 0 0 1 0 0
## 897 0 0 0 0 0
## 898 1 0 0 0 1
## 899 0 0 0 0 1
## 900 0 0 0 0 1
## 901 1 1 0 0 0
## 902 1 1 0 0 0
## 903 1 0 1 0 0
## 904 0 0 0 0 0
## 905 0 0 0 0 0
## 906 0 0 0 0 0
## 907 0 1 0 0 0
## 908 0 0 0 0 0
## 909 0 0 1 0 0
## 910 0 1 0 0 0
## 911 0 0 0 0 0
## 912 1 0 0 0 1
## 913 0 0 0 0 0
## 914 0 0 0 0 0
## 915 0 0 0 0 0
## 916 0 0 0 1 0
## 917 0 0 1 0 0
## 918 0 1 0 0 0
## 919 0 0 0 0 1
## 920 0 0 0 0 1
## 921 1 0 0 0 1
## 922 0 0 0 0 0
## 923 0 0 0 0 0
## 924 0 1 0 0 0
## 925 0 0 0 0 1
## 926 0 1 0 0 0
## 927 1 0 0 0 1
## 928 0 0 1 0 0
## 929 0 0 0 0 0
## 930 0 1 0 0 0
## 931 0 0 0 0 1
## 932 0 0 0 0 0
## 933 1 1 0 0 0
## 934 1 0 0 0 0
## 935 0 0 0 0 0
## 936 0 0 0 0 0
## 937 0 0 0 0 0
## 938 0 0 0 0 0
## 939 0 0 0 0 0
## 940 1 0 1 0 0
## 941 0 1 0 0 0
## 942 0 1 0 0 0
## 943 0 0 0 0 1
## 944 1 1 0 0 0
## 945 0 0 0 0 1
## 946 0 1 0 0 0
## 947 0 0 0 0 1
## 948 0 1 0 0 0
## 949 0 0 0 0 1
## 950 0 0 0 0 0
## 951 1 0 0 0 0
## 952 0 0 0 0 0
## 953 0 0 1 0 0
## 954 0 0 0 0 1
## 955 0 1 0 0 0
## 956 1 0 0 0 0
## 957 1 0 0 0 0
## 958 1 0 0 0 0
## 959 0 1 0 0 0
## 960 0 0 0 0 1
## 961 1 0 0 0 0
## 962 0 1 0 0 0
## 963 0 1 0 0 0
## 964 0 0 0 0 0
## 965 0 0 0 0 0
## 966 0 0 0 0 0
## 967 1 0 0 0 0
## 968 0 0 0 0 0
## 969 0 0 0 0 0
## 970 1 1 0 0 0
## 971 0 0 0 0 0
## 972 0 1 0 0 0
## 973 0 1 0 0 0
## 974 0 0 0 0 0
## 975 1 0 0 0 0
## 976 0 0 0 0 0
## 977 0 0 0 0 0
## 978 0 0 0 0 0
## 979 0 1 0 0 0
## 980 0 1 0 0 0
## 981 1 0 0 0 1
## 982 0 0 0 0 0
## 983 0 1 0 0 0
## 984 0 0 1 0 0
## 985 1 0 0 0 1
## 986 1 0 0 0 1
## 987 0 0 0 0 0
## 988 0 0 0 0 0
## 989 0 0 1 0 0
## 990 1 0 0 0 0
## 991 1 0 0 0 0
## 992 0 0 0 0 0
## 993 0 0 0 0 0
## 994 0 0 0 0 1
## 995 0 1 0 0 0
## 996 0 0 0 0 1
## 997 0 0 1 0 0
## 998 0 0 0 0 0
## 999 0 0 0 0 0
## 1000 1 0 1 0 0
## purposeA43 purposeA44 purposeA45 purposeA46 purposeA48 purposeA49
## 1 1 0 0 0 0 0
## 2 1 0 0 0 0 0
## 3 0 0 0 1 0 0
## 4 0 0 0 0 0 0
## 5 0 0 0 0 0 0
## 6 0 0 0 1 0 0
## 7 0 0 0 0 0 0
## 8 0 0 0 0 0 0
## 9 1 0 0 0 0 0
## 10 0 0 0 0 0 0
## 11 0 0 0 0 0 0
## 12 0 0 0 0 0 1
## 13 1 0 0 0 0 0
## 14 0 0 0 0 0 0
## 15 0 0 0 0 0 0
## 16 1 0 0 0 0 0
## 17 1 0 0 0 0 0
## 18 0 0 0 0 0 1
## 19 0 0 0 0 0 0
## 20 1 0 0 0 0 0
## 21 0 0 0 0 0 0
## 22 1 0 0 0 0 0
## 23 0 0 0 0 0 0
## 24 0 0 0 0 0 0
## 25 0 0 0 0 0 0
## 26 0 0 0 0 0 0
## 27 1 0 0 0 0 0
## 28 1 0 0 0 0 0
## 29 1 0 0 0 0 0
## 30 0 0 0 0 0 1
## 31 0 0 0 0 0 1
## 32 0 0 0 0 0 0
## 33 0 0 0 0 0 0
## 34 0 0 0 0 0 1
## 35 0 0 0 0 0 0
## 36 1 0 0 0 0 0
## 37 0 0 0 1 0 0
## 38 1 0 0 0 0 0
## 39 0 1 0 0 0 0
## 40 1 0 0 0 0 0
## 41 1 0 0 0 0 0
## 42 1 0 0 0 0 0
## 43 0 0 1 0 0 0
## 44 0 0 0 0 0 0
## 45 0 0 0 0 0 0
## 46 0 0 0 0 0 0
## 47 1 0 0 0 0 0
## 48 0 0 0 0 0 0
## 49 0 0 0 0 0 0
## 50 1 0 0 0 0 0
## 51 0 0 0 0 0 0
## 52 0 0 0 0 0 0
## 53 1 0 0 0 0 0
## 54 0 0 0 0 0 0
## 55 0 0 0 0 0 0
## 56 0 0 0 0 0 0
## 57 1 0 0 0 0 0
## 58 1 0 0 0 0 0
## 59 0 0 0 0 0 0
## 60 0 0 0 0 0 0
## 61 0 0 0 0 0 1
## 62 1 0 0 0 0 0
## 63 0 0 0 0 0 1
## 64 0 0 0 0 0 1
## 65 1 0 0 0 0 0
## 66 0 0 1 0 0 0
## 67 1 0 0 0 0 0
## 68 0 0 0 0 0 0
## 69 0 0 0 1 0 0
## 70 1 0 0 0 0 0
## 71 0 0 0 0 0 0
## 72 1 0 0 0 0 0
## 73 0 0 0 0 0 0
## 74 0 0 0 0 0 1
## 75 0 0 0 1 0 0
## 76 0 0 0 0 0 0
## 77 1 0 0 0 0 0
## 78 1 0 0 0 0 0
## 79 0 0 0 0 0 0
## 80 0 0 0 0 0 0
## 81 1 0 0 0 0 0
## 82 1 0 0 0 0 0
## 83 0 0 0 0 0 1
## 84 0 0 0 0 0 0
## 85 1 0 0 0 0 0
## 86 0 0 0 0 0 1
## 87 0 0 0 0 0 0
## 88 0 0 0 1 0 0
## 89 0 0 0 0 0 0
## 90 0 0 1 0 0 0
## 91 1 0 0 0 0 0
## 92 0 0 0 0 0 0
## 93 1 0 0 0 0 0
## 94 0 0 0 0 0 0
## 95 0 0 0 0 0 0
## 96 0 0 0 0 0 1
## 97 0 0 0 1 0 0
## 98 0 0 0 0 0 1
## 99 1 0 0 0 0 0
## 100 0 0 0 0 0 0
## 101 0 0 0 0 0 0
## 102 1 0 0 0 0 0
## 103 1 0 0 0 0 0
## 104 0 0 0 0 0 0
## 105 0 0 0 0 0 0
## 106 0 0 0 0 0 0
## 107 0 0 0 0 0 0
## 108 0 0 0 0 0 0
## 109 0 0 0 0 0 0
## 110 0 0 0 0 0 1
## 111 0 0 0 0 0 1
## 112 0 0 0 1 0 0
## 113 0 0 0 0 0 0
## 114 0 0 0 0 0 0
## 115 1 0 0 0 0 0
## 116 1 0 0 0 0 0
## 117 1 0 0 0 0 0
## 118 0 0 0 0 0 0
## 119 0 0 0 0 0 0
## 120 0 0 0 0 0 0
## 121 1 0 0 0 0 0
## 122 0 0 0 0 0 0
## 123 0 0 0 0 0 0
## 124 0 0 0 0 0 0
## 125 0 0 0 0 0 0
## 126 0 0 0 0 0 0
## 127 1 0 0 0 0 0
## 128 0 0 1 0 0 0
## 129 0 0 0 0 0 0
## 130 0 0 0 0 0 0
## 131 0 0 0 0 0 0
## 132 0 0 0 1 0 0
## 133 0 0 0 0 0 0
## 134 0 0 0 0 0 0
## 135 1 0 0 0 0 0
## 136 1 0 0 0 0 0
## 137 0 0 0 0 0 0
## 138 1 0 0 0 0 0
## 139 1 0 0 0 0 0
## 140 1 0 0 0 0 0
## 141 0 0 0 0 0 0
## 142 1 0 0 0 0 0
## 143 1 0 0 0 0 0
## 144 0 0 0 0 0 0
## 145 0 0 0 0 0 0
## 146 0 0 0 0 0 1
## 147 0 0 0 0 0 0
## 148 0 0 0 0 0 0
## 149 0 0 0 0 0 0
## 150 1 0 0 0 0 0
## 151 1 0 0 0 0 0
## 152 1 0 0 0 0 0
## 153 1 0 0 0 0 0
## 154 0 0 0 0 0 0
## 155 0 0 0 0 0 1
## 156 0 0 0 0 0 0
## 157 0 0 1 0 0 0
## 158 0 0 0 0 1 0
## 159 0 0 0 0 0 0
## 160 1 0 0 0 0 0
## 161 1 0 0 0 0 0
## 162 0 0 0 0 0 0
## 163 0 1 0 0 0 0
## 164 0 0 0 0 0 0
## 165 0 0 0 0 0 0
## 166 0 0 0 0 0 0
## 167 0 0 0 0 0 0
## 168 0 0 0 0 0 0
## 169 0 0 0 0 0 0
## 170 0 0 0 0 0 1
## 171 0 0 0 0 0 0
## 172 0 0 0 0 0 0
## 173 0 0 0 0 0 0
## 174 1 0 0 0 0 0
## 175 0 0 0 1 0 0
## 176 0 0 0 0 0 0
## 177 0 0 0 0 0 0
## 178 1 0 0 0 0 0
## 179 1 0 0 0 0 0
## 180 0 0 0 0 0 0
## 181 0 0 0 0 0 1
## 182 0 0 0 0 0 1
## 183 0 0 0 0 0 0
## 184 0 0 0 0 0 0
## 185 0 0 0 0 0 0
## 186 1 0 0 0 0 0
## 187 0 0 0 0 0 0
## 188 0 0 0 0 0 0
## 189 1 0 0 0 0 0
## 190 0 0 0 0 0 0
## 191 0 0 0 0 0 1
## 192 0 0 0 0 0 1
## 193 0 0 0 0 0 1
## 194 1 0 0 0 0 0
## 195 1 0 0 0 0 0
## 196 0 0 0 1 0 0
## 197 1 0 0 0 0 0
## 198 0 0 0 0 0 0
## 199 0 0 0 0 0 0
## 200 0 0 0 0 0 0
## 201 0 0 0 1 0 0
## 202 0 0 0 0 0 0
## 203 0 0 0 0 0 1
## 204 0 0 0 0 1 0
## 205 0 0 0 0 0 0
## 206 0 0 0 0 0 0
## 207 0 0 0 0 0 0
## 208 0 1 0 0 0 0
## 209 0 0 0 0 0 1
## 210 0 0 0 0 0 0
## 211 1 0 0 0 0 0
## 212 1 0 0 0 0 0
## 213 0 0 0 0 0 1
## 214 0 0 0 0 0 1
## 215 1 0 0 0 0 0
## 216 0 0 0 0 1 0
## 217 0 0 0 0 0 1
## 218 1 0 0 0 0 0
## 219 0 0 0 0 0 0
## 220 0 0 0 0 0 0
## 221 1 0 0 0 0 0
## 222 0 0 0 1 0 0
## 223 1 0 0 0 0 0
## 224 0 0 0 0 0 1
## 225 0 0 0 0 0 0
## 226 0 0 1 0 0 0
## 227 1 0 0 0 0 0
## 228 0 0 0 0 0 0
## 229 1 0 0 0 0 0
## 230 0 0 0 0 0 0
## 231 1 0 0 0 0 0
## 232 0 0 0 0 0 0
## 233 1 0 0 0 0 0
## 234 1 0 0 0 0 0
## 235 1 0 0 0 0 0
## 236 1 0 0 0 0 0
## 237 0 0 0 0 0 0
## 238 0 0 0 0 0 1
## 239 1 0 0 0 0 0
## 240 1 0 0 0 0 0
## 241 0 0 0 0 0 0
## 242 1 0 0 0 0 0
## 243 0 0 0 0 0 0
## 244 0 0 0 0 0 1
## 245 0 0 0 0 1 0
## 246 0 0 0 0 0 1
## 247 1 0 0 0 0 0
## 248 0 0 0 0 0 0
## 249 0 0 0 0 0 0
## 250 1 0 0 0 0 0
## 251 0 0 0 0 0 0
## 252 0 0 0 0 0 0
## 253 0 0 0 0 0 0
## 254 0 0 0 0 0 0
## 255 0 0 0 0 0 0
## 256 1 0 0 0 0 0
## 257 1 0 0 0 0 0
## 258 1 0 0 0 0 0
## 259 0 0 0 0 0 0
## 260 1 0 0 0 0 0
## 261 0 0 0 0 0 0
## 262 1 0 0 0 0 0
## 263 0 0 0 0 0 0
## 264 0 0 0 1 0 0
## 265 0 0 0 0 0 0
## 266 1 0 0 0 0 0
## 267 0 0 0 0 0 1
## 268 1 0 0 0 0 0
## 269 0 0 0 0 0 0
## 270 1 0 0 0 0 0
## 271 0 0 0 0 0 0
## 272 0 0 0 0 0 0
## 273 0 0 0 0 0 0
## 274 1 0 0 0 0 0
## 275 0 0 1 0 0 0
## 276 1 0 0 0 0 0
## 277 1 0 0 0 0 0
## 278 0 0 0 0 0 0
## 279 0 0 0 0 0 0
## 280 1 0 0 0 0 0
## 281 0 0 0 0 0 0
## 282 0 0 0 0 0 0
## 283 1 0 0 0 0 0
## 284 0 0 0 0 0 0
## 285 0 0 0 0 0 0
## 286 0 0 0 0 0 0
## 287 0 0 0 0 0 0
## 288 0 0 0 0 0 0
## 289 1 0 0 0 0 0
## 290 1 0 0 0 0 0
## 291 0 0 0 0 0 1
## 292 0 0 0 0 0 0
## 293 0 0 0 0 0 0
## 294 0 0 0 0 0 0
## 295 0 0 0 0 0 1
## 296 0 0 0 0 0 0
## 297 0 0 0 0 0 0
## 298 0 0 0 0 0 0
## 299 0 0 0 0 0 0
## 300 0 0 0 0 0 0
## 301 0 0 0 0 0 0
## 302 1 0 0 0 0 0
## 303 0 0 0 0 0 0
## 304 0 0 0 0 0 0
## 305 0 0 0 0 0 0
## 306 0 0 0 0 0 0
## 307 0 0 0 0 0 0
## 308 1 0 0 0 0 0
## 309 0 0 0 0 0 0
## 310 0 0 0 0 0 0
## 311 0 0 0 0 0 0
## 312 0 0 0 0 0 0
## 313 0 0 0 0 0 0
## 314 0 0 0 0 0 0
## 315 0 0 0 0 0 0
## 316 0 0 0 0 0 0
## 317 0 0 0 0 0 0
## 318 0 0 0 0 0 0
## 319 0 0 0 1 0 0
## 320 0 0 0 0 0 0
## 321 0 0 0 0 0 0
## 322 1 0 0 0 0 0
## 323 0 0 0 0 0 0
## 324 0 0 0 0 0 0
## 325 0 0 0 0 0 0
## 326 0 0 0 0 0 0
## 327 0 0 0 0 0 0
## 328 0 0 0 0 0 0
## 329 1 0 0 0 0 0
## 330 1 0 0 0 0 0
## 331 0 0 0 0 0 0
## 332 0 0 0 1 0 0
## 333 0 0 0 0 0 0
## 334 0 0 0 0 0 0
## 335 0 0 0 0 0 0
## 336 0 0 0 0 0 0
## 337 1 0 0 0 0 0
## 338 0 1 0 0 0 0
## 339 0 0 0 0 0 0
## 340 0 0 0 0 0 0
## 341 0 0 0 1 0 0
## 342 0 0 0 0 0 0
## 343 1 0 0 0 0 0
## 344 0 0 0 0 0 1
## 345 0 0 0 0 0 0
## 346 1 0 0 0 0 0
## 347 1 0 0 0 0 0
## 348 1 0 0 0 0 0
## 349 0 0 0 0 0 1
## 350 0 0 0 1 0 0
## 351 0 1 0 0 0 0
## 352 0 0 0 0 0 0
## 353 0 0 0 0 0 0
## 354 1 0 0 0 0 0
## 355 0 0 0 1 0 0
## 356 0 0 0 0 0 0
## 357 1 0 0 0 0 0
## 358 1 0 0 0 0 0
## 359 1 0 0 0 0 0
## 360 0 0 0 0 0 0
## 361 0 0 0 1 0 0
## 362 1 0 0 0 0 0
## 363 0 0 0 0 0 0
## 364 0 0 0 0 0 0
## 365 0 0 0 0 0 0
## 366 0 0 0 0 0 1
## 367 0 0 0 0 0 0
## 368 0 0 0 0 0 0
## 369 0 0 0 0 0 0
## 370 0 0 0 0 0 0
## 371 0 0 0 0 0 0
## 372 1 0 0 0 0 0
## 373 0 0 0 0 0 0
## 374 0 0 0 0 0 0
## 375 0 0 0 0 0 0
## 376 0 0 0 0 0 1
## 377 1 0 0 0 0 0
## 378 1 0 0 0 0 0
## 379 0 0 0 0 0 0
## 380 0 0 0 0 0 0
## 381 0 0 0 0 0 0
## 382 0 0 0 0 0 0
## 383 0 0 0 0 0 0
## 384 0 0 0 0 0 0
## 385 0 0 0 0 0 1
## 386 1 0 0 0 0 0
## 387 1 0 0 0 0 0
## 388 0 0 0 0 0 0
## 389 0 0 0 0 0 1
## 390 0 0 0 0 0 1
## 391 0 0 0 0 0 0
## 392 0 0 0 0 0 0
## 393 0 0 0 0 0 0
## 394 1 0 0 0 0 0
## 395 0 0 0 0 0 0
## 396 0 0 0 1 0 0
## 397 0 0 0 0 0 0
## 398 0 0 0 0 0 0
## 399 0 0 0 0 0 0
## 400 1 0 0 0 0 0
## 401 1 0 0 0 0 0
## 402 0 0 0 0 0 1
## 403 0 0 0 0 0 1
## 404 0 0 0 0 0 0
## 405 0 0 0 0 0 0
## 406 1 0 0 0 0 0
## 407 0 0 0 0 0 0
## 408 1 0 0 0 0 0
## 409 1 0 0 0 0 0
## 410 0 0 0 0 0 0
## 411 1 0 0 0 0 0
## 412 0 0 0 0 0 0
## 413 0 0 0 0 0 1
## 414 0 0 0 0 0 0
## 415 0 0 0 0 0 0
## 416 0 0 0 0 0 0
## 417 0 0 0 0 0 0
## 418 0 0 0 1 0 0
## 419 0 0 0 0 0 0
## 420 0 0 0 0 0 0
## 421 0 0 0 0 0 0
## 422 0 0 0 0 0 0
## 423 0 0 0 0 0 0
## 424 0 0 0 0 0 0
## 425 0 0 0 0 0 0
## 426 0 0 0 0 0 0
## 427 1 0 0 0 0 0
## 428 1 0 0 0 0 0
## 429 0 0 0 0 0 0
## 430 0 0 1 0 0 0
## 431 0 0 0 0 0 1
## 432 0 0 0 0 0 0
## 433 0 0 0 0 0 0
## 434 0 0 1 0 0 0
## 435 0 0 0 0 0 0
## 436 1 0 0 0 0 0
## 437 0 0 1 0 0 0
## 438 0 0 0 0 0 0
## 439 0 0 1 0 0 0
## 440 0 0 0 0 0 1
## 441 0 0 0 0 0 0
## 442 0 0 0 0 0 0
## 443 0 0 0 0 0 0
## 444 0 0 0 1 0 0
## 445 0 0 0 0 0 0
## 446 0 0 0 1 0 0
## 447 0 0 0 0 0 0
## 448 1 0 0 0 0 0
## 449 0 0 0 0 0 0
## 450 0 0 1 0 0 0
## 451 0 0 0 0 0 0
## 452 1 0 0 0 0 0
## 453 0 0 0 0 0 0
## 454 0 0 0 0 0 0
## 455 0 0 0 0 0 0
## 456 0 0 0 0 0 0
## 457 0 0 0 0 0 0
## 458 0 0 0 0 0 0
## 459 0 1 0 0 0 0
## 460 1 0 0 0 0 0
## 461 0 0 0 0 0 0
## 462 0 0 0 0 0 0
## 463 0 0 0 0 0 0
## 464 0 0 0 0 1 0
## 465 0 0 0 0 0 1
## 466 0 0 0 0 0 0
## 467 1 0 0 0 0 0
## 468 1 0 0 0 0 0
## 469 0 0 0 0 0 1
## 470 0 0 0 0 0 0
## 471 1 0 0 0 0 0
## 472 0 0 0 1 0 0
## 473 0 0 0 0 0 0
## 474 0 0 0 0 1 0
## 475 1 0 0 0 0 0
## 476 0 0 0 0 0 0
## 477 0 0 0 0 0 0
## 478 1 0 0 0 0 0
## 479 0 0 0 0 0 1
## 480 0 0 0 0 0 0
## 481 1 0 0 0 0 0
## 482 0 0 0 0 0 0
## 483 0 0 0 0 0 0
## 484 0 0 0 0 0 0
## 485 0 0 0 0 0 0
## 486 0 0 0 0 0 0
## 487 1 0 0 0 0 0
## 488 0 0 0 0 0 0
## 489 0 0 0 0 0 0
## 490 0 0 0 0 0 0
## 491 1 0 0 0 0 0
## 492 0 0 0 0 0 1
## 493 1 0 0 0 0 0
## 494 1 0 0 0 0 0
## 495 0 0 0 0 0 0
## 496 0 0 0 0 0 0
## 497 0 0 0 0 0 0
## 498 0 0 0 0 0 0
## 499 1 0 0 0 0 0
## 500 0 0 0 0 0 0
## 501 0 0 0 0 0 0
## 502 0 0 0 0 0 0
## 503 1 0 0 0 0 0
## 504 1 0 0 0 0 0
## 505 0 0 0 0 0 0
## 506 0 0 0 0 0 0
## 507 0 0 0 0 0 0
## 508 0 0 0 0 0 0
## 509 1 0 0 0 0 0
## 510 0 0 0 0 0 0
## 511 0 0 0 0 0 0
## 512 0 0 0 0 0 0
## 513 0 0 0 0 0 1
## 514 1 0 0 0 0 0
## 515 0 0 0 0 0 0
## 516 0 0 0 0 0 0
## 517 0 0 0 0 0 0
## 518 0 0 0 0 0 0
## 519 0 0 0 0 0 0
## 520 1 0 0 0 0 0
## 521 0 0 1 0 0 0
## 522 1 0 0 0 0 0
## 523 0 0 0 0 0 0
## 524 0 0 0 0 0 0
## 525 1 0 0 0 0 0
## 526 0 0 0 0 0 0
## 527 0 0 0 1 0 0
## 528 1 0 0 0 0 0
## 529 1 0 0 0 0 0
## 530 0 0 0 0 0 0
## 531 0 0 0 1 0 0
## 532 0 0 0 0 0 0
## 533 0 0 0 0 0 0
## 534 1 0 0 0 0 0
## 535 1 0 0 0 0 0
## 536 0 0 0 1 0 0
## 537 0 0 0 0 0 0
## 538 0 0 0 0 0 0
## 539 0 0 0 0 0 0
## 540 0 0 0 0 0 0
## 541 1 0 0 0 0 0
## 542 0 0 0 0 0 0
## 543 0 0 0 0 0 0
## 544 0 0 0 0 0 0
## 545 0 0 0 0 0 0
## 546 0 0 0 0 0 0
## 547 0 0 0 0 0 0
## 548 1 0 0 0 0 0
## 549 1 0 0 0 0 0
## 550 0 0 0 0 0 0
## 551 0 0 1 0 0 0
## 552 1 0 0 0 0 0
## 553 1 0 0 0 0 0
## 554 0 0 0 0 0 0
## 555 0 0 0 1 0 0
## 556 1 0 0 0 0 0
## 557 0 0 0 0 0 0
## 558 0 0 0 0 0 0
## 559 0 0 0 0 0 0
## 560 0 0 0 0 0 0
## 561 0 0 0 0 0 0
## 562 1 0 0 0 0 0
## 563 1 0 0 0 0 0
## 564 0 0 0 0 0 0
## 565 0 0 0 0 0 1
## 566 1 0 0 0 0 0
## 567 0 0 0 0 0 0
## 568 1 0 0 0 0 0
## 569 1 0 0 0 0 0
## 570 1 0 0 0 0 0
## 571 0 0 0 0 0 0
## 572 1 0 0 0 0 0
## 573 0 0 0 0 0 0
## 574 0 0 0 0 0 1
## 575 1 0 0 0 0 0
## 576 0 0 0 0 0 0
## 577 1 0 0 0 0 0
## 578 0 0 0 1 0 0
## 579 0 0 0 0 0 0
## 580 0 0 0 0 1 0
## 581 0 0 0 0 0 0
## 582 0 0 0 0 0 0
## 583 0 0 0 0 0 0
## 584 0 0 1 0 0 0
## 585 0 0 0 0 0 0
## 586 0 0 0 0 0 0
## 587 0 0 0 0 0 0
## 588 0 0 0 0 0 0
## 589 0 1 0 0 0 0
## 590 0 0 0 0 0 0
## 591 1 0 0 0 0 0
## 592 0 0 0 0 0 0
## 593 0 0 0 0 0 1
## 594 0 0 0 0 0 0
## 595 0 0 0 0 0 0
## 596 0 0 0 0 0 0
## 597 0 0 0 0 0 0
## 598 0 0 0 0 0 1
## 599 0 0 0 0 0 0
## 600 0 0 0 0 0 1
## 601 1 0 0 0 0 0
## 602 0 0 0 0 0 0
## 603 0 0 0 1 0 0
## 604 0 0 0 0 0 0
## 605 0 0 0 0 0 0
## 606 0 0 0 0 0 0
## 607 0 0 0 0 0 1
## 608 1 0 0 0 0 0
## 609 1 0 0 0 0 0
## 610 0 0 0 0 0 0
## 611 0 1 0 0 0 0
## 612 0 0 0 0 0 0
## 613 1 0 0 0 0 0
## 614 0 0 0 0 0 0
## 615 0 0 0 0 0 0
## 616 0 0 0 0 0 1
## 617 1 0 0 0 0 0
## 618 0 0 0 0 0 0
## 619 0 0 0 0 0 0
## 620 0 0 0 0 0 0
## 621 0 0 0 0 0 1
## 622 0 0 0 0 0 0
## 623 0 0 0 0 0 1
## 624 0 0 0 0 0 0
## 625 1 0 0 0 0 0
## 626 1 0 0 0 0 0
## 627 0 0 0 0 0 0
## 628 0 0 0 0 0 0
## 629 0 0 0 0 0 0
## 630 0 0 0 1 0 0
## 631 1 0 0 0 0 0
## 632 0 0 0 0 0 0
## 633 1 0 0 0 0 0
## 634 0 0 0 0 0 0
## 635 0 0 0 0 0 0
## 636 0 0 0 1 0 0
## 637 1 0 0 0 0 0
## 638 1 0 0 0 0 0
## 639 1 0 0 0 0 0
## 640 1 0 0 0 0 0
## 641 0 0 0 1 0 0
## 642 0 0 1 0 0 0
## 643 0 0 0 1 0 0
## 644 1 0 0 0 0 0
## 645 1 0 0 0 0 0
## 646 0 0 0 0 0 1
## 647 0 0 0 0 0 0
## 648 0 0 0 0 0 0
## 649 0 0 0 0 0 0
## 650 0 0 0 1 0 0
## 651 0 0 0 1 0 0
## 652 0 0 0 0 0 0
## 653 0 0 0 0 0 0
## 654 0 0 0 0 0 0
## 655 0 0 0 0 0 0
## 656 0 0 0 0 0 0
## 657 0 0 0 0 0 0
## 658 1 0 0 0 0 0
## 659 0 0 0 0 0 1
## 660 0 0 0 0 0 0
## 661 1 0 0 0 0 0
## 662 0 0 0 0 0 0
## 663 0 0 0 0 0 0
## 664 0 0 0 0 0 0
## 665 0 0 0 1 0 0
## 666 0 0 0 0 0 0
## 667 0 0 0 0 0 0
## 668 0 0 0 0 0 1
## 669 0 0 0 0 0 0
## 670 1 0 0 0 0 0
## 671 0 0 0 0 0 1
## 672 0 0 0 0 0 1
## 673 0 0 0 0 0 0
## 674 0 0 0 0 0 0
## 675 0 0 0 0 0 1
## 676 1 0 0 0 0 0
## 677 0 0 0 0 0 0
## 678 1 0 0 0 0 0
## 679 1 0 0 0 0 0
## 680 1 0 0 0 0 0
## 681 0 0 0 1 0 0
## 682 1 0 0 0 0 0
## 683 1 0 0 0 0 0
## 684 1 0 0 0 0 0
## 685 0 0 0 0 0 1
## 686 0 0 0 0 0 0
## 687 1 0 0 0 0 0
## 688 0 0 0 0 0 0
## 689 1 0 0 0 0 0
## 690 0 0 0 0 0 0
## 691 0 0 0 0 0 0
## 692 0 0 1 0 0 0
## 693 1 0 0 0 0 0
## 694 0 0 0 0 0 0
## 695 1 0 0 0 0 0
## 696 0 0 0 0 0 0
## 697 1 0 0 0 0 0
## 698 0 0 0 0 0 0
## 699 1 0 0 0 0 0
## 700 0 0 0 1 0 0
## 701 0 0 0 0 0 0
## 702 0 0 0 0 0 0
## 703 1 0 0 0 0 0
## 704 0 0 0 0 0 1
## 705 0 0 0 0 0 1
## 706 0 0 0 0 0 0
## 707 0 0 0 0 0 0
## 708 0 0 0 0 0 0
## 709 1 0 0 0 0 0
## 710 1 0 0 0 0 0
## 711 1 0 0 0 0 0
## 712 0 0 0 1 0 0
## 713 0 0 0 0 0 0
## 714 1 0 0 0 0 0
## 715 0 0 0 0 0 0
## 716 0 0 0 0 0 0
## 717 1 0 0 0 0 0
## 718 1 0 0 0 0 0
## 719 1 0 0 0 0 0
## 720 0 0 0 0 0 0
## 721 1 0 0 0 0 0
## 722 0 0 0 1 0 0
## 723 0 0 0 0 0 0
## 724 1 0 0 0 0 0
## 725 0 0 0 0 0 0
## 726 0 0 0 0 0 0
## 727 1 0 0 0 0 0
## 728 1 0 0 0 0 0
## 729 0 0 0 0 0 1
## 730 0 0 0 0 0 1
## 731 1 0 0 0 0 0
## 732 1 0 0 0 0 0
## 733 1 0 0 0 0 0
## 734 0 0 0 0 0 0
## 735 0 0 0 0 0 0
## 736 0 1 0 0 0 0
## 737 0 0 0 0 0 0
## 738 0 0 0 0 0 0
## 739 0 0 0 0 0 0
## 740 0 0 0 0 0 1
## 741 0 0 0 0 0 0
## 742 1 0 0 0 0 0
## 743 1 0 0 0 0 0
## 744 0 0 0 0 0 0
## 745 0 0 0 0 0 0
## 746 0 0 0 0 0 1
## 747 0 0 0 0 0 0
## 748 0 0 0 0 0 0
## 749 0 0 0 0 0 0
## 750 0 0 0 0 0 0
## 751 0 0 0 0 0 0
## 752 0 0 0 0 0 0
## 753 0 0 0 0 0 1
## 754 1 0 0 0 0 0
## 755 0 0 1 0 0 0
## 756 0 0 0 0 0 0
## 757 0 0 0 0 0 0
## 758 1 0 0 0 0 0
## 759 0 0 0 0 0 0
## 760 0 0 0 0 0 0
## 761 0 0 0 0 0 0
## 762 0 0 0 0 0 0
## 763 1 0 0 0 0 0
## 764 0 0 0 0 0 0
## 765 0 0 0 0 0 0
## 766 1 0 0 0 0 0
## 767 0 0 0 0 0 0
## 768 0 0 0 0 0 0
## 769 0 0 0 0 0 0
## 770 1 0 0 0 0 0
## 771 0 0 0 0 0 0
## 772 0 0 0 1 0 0
## 773 0 0 0 0 0 0
## 774 1 0 0 0 0 0
## 775 0 0 0 0 0 0
## 776 0 0 0 0 0 0
## 777 0 0 0 0 0 0
## 778 1 0 0 0 0 0
## 779 0 0 0 0 0 0
## 780 0 0 1 0 0 0
## 781 1 0 0 0 0 0
## 782 0 0 0 0 0 0
## 783 0 0 0 0 1 0
## 784 0 0 0 0 0 0
## 785 0 0 0 0 0 0
## 786 0 0 0 0 0 1
## 787 1 0 0 0 0 0
## 788 0 0 0 0 0 0
## 789 0 0 0 1 0 0
## 790 0 0 0 1 0 0
## 791 0 0 0 0 0 1
## 792 0 0 0 0 0 0
## 793 0 0 0 0 0 0
## 794 0 0 0 0 0 0
## 795 0 0 0 0 0 0
## 796 0 0 0 0 0 0
## 797 0 0 0 0 0 0
## 798 0 0 0 0 0 0
## 799 0 0 0 0 0 0
## 800 0 0 0 0 0 0
## 801 0 0 0 1 0 0
## 802 1 0 0 0 0 0
## 803 0 0 0 0 0 0
## 804 1 0 0 0 0 0
## 805 0 0 0 0 0 0
## 806 0 0 0 0 0 0
## 807 1 0 0 0 0 0
## 808 1 0 0 0 0 0
## 809 0 0 0 0 0 0
## 810 0 0 0 0 0 0
## 811 0 0 0 0 0 1
## 812 1 0 0 0 0 0
## 813 0 0 0 0 0 0
## 814 0 1 0 0 0 0
## 815 0 0 0 0 0 0
## 816 0 0 0 0 0 0
## 817 0 1 0 0 0 0
## 818 1 0 0 0 0 0
## 819 0 0 0 0 0 0
## 820 1 0 0 0 0 0
## 821 0 0 0 0 0 0
## 822 1 0 0 0 0 0
## 823 0 0 0 0 0 0
## 824 0 0 0 0 0 0
## 825 0 0 0 0 0 0
## 826 0 0 0 0 0 0
## 827 0 0 0 0 0 0
## 828 0 0 0 0 0 1
## 829 0 0 0 0 0 0
## 830 0 0 0 0 0 1
## 831 0 0 0 0 0 1
## 832 0 0 0 0 0 0
## 833 0 0 0 0 0 1
## 834 1 0 0 0 0 0
## 835 1 0 0 0 0 0
## 836 0 0 0 0 0 0
## 837 1 0 0 0 0 0
## 838 0 0 0 0 0 0
## 839 0 0 0 0 0 0
## 840 1 0 0 0 0 0
## 841 0 0 0 0 0 0
## 842 0 0 0 0 0 0
## 843 0 0 1 0 0 0
## 844 0 0 0 0 0 1
## 845 0 0 0 0 0 0
## 846 0 0 0 0 0 0
## 847 0 0 0 0 0 0
## 848 0 0 0 0 0 0
## 849 1 0 0 0 0 0
## 850 1 0 0 0 0 0
## 851 0 0 0 0 0 0
## 852 0 0 0 0 0 0
## 853 1 0 0 0 0 0
## 854 0 0 0 0 0 0
## 855 0 0 0 0 0 0
## 856 0 0 0 0 0 0
## 857 0 0 0 0 1 0
## 858 0 0 0 0 0 0
## 859 0 0 0 0 0 0
## 860 0 0 0 0 0 0
## 861 0 0 0 0 0 0
## 862 0 0 0 0 0 1
## 863 1 0 0 0 0 0
## 864 0 0 0 0 0 0
## 865 0 0 0 0 0 0
## 866 0 0 0 0 0 0
## 867 1 0 0 0 0 0
## 868 0 0 0 0 0 0
## 869 0 0 0 0 0 1
## 870 0 0 0 0 0 0
## 871 0 0 0 0 0 0
## 872 0 0 0 0 0 0
## 873 0 0 0 0 0 1
## 874 0 1 0 0 0 0
## 875 0 0 0 0 0 0
## 876 0 0 0 0 0 0
## 877 1 0 0 0 0 0
## 878 1 0 0 0 0 0
## 879 0 0 0 0 0 0
## 880 1 0 0 0 0 0
## 881 0 0 0 0 0 0
## 882 0 0 0 0 0 0
## 883 0 0 0 0 0 0
## 884 1 0 0 0 0 0
## 885 0 0 0 0 0 0
## 886 0 0 0 1 0 0
## 887 0 0 0 0 0 1
## 888 0 0 0 0 0 1
## 889 0 0 0 0 0 0
## 890 0 0 0 0 0 0
## 891 0 0 0 0 0 1
## 892 1 0 0 0 0 0
## 893 0 0 0 0 0 0
## 894 0 0 0 0 0 0
## 895 1 0 0 0 0 0
## 896 0 0 0 0 0 0
## 897 1 0 0 0 0 0
## 898 0 0 0 0 0 0
## 899 0 0 0 0 0 0
## 900 0 0 0 0 0 0
## 901 0 0 0 0 0 0
## 902 0 0 0 0 0 0
## 903 0 0 0 0 0 0
## 904 1 0 0 0 0 0
## 905 1 0 0 0 0 0
## 906 1 0 0 0 0 0
## 907 0 0 0 0 0 0
## 908 0 0 0 1 0 0
## 909 0 0 0 0 0 0
## 910 0 0 0 0 0 0
## 911 1 0 0 0 0 0
## 912 0 0 0 0 0 0
## 913 1 0 0 0 0 0
## 914 0 0 0 0 0 1
## 915 0 0 0 0 0 1
## 916 0 0 0 0 0 0
## 917 0 0 0 0 0 0
## 918 0 0 0 0 0 0
## 919 0 0 0 0 0 0
## 920 0 0 0 0 0 0
## 921 0 0 0 0 0 0
## 922 1 0 0 0 0 0
## 923 1 0 0 0 0 0
## 924 0 0 0 0 0 0
## 925 0 0 0 0 0 0
## 926 0 0 0 0 0 0
## 927 0 0 0 0 0 0
## 928 0 0 0 0 0 0
## 929 1 0 0 0 0 0
## 930 0 0 0 0 0 0
## 931 0 0 0 0 0 0
## 932 1 0 0 0 0 0
## 933 0 0 0 0 0 0
## 934 1 0 0 0 0 0
## 935 1 0 0 0 0 0
## 936 1 0 0 0 0 0
## 937 1 0 0 0 0 0
## 938 1 0 0 0 0 0
## 939 0 0 0 1 0 0
## 940 0 0 0 0 0 0
## 941 0 0 0 0 0 0
## 942 0 0 0 0 0 0
## 943 0 0 0 0 0 0
## 944 0 0 0 0 0 0
## 945 0 0 0 0 0 0
## 946 0 0 0 0 0 0
## 947 0 0 0 0 0 0
## 948 0 0 0 0 0 0
## 949 0 0 0 0 0 0
## 950 1 0 0 0 0 0
## 951 0 0 0 0 0 1
## 952 0 0 0 0 0 1
## 953 0 0 0 0 0 0
## 954 0 0 0 0 0 0
## 955 0 0 0 0 0 0
## 956 1 0 0 0 0 0
## 957 1 0 0 0 0 0
## 958 1 0 0 0 0 0
## 959 0 0 0 0 0 0
## 960 0 0 0 0 0 0
## 961 1 0 0 0 0 0
## 962 0 0 0 0 0 0
## 963 0 0 0 0 0 0
## 964 1 0 0 0 0 0
## 965 0 0 1 0 0 0
## 966 1 0 0 0 0 0
## 967 1 0 0 0 0 0
## 968 1 0 0 0 0 0
## 969 1 0 0 0 0 0
## 970 0 0 0 0 0 0
## 971 0 0 1 0 0 0
## 972 0 0 0 0 0 0
## 973 0 0 0 0 0 0
## 974 0 0 0 0 0 1
## 975 1 0 0 0 0 0
## 976 1 0 0 0 0 0
## 977 1 0 0 0 0 0
## 978 0 0 0 0 0 1
## 979 0 0 0 0 0 0
## 980 0 0 0 0 0 0
## 981 0 0 0 0 0 0
## 982 0 0 0 0 0 1
## 983 0 0 0 0 0 0
## 984 0 0 0 0 0 0
## 985 0 0 0 0 0 0
## 986 0 0 0 0 0 0
## 987 0 0 0 0 0 1
## 988 1 0 0 0 0 0
## 989 0 0 0 0 0 0
## 990 1 0 0 0 0 0
## 991 0 0 0 1 0 0
## 992 1 0 0 0 0 0
## 993 1 0 0 0 0 0
## 994 0 0 0 0 0 0
## 995 0 0 0 0 0 0
## 996 0 0 0 0 0 0
## 997 0 0 0 0 0 0
## 998 1 0 0 0 0 0
## 999 1 0 0 0 0 0
## 1000 0 0 0 0 0 0
## creditamount savingsA61 savingsA62 savingsA63 savingsA64 savingsA65
## 1 1169.0 0 0 0 0 1
## 2 5951.0 1 0 0 0 0
## 3 2096.0 1 0 0 0 0
## 4 7882.0 1 0 0 0 0
## 5 4870.0 1 0 0 0 0
## 6 9055.0 0 0 0 0 1
## 7 2835.0 0 0 1 0 0
## 8 6948.0 1 0 0 0 0
## 9 3059.0 0 0 0 1 0
## 10 5234.0 1 0 0 0 0
## 11 1295.0 1 0 0 0 0
## 12 4308.0 1 0 0 0 0
## 13 1567.0 1 0 0 0 0
## 14 1199.0 1 0 0 0 0
## 15 1403.0 1 0 0 0 0
## 16 1282.0 0 1 0 0 0
## 17 2424.0 0 0 0 0 1
## 18 8072.0 0 0 0 0 1
## 19 9162.7 1 0 0 0 0
## 20 3430.0 0 0 1 0 0
## 21 2134.0 1 0 0 0 0
## 22 2647.0 0 0 1 0 0
## 23 2241.0 1 0 0 0 0
## 24 1804.0 0 1 0 0 0
## 25 2069.0 0 0 0 0 1
## 26 1374.0 1 0 0 0 0
## 27 426.0 1 0 0 0 0
## 28 409.0 0 0 0 1 0
## 29 2415.0 1 0 0 0 0
## 30 6836.0 1 0 0 0 0
## 31 1913.0 0 0 0 1 0
## 32 4020.0 1 0 0 0 0
## 33 5866.0 0 1 0 0 0
## 34 1264.0 0 0 0 0 1
## 35 1474.0 1 0 0 0 0
## 36 4746.0 1 0 0 0 0
## 37 6110.0 1 0 0 0 0
## 38 2100.0 1 0 0 0 0
## 39 1225.0 1 0 0 0 0
## 40 458.0 1 0 0 0 0
## 41 2333.0 0 0 1 0 0
## 42 1158.0 0 0 1 0 0
## 43 6204.0 1 0 0 0 0
## 44 6187.0 0 1 0 0 0
## 45 6143.0 1 0 0 0 0
## 46 1393.0 1 0 0 0 0
## 47 2299.0 0 0 1 0 0
## 48 1352.0 0 0 1 0 0
## 49 7228.0 1 0 0 0 0
## 50 2073.0 0 1 0 0 0
## 51 2333.0 0 0 0 0 1
## 52 5965.0 1 0 0 0 0
## 53 1262.0 1 0 0 0 0
## 54 3378.0 0 0 0 0 1
## 55 2225.0 1 0 0 0 0
## 56 783.0 0 0 0 0 1
## 57 6468.0 0 0 0 0 1
## 58 9162.7 1 0 0 0 0
## 59 1961.0 1 0 0 0 0
## 60 6229.0 1 0 0 0 0
## 61 1391.0 1 0 0 0 0
## 62 1537.0 0 0 0 0 1
## 63 1953.0 1 0 0 0 0
## 64 9162.7 1 0 0 0 0
## 65 3181.0 1 0 0 0 0
## 66 5190.0 0 0 0 0 1
## 67 2171.0 1 0 0 0 0
## 68 1007.0 0 0 0 1 0
## 69 1819.0 1 0 0 0 0
## 70 2394.0 0 0 0 0 1
## 71 8133.0 1 0 0 0 0
## 72 730.0 0 0 0 0 1
## 73 1164.0 1 0 0 0 0
## 74 5954.0 1 0 0 0 0
## 75 1977.0 0 0 0 0 1
## 76 1526.0 1 0 0 0 0
## 77 3965.0 1 0 0 0 0
## 78 4771.0 1 0 0 0 0
## 79 9162.7 0 0 0 0 1
## 80 3832.0 1 0 0 0 0
## 81 5943.0 0 0 0 0 1
## 82 1213.0 0 0 1 0 0
## 83 1568.0 0 1 0 0 0
## 84 1755.0 1 0 0 0 0
## 85 2315.0 1 0 0 0 0
## 86 1412.0 1 0 0 0 0
## 87 1295.0 1 0 0 0 0
## 88 9162.7 0 1 0 0 0
## 89 2249.0 0 1 0 0 0
## 90 1108.0 1 0 0 0 0
## 91 618.0 1 0 0 0 0
## 92 1409.0 1 0 0 0 0
## 93 797.0 0 0 0 0 1
## 94 3617.0 0 0 0 0 1
## 95 1318.0 0 0 0 1 0
## 96 9162.7 1 0 0 0 0
## 97 2012.0 0 0 0 0 1
## 98 2622.0 0 1 0 0 0
## 99 2337.0 1 0 0 0 0
## 100 7057.0 0 0 0 0 1
## 101 1469.0 0 1 0 0 0
## 102 2323.0 1 0 0 0 0
## 103 932.0 1 0 0 0 0
## 104 1919.0 1 0 0 0 0
## 105 2445.0 0 0 0 0 1
## 106 9162.7 1 0 0 0 0
## 107 6458.0 1 0 0 0 0
## 108 6078.0 1 0 0 0 0
## 109 7721.0 0 0 0 0 1
## 110 1410.0 0 0 1 0 0
## 111 1449.0 0 1 0 0 0
## 112 392.0 1 0 0 0 0
## 113 6260.0 1 0 0 0 0
## 114 7855.0 1 0 0 0 0
## 115 1680.0 0 0 1 0 0
## 116 3578.0 0 0 0 0 1
## 117 7174.0 0 0 0 0 1
## 118 2132.0 0 0 0 0 1
## 119 4281.0 0 0 1 0 0
## 120 2366.0 0 0 1 0 0
## 121 1835.0 1 0 0 0 0
## 122 3868.0 1 0 0 0 0
## 123 1768.0 1 0 0 0 0
## 124 781.0 1 0 0 0 0
## 125 1924.0 0 0 0 0 1
## 126 2121.0 1 0 0 0 0
## 127 701.0 1 0 0 0 0
## 128 639.0 1 0 0 0 0
## 129 1860.0 1 0 0 0 0
## 130 3499.0 1 0 0 0 0
## 131 8487.0 0 0 0 0 1
## 132 6887.0 1 0 0 0 0
## 133 2708.0 1 0 0 0 0
## 134 1984.0 1 0 0 0 0
## 135 9162.7 0 1 0 0 0
## 136 1240.0 0 0 0 0 1
## 137 8613.0 0 0 0 1 0
## 138 766.0 0 0 1 0 0
## 139 2728.0 0 0 0 0 1
## 140 1881.0 1 0 0 0 0
## 141 709.0 0 0 0 1 0
## 142 4795.0 1 0 0 0 0
## 143 3416.0 1 0 0 0 0
## 144 2462.0 1 0 0 0 0
## 145 2288.0 1 0 0 0 0
## 146 3566.0 0 1 0 0 0
## 147 860.0 1 0 0 0 0
## 148 682.0 0 1 0 0 0
## 149 5371.0 1 0 0 0 0
## 150 1582.0 0 0 0 1 0
## 151 1346.0 0 1 0 0 0
## 152 1924.0 1 0 0 0 0
## 153 5848.0 1 0 0 0 0
## 154 7758.0 0 0 0 1 0
## 155 6967.0 0 1 0 0 0
## 156 1282.0 1 0 0 0 0
## 157 1288.0 0 1 0 0 0
## 158 339.0 1 0 0 0 0
## 159 3512.0 0 1 0 0 0
## 160 1898.0 0 0 0 0 1
## 161 2872.0 0 1 0 0 0
## 162 1055.0 1 0 0 0 0
## 163 1262.0 0 0 1 0 0
## 164 7308.0 1 0 0 0 0
## 165 909.0 0 0 1 0 0
## 166 2978.0 0 0 1 0 0
## 167 1131.0 1 0 0 0 0
## 168 1577.0 0 0 0 1 0
## 169 3972.0 1 0 0 0 0
## 170 1935.0 1 0 0 0 0
## 171 950.0 1 0 0 0 0
## 172 763.0 1 0 0 0 0
## 173 2064.0 1 0 0 0 0
## 174 1414.0 1 0 0 0 0
## 175 3414.0 1 0 0 0 0
## 176 7485.0 0 0 0 0 1
## 177 2577.0 1 0 0 0 0
## 178 338.0 0 0 1 0 0
## 179 1963.0 1 0 0 0 0
## 180 571.0 1 0 0 0 0
## 181 9162.7 1 0 0 0 0
## 182 4455.0 1 0 0 0 0
## 183 1647.0 0 0 0 0 1
## 184 3777.0 0 0 0 1 0
## 185 884.0 1 0 0 0 0
## 186 1360.0 1 0 0 0 0
## 187 5129.0 1 0 0 0 0
## 188 1175.0 1 0 0 0 0
## 189 674.0 0 1 0 0 0
## 190 3244.0 1 0 0 0 0
## 191 4591.0 0 0 0 1 0
## 192 3844.0 0 1 0 0 0
## 193 3915.0 1 0 0 0 0
## 194 2108.0 1 0 0 0 0
## 195 3031.0 0 1 0 0 0
## 196 1501.0 1 0 0 0 0
## 197 1382.0 1 0 0 0 0
## 198 951.0 0 1 0 0 0
## 199 2760.0 0 0 0 0 1
## 200 4297.0 1 0 0 0 0
## 201 936.0 0 0 1 0 0
## 202 1168.0 1 0 0 0 0
## 203 5117.0 1 0 0 0 0
## 204 902.0 1 0 0 0 0
## 205 1495.0 1 0 0 0 0
## 206 9162.7 1 0 0 0 0
## 207 1935.0 1 0 0 0 0
## 208 1424.0 1 0 0 0 0
## 209 6568.0 1 0 0 0 0
## 210 1413.0 0 0 0 1 0
## 211 3074.0 0 0 0 0 1
## 212 3835.0 0 0 0 0 1
## 213 5293.0 1 0 0 0 0
## 214 1908.0 1 0 0 0 0
## 215 3342.0 0 0 0 0 1
## 216 932.0 0 0 0 0 1
## 217 3104.0 1 0 0 0 0
## 218 3913.0 1 0 0 0 0
## 219 3021.0 1 0 0 0 0
## 220 1364.0 1 0 0 0 0
## 221 625.0 1 0 0 0 0
## 222 1200.0 0 0 0 0 1
## 223 707.0 1 0 0 0 0
## 224 2978.0 0 0 0 0 1
## 225 4657.0 1 0 0 0 0
## 226 2613.0 1 0 0 0 0
## 227 9162.7 0 0 0 1 0
## 228 7865.0 1 0 0 0 0
## 229 1478.0 1 0 0 0 0
## 230 3149.0 1 0 0 0 0
## 231 4210.0 1 0 0 0 0
## 232 2507.0 0 0 1 0 0
## 233 2141.0 0 1 0 0 0
## 234 866.0 1 0 0 0 0
## 235 1544.0 1 0 0 0 0
## 236 1823.0 1 0 0 0 0
## 237 9162.7 0 0 0 0 1
## 238 2767.0 0 1 0 0 0
## 239 1291.0 1 0 0 0 0
## 240 2522.0 1 0 0 0 0
## 241 915.0 0 0 0 0 1
## 242 1595.0 1 0 0 0 0
## 243 4605.0 1 0 0 0 0
## 244 1185.0 1 0 0 0 0
## 245 3447.0 0 0 1 0 0
## 246 1258.0 1 0 0 0 0
## 247 717.0 1 0 0 0 0
## 248 1204.0 0 1 0 0 0
## 249 1925.0 1 0 0 0 0
## 250 433.0 1 0 0 0 0
## 251 666.0 0 0 0 1 0
## 252 2251.0 1 0 0 0 0
## 253 2150.0 1 0 0 0 0
## 254 4151.0 0 1 0 0 0
## 255 2030.0 0 0 0 0 1
## 256 7418.0 0 0 0 0 1
## 257 2684.0 1 0 0 0 0
## 258 2149.0 1 0 0 0 0
## 259 3812.0 0 1 0 0 0
## 260 1154.0 0 1 0 0 0
## 261 1657.0 1 0 0 0 0
## 262 1603.0 1 0 0 0 0
## 263 5302.0 1 0 0 0 0
## 264 2748.0 1 0 0 0 0
## 265 1231.0 1 0 0 0 0
## 266 802.0 1 0 0 0 0
## 267 6304.0 0 0 0 0 1
## 268 1533.0 1 0 0 0 0
## 269 8978.0 1 0 0 0 0
## 270 999.0 0 0 0 0 1
## 271 2662.0 0 0 0 0 1
## 272 1402.0 0 0 1 0 0
## 273 9162.7 0 0 0 0 1
## 274 3060.0 1 0 0 0 0
## 275 9162.7 1 0 0 0 0
## 276 2697.0 1 0 0 0 0
## 277 2404.0 1 0 0 0 0
## 278 1262.0 0 0 0 0 1
## 279 4611.0 1 0 0 0 0
## 280 1901.0 0 1 0 0 0
## 281 3368.0 0 0 0 1 0
## 282 1574.0 1 0 0 0 0
## 283 1445.0 0 0 0 0 1
## 284 1520.0 0 0 0 0 1
## 285 3878.0 0 1 0 0 0
## 286 9162.7 1 0 0 0 0
## 287 4788.0 1 0 0 0 0
## 288 7582.0 0 1 0 0 0
## 289 1092.0 1 0 0 0 0
## 290 1024.0 1 0 0 0 0
## 291 1076.0 1 0 0 0 0
## 292 9162.7 1 0 0 0 0
## 293 6419.0 1 0 0 0 0
## 294 4796.0 1 0 0 0 0
## 295 7629.0 0 0 0 0 1
## 296 9162.7 1 0 0 0 0
## 297 4675.0 0 0 0 0 1
## 298 1287.0 0 0 0 0 1
## 299 2515.0 1 0 0 0 0
## 300 2745.0 0 0 0 1 0
## 301 672.0 1 0 0 0 0
## 302 3804.0 1 0 0 0 0
## 303 1344.0 0 0 0 0 1
## 304 1038.0 1 0 0 0 0
## 305 9162.7 0 0 1 0 0
## 306 1543.0 0 0 0 1 0
## 307 4811.0 0 0 0 0 1
## 308 727.0 0 1 0 0 0
## 309 1237.0 1 0 0 0 0
## 310 276.0 1 0 0 0 0
## 311 5381.0 0 0 0 0 1
## 312 5511.0 0 1 0 0 0
## 313 3749.0 1 0 0 0 0
## 314 685.0 1 0 0 0 0
## 315 1494.0 0 0 0 0 1
## 316 2746.0 1 0 0 0 0
## 317 708.0 1 0 0 0 0
## 318 4351.0 0 0 0 0 1
## 319 701.0 1 0 0 0 0
## 320 3643.0 1 0 0 0 0
## 321 4249.0 1 0 0 0 0
## 322 1938.0 1 0 0 0 0
## 323 2910.0 1 0 0 0 0
## 324 2659.0 0 0 0 1 0
## 325 1028.0 1 0 0 0 0
## 326 3398.0 1 0 0 0 0
## 327 5801.0 0 0 0 0 1
## 328 1525.0 0 0 0 1 0
## 329 4473.0 1 0 0 0 0
## 330 1068.0 1 0 0 0 0
## 331 6615.0 1 0 0 0 0
## 332 1864.0 0 1 0 0 0
## 333 7408.0 0 1 0 0 0
## 334 9162.7 0 1 0 0 0
## 335 4110.0 1 0 0 0 0
## 336 3384.0 1 0 0 0 0
## 337 2101.0 1 0 0 0 0
## 338 1275.0 0 0 0 0 1
## 339 4169.0 1 0 0 0 0
## 340 1521.0 1 0 0 0 0
## 341 5743.0 1 0 0 0 0
## 342 3599.0 1 0 0 0 0
## 343 3213.0 0 0 1 0 0
## 344 4439.0 1 0 0 0 0
## 345 3949.0 1 0 0 0 0
## 346 1459.0 1 0 0 0 0
## 347 882.0 1 0 0 0 0
## 348 3758.0 0 0 1 0 0
## 349 1743.0 0 1 0 0 0
## 350 1136.0 0 0 0 1 0
## 351 1236.0 1 0 0 0 0
## 352 959.0 1 0 0 0 0
## 353 3229.0 0 0 0 0 1
## 354 6199.0 1 0 0 0 0
## 355 727.0 0 0 1 0 0
## 356 1246.0 1 0 0 0 0
## 357 2331.0 0 0 0 0 1
## 358 4463.0 1 0 0 0 0
## 359 776.0 1 0 0 0 0
## 360 2406.0 1 0 0 0 0
## 361 1239.0 0 0 0 0 1
## 362 3399.0 0 0 0 0 1
## 363 2247.0 1 0 0 0 0
## 364 1766.0 1 0 0 0 0
## 365 2473.0 1 0 0 0 0
## 366 1542.0 1 0 0 0 0
## 367 3850.0 1 0 0 0 0
## 368 3650.0 1 0 0 0 0
## 369 3446.0 1 0 0 0 0
## 370 3001.0 1 0 0 0 0
## 371 3079.0 0 0 0 0 1
## 372 6070.0 1 0 0 0 0
## 373 2146.0 1 0 0 0 0
## 374 9162.7 0 0 0 0 1
## 375 9162.7 0 1 0 0 0
## 376 7685.0 1 0 0 0 0
## 377 2320.0 1 0 0 0 0
## 378 846.0 0 0 0 0 1
## 379 9162.7 1 0 0 0 0
## 380 362.0 0 1 0 0 0
## 381 2212.0 0 0 0 0 1
## 382 9162.7 1 0 0 0 0
## 383 1283.0 0 0 0 0 1
## 384 1330.0 1 0 0 0 0
## 385 4272.0 0 1 0 0 0
## 386 2238.0 1 0 0 0 0
## 387 1126.0 0 0 0 0 1
## 388 7374.0 1 0 0 0 0
## 389 2326.0 0 0 1 0 0
## 390 1449.0 1 0 0 0 0
## 391 1820.0 1 0 0 0 0
## 392 983.0 0 0 0 1 0
## 393 3249.0 1 0 0 0 0
## 394 1957.0 1 0 0 0 0
## 395 2406.0 1 0 0 0 0
## 396 9162.7 0 1 0 0 0
## 397 2578.0 1 0 0 0 0
## 398 2348.0 1 0 0 0 0
## 399 1223.0 1 0 0 0 0
## 400 1516.0 0 0 0 1 0
## 401 1473.0 1 0 0 0 0
## 402 1887.0 0 0 0 0 1
## 403 8648.0 1 0 0 0 0
## 404 802.0 1 0 0 0 0
## 405 2899.0 0 0 0 0 1
## 406 2039.0 1 0 0 0 0
## 407 2197.0 0 0 0 0 1
## 408 1053.0 1 0 0 0 0
## 409 3235.0 0 0 1 0 0
## 410 939.0 0 0 1 0 0
## 411 1967.0 1 0 0 0 0
## 412 7253.0 1 0 0 0 0
## 413 2292.0 1 0 0 0 0
## 414 1597.0 0 0 1 0 0
## 415 1381.0 0 0 0 0 1
## 416 5842.0 1 0 0 0 0
## 417 2579.0 1 0 0 0 0
## 418 8471.0 0 0 0 0 1
## 419 2782.0 0 0 1 0 0
## 420 1042.0 0 0 0 0 1
## 421 3186.0 0 0 0 1 0
## 422 2028.0 0 0 0 0 1
## 423 958.0 1 0 0 0 0
## 424 1591.0 0 1 0 0 0
## 425 2762.0 0 0 0 0 1
## 426 2779.0 1 0 0 0 0
## 427 2743.0 1 0 0 0 0
## 428 1149.0 0 0 0 1 0
## 429 1313.0 1 0 0 0 0
## 430 1190.0 1 0 0 0 0
## 431 3448.0 1 0 0 0 0
## 432 9162.7 1 0 0 0 0
## 433 1872.0 1 0 0 0 0
## 434 2058.0 1 0 0 0 0
## 435 2136.0 1 0 0 0 0
## 436 1484.0 0 0 0 0 1
## 437 660.0 0 0 1 0 0
## 438 1287.0 0 0 0 1 0
## 439 3394.0 1 0 0 0 0
## 440 609.0 1 0 0 0 0
## 441 1884.0 1 0 0 0 0
## 442 1620.0 1 0 0 0 0
## 443 2629.0 1 0 0 0 0
## 444 719.0 1 0 0 0 0
## 445 5096.0 1 0 0 0 0
## 446 1244.0 0 0 0 0 1
## 447 1842.0 1 0 0 0 0
## 448 2576.0 1 0 0 0 0
## 449 1424.0 0 0 0 0 1
## 450 1512.0 0 0 0 1 0
## 451 9162.7 0 0 0 0 1
## 452 518.0 1 0 0 0 0
## 453 2759.0 1 0 0 0 0
## 454 2670.0 1 0 0 0 0
## 455 4817.0 1 0 0 0 0
## 456 2679.0 1 0 0 0 0
## 457 3905.0 1 0 0 0 0
## 458 3386.0 1 0 0 0 0
## 459 343.0 1 0 0 0 0
## 460 4594.0 1 0 0 0 0
## 461 3620.0 1 0 0 0 0
## 462 1721.0 1 0 0 0 0
## 463 3017.0 1 0 0 0 0
## 464 754.0 0 0 0 0 1
## 465 1950.0 1 0 0 0 0
## 466 2924.0 1 0 0 0 0
## 467 1659.0 1 0 0 0 0
## 468 7238.0 0 0 0 0 1
## 469 2764.0 1 0 0 0 0
## 470 4679.0 1 0 0 0 0
## 471 3092.0 0 1 0 0 0
## 472 448.0 1 0 0 0 0
## 473 654.0 1 0 0 0 0
## 474 1238.0 0 0 0 0 1
## 475 1245.0 1 0 0 0 0
## 476 3114.0 1 0 0 0 0
## 477 2569.0 0 0 1 0 0
## 478 5152.0 1 0 0 0 0
## 479 1037.0 0 1 0 0 0
## 480 1478.0 1 0 0 0 0
## 481 3573.0 1 0 0 0 0
## 482 1201.0 1 0 0 0 0
## 483 3622.0 0 0 0 1 0
## 484 960.0 0 0 0 1 0
## 485 1163.0 0 0 1 0 0
## 486 1209.0 1 0 0 0 0
## 487 3077.0 1 0 0 0 0
## 488 3757.0 1 0 0 0 0
## 489 1418.0 0 1 0 0 0
## 490 3518.0 1 0 0 0 0
## 491 1934.0 1 0 0 0 0
## 492 8318.0 1 0 0 0 0
## 493 1237.0 0 1 0 0 0
## 494 368.0 0 0 0 0 1
## 495 2122.0 1 0 0 0 0
## 496 2996.0 0 0 0 0 1
## 497 9034.0 0 1 0 0 0
## 498 1585.0 1 0 0 0 0
## 499 1301.0 1 0 0 0 0
## 500 1323.0 0 1 0 0 0
## 501 3123.0 1 0 0 0 0
## 502 5493.0 1 0 0 0 0
## 503 1126.0 0 1 0 0 0
## 504 1216.0 0 1 0 0 0
## 505 1207.0 1 0 0 0 0
## 506 1309.0 0 0 0 0 1
## 507 2360.0 0 0 1 0 0
## 508 6850.0 0 1 0 0 0
## 509 1413.0 1 0 0 0 0
## 510 8588.0 0 1 0 0 0
## 511 759.0 1 0 0 0 0
## 512 4686.0 1 0 0 0 0
## 513 2687.0 1 0 0 0 0
## 514 585.0 1 0 0 0 0
## 515 2255.0 0 0 0 0 1
## 516 609.0 1 0 0 0 0
## 517 1361.0 1 0 0 0 0
## 518 7127.0 1 0 0 0 0
## 519 1203.0 0 1 0 0 0
## 520 700.0 0 0 0 0 1
## 521 5507.0 1 0 0 0 0
## 522 3190.0 1 0 0 0 0
## 523 7119.0 1 0 0 0 0
## 524 3488.0 0 1 0 0 0
## 525 1113.0 1 0 0 0 0
## 526 7966.0 1 0 0 0 0
## 527 1532.0 0 1 0 0 0
## 528 1503.0 1 0 0 0 0
## 529 2302.0 1 0 0 0 0
## 530 662.0 1 0 0 0 0
## 531 2273.0 1 0 0 0 0
## 532 2631.0 0 1 0 0 0
## 533 1503.0 1 0 0 0 0
## 534 1311.0 0 1 0 0 0
## 535 3105.0 0 0 0 0 1
## 536 2319.0 1 0 0 0 0
## 537 1374.0 0 0 0 0 1
## 538 3612.0 1 0 0 0 0
## 539 7763.0 1 0 0 0 0
## 540 3049.0 1 0 0 0 0
## 541 1534.0 1 0 0 0 0
## 542 2032.0 1 0 0 0 0
## 543 6350.0 0 0 0 0 1
## 544 2864.0 1 0 0 0 0
## 545 1255.0 1 0 0 0 0
## 546 1333.0 1 0 0 0 0
## 547 2022.0 1 0 0 0 0
## 548 1552.0 1 0 0 0 0
## 549 626.0 1 0 0 0 0
## 550 8858.0 0 0 0 0 1
## 551 996.0 0 0 0 0 1
## 552 1750.0 0 0 1 0 0
## 553 6999.0 1 0 0 0 0
## 554 1995.0 0 1 0 0 0
## 555 1199.0 1 0 0 0 0
## 556 1331.0 1 0 0 0 0
## 557 2278.0 0 1 0 0 0
## 558 5003.0 0 0 0 0 1
## 559 3552.0 1 0 0 0 0
## 560 1928.0 1 0 0 0 0
## 561 2964.0 0 0 0 0 1
## 562 1546.0 1 0 0 0 0
## 563 683.0 1 0 0 0 0
## 564 9162.7 0 0 0 0 1
## 565 4712.0 0 0 0 0 1
## 566 1553.0 0 1 0 0 0
## 567 1372.0 1 0 0 0 0
## 568 2578.0 0 0 0 1 0
## 569 3979.0 0 0 0 0 1
## 570 6758.0 1 0 0 0 0
## 571 3234.0 1 0 0 0 0
## 572 5954.0 1 0 0 0 0
## 573 5433.0 0 0 0 0 1
## 574 806.0 1 0 0 0 0
## 575 1082.0 1 0 0 0 0
## 576 2788.0 1 0 0 0 0
## 577 2930.0 1 0 0 0 0
## 578 1927.0 0 0 0 0 1
## 579 2820.0 1 0 0 0 0
## 580 937.0 1 0 0 0 0
## 581 1056.0 1 0 0 0 0
## 582 3124.0 1 0 0 0 0
## 583 1388.0 1 0 0 0 0
## 584 2384.0 1 0 0 0 0
## 585 2133.0 0 0 0 0 1
## 586 2039.0 1 0 0 0 0
## 587 2799.0 1 0 0 0 0
## 588 1289.0 1 0 0 0 0
## 589 1217.0 1 0 0 0 0
## 590 2246.0 1 0 0 0 0
## 591 385.0 1 0 0 0 0
## 592 1965.0 0 0 0 0 1
## 593 1572.0 0 0 0 1 0
## 594 2718.0 1 0 0 0 0
## 595 1358.0 0 0 0 0 1
## 596 931.0 0 1 0 0 0
## 597 1442.0 1 0 0 0 0
## 598 4241.0 1 0 0 0 0
## 599 2775.0 1 0 0 0 0
## 600 3863.0 1 0 0 0 0
## 601 2329.0 1 0 0 0 0
## 602 918.0 1 0 0 0 0
## 603 1837.0 1 0 0 0 0
## 604 3349.0 1 0 0 0 0
## 605 1275.0 1 0 0 0 0
## 606 2828.0 0 0 1 0 0
## 607 4526.0 1 0 0 0 0
## 608 2671.0 0 1 0 0 0
## 609 2051.0 1 0 0 0 0
## 610 1300.0 0 0 0 0 1
## 611 741.0 0 1 0 0 0
## 612 1240.0 0 1 0 0 0
## 613 3357.0 0 0 0 1 0
## 614 3632.0 1 0 0 0 0
## 615 1808.0 1 0 0 0 0
## 616 9162.7 0 0 0 0 1
## 617 9157.0 0 0 0 0 1
## 618 3676.0 1 0 0 0 0
## 619 3441.0 0 1 0 0 0
## 620 640.0 1 0 0 0 0
## 621 3652.0 1 0 0 0 0
## 622 1530.0 1 0 0 0 0
## 623 3914.0 0 0 0 0 1
## 624 1858.0 1 0 0 0 0
## 625 2600.0 1 0 0 0 0
## 626 1979.0 0 0 0 0 1
## 627 2116.0 1 0 0 0 0
## 628 1437.0 0 1 0 0 0
## 629 4042.0 0 0 1 0 0
## 630 3832.0 0 0 0 0 1
## 631 3660.0 1 0 0 0 0
## 632 1553.0 1 0 0 0 0
## 633 1444.0 0 0 0 0 1
## 634 1980.0 1 0 0 0 0
## 635 1355.0 1 0 0 0 0
## 636 1393.0 1 0 0 0 0
## 637 1376.0 0 0 1 0 0
## 638 9162.7 1 0 0 0 0
## 639 1493.0 1 0 0 0 0
## 640 4370.0 1 0 0 0 0
## 641 750.0 1 0 0 0 0
## 642 1308.0 1 0 0 0 0
## 643 4623.0 0 1 0 0 0
## 644 1851.0 1 0 0 0 0
## 645 1880.0 1 0 0 0 0
## 646 7980.0 0 0 0 0 1
## 647 4583.0 1 0 0 0 0
## 648 1386.0 0 0 1 0 0
## 649 947.0 1 0 0 0 0
## 650 684.0 1 0 0 0 0
## 651 7476.0 1 0 0 0 0
## 652 1922.0 1 0 0 0 0
## 653 2303.0 1 0 0 0 0
## 654 8086.0 0 1 0 0 0
## 655 2346.0 1 0 0 0 0
## 656 3973.0 1 0 0 0 0
## 657 888.0 1 0 0 0 0
## 658 9162.7 0 0 0 0 1
## 659 4221.0 1 0 0 0 0
## 660 6361.0 1 0 0 0 0
## 661 1297.0 1 0 0 0 0
## 662 900.0 0 0 0 0 1
## 663 2241.0 1 0 0 0 0
## 664 1050.0 1 0 0 0 0
## 665 1047.0 1 0 0 0 0
## 666 6314.0 1 0 0 0 0
## 667 3496.0 0 0 0 1 0
## 668 3609.0 1 0 0 0 0
## 669 4843.0 1 0 0 0 0
## 670 3017.0 1 0 0 0 0
## 671 4139.0 0 1 0 0 0
## 672 5742.0 0 1 0 0 0
## 673 9162.7 1 0 0 0 0
## 674 2080.0 0 0 1 0 0
## 675 2580.0 0 0 1 0 0
## 676 4530.0 1 0 0 0 0
## 677 5150.0 1 0 0 0 0
## 678 5595.0 0 1 0 0 0
## 679 2384.0 1 0 0 0 0
## 680 1453.0 1 0 0 0 0
## 681 1538.0 1 0 0 0 0
## 682 2279.0 0 0 0 0 1
## 683 1478.0 1 0 0 0 0
## 684 5103.0 1 0 0 0 0
## 685 9162.7 0 1 0 0 0
## 686 6527.0 0 0 0 0 1
## 687 1347.0 0 0 0 0 1
## 688 2862.0 0 1 0 0 0
## 689 2753.0 0 1 0 0 0
## 690 3651.0 0 0 0 1 0
## 691 975.0 1 0 0 0 0
## 692 2631.0 0 1 0 0 0
## 693 2896.0 0 1 0 0 0
## 694 4716.0 0 0 0 0 1
## 695 2284.0 1 0 0 0 0
## 696 1236.0 0 0 1 0 0
## 697 1103.0 1 0 0 0 0
## 698 926.0 1 0 0 0 0
## 699 1800.0 1 0 0 0 0
## 700 1905.0 1 0 0 0 0
## 701 1123.0 0 0 1 0 0
## 702 6331.0 1 0 0 0 0
## 703 1377.0 0 1 0 0 0
## 704 2503.0 0 1 0 0 0
## 705 2528.0 1 0 0 0 0
## 706 5324.0 0 0 1 0 0
## 707 6560.0 0 1 0 0 0
## 708 2969.0 1 0 0 0 0
## 709 1206.0 1 0 0 0 0
## 710 2118.0 1 0 0 0 0
## 711 629.0 0 0 1 0 0
## 712 1198.0 1 0 0 0 0
## 713 2476.0 0 0 0 0 1
## 714 1138.0 1 0 0 0 0
## 715 9162.7 1 0 0 0 0
## 716 7596.0 0 0 0 0 1
## 717 3077.0 0 0 0 0 1
## 718 1505.0 1 0 0 0 0
## 719 3148.0 0 0 0 0 1
## 720 6148.0 0 1 0 0 0
## 721 1337.0 1 0 0 0 0
## 722 433.0 0 0 0 1 0
## 723 1228.0 1 0 0 0 0
## 724 790.0 0 0 1 0 0
## 725 2570.0 1 0 0 0 0
## 726 250.0 0 0 0 1 0
## 727 1316.0 0 0 1 0 0
## 728 1882.0 1 0 0 0 0
## 729 6416.0 1 0 0 0 0
## 730 1275.0 0 0 0 1 0
## 731 6403.0 1 0 0 0 0
## 732 1987.0 1 0 0 0 0
## 733 760.0 1 0 0 0 0
## 734 2603.0 0 0 0 1 0
## 735 3380.0 1 0 0 0 0
## 736 3990.0 0 0 0 0 1
## 737 9162.7 1 0 0 0 0
## 738 4380.0 0 1 0 0 0
## 739 6761.0 1 0 0 0 0
## 740 4280.0 0 1 0 0 0
## 741 2325.0 0 1 0 0 0
## 742 1048.0 1 0 0 0 0
## 743 3160.0 0 0 0 0 1
## 744 2483.0 0 0 1 0 0
## 745 9162.7 0 0 0 0 1
## 746 1797.0 1 0 0 0 0
## 747 2511.0 1 0 0 0 0
## 748 1274.0 1 0 0 0 0
## 749 5248.0 0 0 0 0 1
## 750 3029.0 1 0 0 0 0
## 751 428.0 1 0 0 0 0
## 752 976.0 1 0 0 0 0
## 753 841.0 0 1 0 0 0
## 754 5771.0 1 0 0 0 0
## 755 1555.0 0 0 0 1 0
## 756 1285.0 0 0 0 0 1
## 757 1299.0 1 0 0 0 0
## 758 1271.0 0 0 0 0 1
## 759 1393.0 1 0 0 0 0
## 760 691.0 1 0 0 0 0
## 761 5045.0 0 0 0 0 1
## 762 2124.0 1 0 0 0 0
## 763 2214.0 1 0 0 0 0
## 764 9162.7 0 0 0 0 1
## 765 2463.0 0 1 0 0 0
## 766 1155.0 1 0 0 0 0
## 767 3108.0 1 0 0 0 0
## 768 2901.0 0 0 0 0 1
## 769 3617.0 1 0 0 0 0
## 770 1655.0 1 0 0 0 0
## 771 2812.0 0 0 0 0 1
## 772 8065.0 1 0 0 0 0
## 773 3275.0 1 0 0 0 0
## 774 2223.0 0 1 0 0 0
## 775 1480.0 0 0 1 0 0
## 776 1371.0 0 0 0 0 1
## 777 3535.0 1 0 0 0 0
## 778 3509.0 1 0 0 0 0
## 779 5711.0 0 0 0 1 0
## 780 3872.0 1 0 0 0 0
## 781 4933.0 1 0 0 0 0
## 782 1940.0 0 0 0 1 0
## 783 1410.0 1 0 0 0 0
## 784 836.0 0 1 0 0 0
## 785 6468.0 0 0 0 0 1
## 786 1941.0 0 0 0 1 0
## 787 2675.0 0 0 1 0 0
## 788 2751.0 0 0 0 0 1
## 789 6224.0 1 0 0 0 0
## 790 5998.0 1 0 0 0 0
## 791 1188.0 1 0 0 0 0
## 792 6313.0 0 0 0 0 1
## 793 1221.0 0 0 0 0 1
## 794 2892.0 1 0 0 0 0
## 795 3062.0 0 0 1 0 0
## 796 2301.0 0 1 0 0 0
## 797 7511.0 0 0 0 0 1
## 798 1258.0 1 0 0 0 0
## 799 717.0 0 0 0 0 1
## 800 1549.0 0 0 0 0 1
## 801 1597.0 1 0 0 0 0
## 802 1795.0 1 0 0 0 0
## 803 4272.0 1 0 0 0 0
## 804 976.0 0 0 0 0 1
## 805 7472.0 0 0 0 0 1
## 806 9162.7 1 0 0 0 0
## 807 590.0 1 0 0 0 0
## 808 930.0 0 0 0 0 1
## 809 9162.7 1 0 0 0 0
## 810 1778.0 1 0 0 0 0
## 811 907.0 1 0 0 0 0
## 812 484.0 1 0 0 0 0
## 813 9162.7 1 0 0 0 0
## 814 3051.0 1 0 0 0 0
## 815 3931.0 1 0 0 0 0
## 816 7432.0 1 0 0 0 0
## 817 1338.0 0 0 1 0 0
## 818 1554.0 1 0 0 0 0
## 819 9162.7 1 0 0 0 0
## 820 1345.0 1 0 0 0 0
## 821 1101.0 1 0 0 0 0
## 822 3016.0 1 0 0 0 0
## 823 2712.0 1 0 0 0 0
## 824 731.0 1 0 0 0 0
## 825 3780.0 1 0 0 0 0
## 826 1602.0 1 0 0 0 0
## 827 3966.0 1 0 0 0 0
## 828 4165.0 1 0 0 0 0
## 829 8335.0 0 0 0 0 1
## 830 6681.0 0 0 0 0 1
## 831 2375.0 0 0 1 0 0
## 832 1216.0 1 0 0 0 0
## 833 9162.7 1 0 0 0 0
## 834 5084.0 0 0 0 0 1
## 835 2327.0 1 0 0 0 0
## 836 1082.0 1 0 0 0 0
## 837 886.0 0 0 0 0 1
## 838 601.0 1 0 0 0 0
## 839 2957.0 1 0 0 0 0
## 840 2611.0 1 0 0 0 0
## 841 5179.0 1 0 0 0 0
## 842 2993.0 1 0 0 0 0
## 843 1943.0 1 0 0 0 0
## 844 1559.0 1 0 0 0 0
## 845 3422.0 1 0 0 0 0
## 846 3976.0 0 0 0 0 1
## 847 6761.0 0 0 0 0 1
## 848 1249.0 1 0 0 0 0
## 849 1364.0 1 0 0 0 0
## 850 709.0 1 0 0 0 0
## 851 2235.0 1 0 0 0 0
## 852 4042.0 0 0 0 0 1
## 853 1471.0 1 0 0 0 0
## 854 1442.0 1 0 0 0 0
## 855 9162.7 1 0 0 0 0
## 856 1474.0 0 1 0 0 0
## 857 894.0 0 0 0 0 1
## 858 3343.0 1 0 0 0 0
## 859 3959.0 1 0 0 0 0
## 860 3577.0 0 1 0 0 0
## 861 5804.0 0 0 0 1 0
## 862 2169.0 1 0 0 0 0
## 863 2439.0 1 0 0 0 0
## 864 4526.0 0 0 0 1 0
## 865 2210.0 1 0 0 0 0
## 866 2221.0 0 0 1 0 0
## 867 2389.0 1 0 0 0 0
## 868 3331.0 1 0 0 0 0
## 869 7409.0 0 0 0 0 1
## 870 652.0 1 0 0 0 0
## 871 7678.0 0 0 1 0 0
## 872 1343.0 1 0 0 0 0
## 873 1382.0 0 1 0 0 0
## 874 874.0 0 0 0 0 1
## 875 3590.0 1 0 0 0 0
## 876 1322.0 0 0 0 1 0
## 877 1940.0 1 0 0 0 0
## 878 3595.0 1 0 0 0 0
## 879 1422.0 1 0 0 0 0
## 880 6742.0 0 0 0 0 1
## 881 7814.0 1 0 0 0 0
## 882 9162.7 0 0 0 0 1
## 883 2181.0 0 0 0 0 1
## 884 1098.0 1 0 0 0 0
## 885 4057.0 1 0 0 0 0
## 886 795.0 1 0 0 0 0
## 887 2825.0 0 0 0 0 1
## 888 9162.7 1 0 0 0 0
## 889 6614.0 1 0 0 0 0
## 890 7824.0 0 0 0 0 1
## 891 2442.0 1 0 0 0 0
## 892 1829.0 1 0 0 0 0
## 893 2171.0 1 0 0 0 0
## 894 5800.0 1 0 0 0 0
## 895 1169.0 0 0 0 0 1
## 896 8947.0 0 0 0 0 1
## 897 2606.0 1 0 0 0 0
## 898 1592.0 0 0 0 1 0
## 899 2186.0 0 0 0 0 1
## 900 4153.0 1 0 0 0 0
## 901 2625.0 1 0 0 0 0
## 902 3485.0 0 0 0 0 1
## 903 9162.7 0 0 0 0 1
## 904 1386.0 0 0 0 0 1
## 905 1278.0 1 0 0 0 0
## 906 1107.0 1 0 0 0 0
## 907 3763.0 0 0 0 0 1
## 908 3711.0 0 0 0 0 1
## 909 3594.0 1 0 0 0 0
## 910 3195.0 0 0 0 0 1
## 911 4454.0 1 0 0 0 0
## 912 4736.0 1 0 0 0 0
## 913 2991.0 0 0 0 0 1
## 914 2142.0 0 0 0 1 0
## 915 3161.0 1 0 0 0 0
## 916 9162.7 1 0 0 0 0
## 917 2848.0 0 1 0 0 0
## 918 9162.7 1 0 0 0 0
## 919 2359.0 0 1 0 0 0
## 920 3345.0 1 0 0 0 0
## 921 1817.0 1 0 0 0 0
## 922 9162.7 0 0 1 0 0
## 923 1366.0 1 0 0 0 0
## 924 2002.0 1 0 0 0 0
## 925 6872.0 1 0 0 0 0
## 926 697.0 1 0 0 0 0
## 927 1049.0 1 0 0 0 0
## 928 9162.7 1 0 0 0 0
## 929 1867.0 0 0 0 0 1
## 930 1344.0 1 0 0 0 0
## 931 1747.0 1 0 0 0 0
## 932 1670.0 1 0 0 0 0
## 933 1224.0 1 0 0 0 0
## 934 522.0 0 0 1 0 0
## 935 1498.0 1 0 0 0 0
## 936 1919.0 0 1 0 0 0
## 937 745.0 1 0 0 0 0
## 938 2063.0 1 0 0 0 0
## 939 6288.0 1 0 0 0 0
## 940 6842.0 0 0 0 0 1
## 941 3527.0 0 0 0 0 1
## 942 1546.0 1 0 0 0 0
## 943 929.0 0 0 0 0 1
## 944 1455.0 1 0 0 0 0
## 945 1845.0 1 0 0 0 0
## 946 8358.0 0 0 1 0 0
## 947 3349.0 0 0 1 0 0
## 948 2859.0 0 0 0 0 1
## 949 1533.0 1 0 0 0 0
## 950 3621.0 0 1 0 0 0
## 951 3590.0 1 0 0 0 0
## 952 2145.0 1 0 0 0 0
## 953 4113.0 0 0 1 0 0
## 954 9162.7 1 0 0 0 0
## 955 1893.0 1 0 0 0 0
## 956 1231.0 0 0 0 1 0
## 957 3656.0 0 0 0 0 1
## 958 1154.0 1 0 0 0 0
## 959 4006.0 1 0 0 0 0
## 960 3069.0 0 1 0 0 0
## 961 1740.0 1 0 0 0 0
## 962 2353.0 1 0 0 0 0
## 963 3556.0 0 0 0 0 1
## 964 2397.0 0 0 1 0 0
## 965 454.0 1 0 0 0 0
## 966 1715.0 0 0 0 0 1
## 967 2520.0 0 0 1 0 0
## 968 3568.0 1 0 0 0 0
## 969 7166.0 0 0 0 0 1
## 970 3939.0 1 0 0 0 0
## 971 1514.0 0 1 0 0 0
## 972 7393.0 1 0 0 0 0
## 973 1193.0 1 0 0 0 0
## 974 7297.0 1 0 0 0 0
## 975 2831.0 1 0 0 0 0
## 976 1258.0 0 0 1 0 0
## 977 753.0 1 0 0 0 0
## 978 2427.0 0 0 0 0 1
## 979 2538.0 1 0 0 0 0
## 980 1264.0 0 1 0 0 0
## 981 8386.0 1 0 0 0 0
## 982 4844.0 1 0 0 0 0
## 983 2923.0 0 1 0 0 0
## 984 8229.0 1 0 0 0 0
## 985 2028.0 1 0 0 0 0
## 986 1433.0 1 0 0 0 0
## 987 6289.0 1 0 0 0 0
## 988 1409.0 0 1 0 0 0
## 989 6579.0 1 0 0 0 0
## 990 1743.0 1 0 0 0 0
## 991 3565.0 0 0 0 0 1
## 992 1569.0 0 1 0 0 0
## 993 1936.0 0 0 0 0 1
## 994 3959.0 1 0 0 0 0
## 995 2390.0 0 0 0 0 1
## 996 1736.0 1 0 0 0 0
## 997 3857.0 1 0 0 0 0
## 998 804.0 1 0 0 0 0
## 999 1845.0 1 0 0 0 0
## 1000 4576.0 0 1 0 0 0
## employmentlengthA71 employmentlengthA72 employmentlengthA73
## 1 0 0 0
## 2 0 0 1
## 3 0 0 0
## 4 0 0 0
## 5 0 0 1
## 6 0 0 1
## 7 0 0 0
## 8 0 0 1
## 9 0 0 0
## 10 1 0 0
## 11 0 1 0
## 12 0 1 0
## 13 0 0 1
## 14 0 0 0
## 15 0 0 1
## 16 0 0 1
## 17 0 0 0
## 18 0 1 0
## 19 0 0 0
## 20 0 0 0
## 21 0 0 1
## 22 0 0 1
## 23 0 1 0
## 24 0 1 0
## 25 0 0 1
## 26 0 0 1
## 27 0 0 0
## 28 0 0 1
## 29 0 0 1
## 30 0 0 0
## 31 0 1 0
## 32 0 0 1
## 33 0 0 1
## 34 0 0 0
## 35 0 1 0
## 36 0 1 0
## 37 0 0 1
## 38 0 0 1
## 39 0 0 1
## 40 0 0 1
## 41 0 0 0
## 42 0 0 1
## 43 0 0 1
## 44 0 0 0
## 45 0 0 0
## 46 0 1 0
## 47 0 0 0
## 48 1 0 0
## 49 0 0 1
## 50 0 0 1
## 51 0 1 0
## 52 0 0 0
## 53 0 0 1
## 54 0 0 1
## 55 0 0 0
## 56 0 0 1
## 57 1 0 0
## 58 0 0 1
## 59 0 0 0
## 60 0 1 0
## 61 0 0 1
## 62 0 0 0
## 63 0 0 0
## 64 0 0 1
## 65 0 1 0
## 66 0 0 0
## 67 0 1 0
## 68 0 0 1
## 69 0 0 1
## 70 0 0 1
## 71 0 0 1
## 72 0 0 0
## 73 0 0 0
## 74 0 0 0
## 75 0 0 0
## 76 0 0 0
## 77 0 1 0
## 78 0 0 0
## 79 0 0 1
## 80 0 1 0
## 81 0 1 0
## 82 0 0 0
## 83 0 0 1
## 84 0 0 0
## 85 0 0 0
## 86 0 0 1
## 87 0 1 0
## 88 0 0 1
## 89 0 0 0
## 90 0 0 0
## 91 0 0 0
## 92 0 0 0
## 93 0 0 0
## 94 0 0 0
## 95 0 0 0
## 96 0 1 0
## 97 0 0 0
## 98 0 0 1
## 99 0 0 0
## 100 0 0 0
## 101 0 0 0
## 102 0 0 0
## 103 0 0 1
## 104 0 0 0
## 105 0 1 0
## 106 0 0 1
## 107 0 0 0
## 108 0 0 0
## 109 0 1 0
## 110 0 0 0
## 111 0 0 0
## 112 0 1 0
## 113 0 0 0
## 114 0 0 1
## 115 0 0 0
## 116 0 0 0
## 117 0 0 0
## 118 0 1 0
## 119 0 0 1
## 120 0 0 0
## 121 0 0 1
## 122 0 0 0
## 123 0 0 1
## 124 0 0 0
## 125 0 1 0
## 126 0 0 1
## 127 0 0 1
## 128 0 0 1
## 129 1 0 0
## 130 0 0 1
## 131 0 0 0
## 132 0 0 1
## 133 0 1 0
## 134 0 0 1
## 135 0 0 0
## 136 0 0 0
## 137 0 0 1
## 138 0 0 1
## 139 0 0 0
## 140 0 0 1
## 141 0 1 0
## 142 0 1 0
## 143 0 0 1
## 144 0 0 1
## 145 0 1 0
## 146 0 0 0
## 147 0 0 0
## 148 0 0 0
## 149 0 0 1
## 150 0 0 0
## 151 0 0 0
## 152 0 0 1
## 153 0 0 1
## 154 0 0 0
## 155 0 0 0
## 156 0 0 1
## 157 0 0 0
## 158 0 0 0
## 159 0 0 0
## 160 0 0 1
## 161 0 0 0
## 162 0 1 0
## 163 0 0 0
## 164 1 0 0
## 165 0 0 0
## 166 0 0 1
## 167 1 0 0
## 168 0 1 0
## 169 0 0 0
## 170 0 0 0
## 171 0 0 0
## 172 0 0 1
## 173 1 0 0
## 174 0 0 1
## 175 0 1 0
## 176 1 0 0
## 177 0 0 1
## 178 0 0 0
## 179 0 0 0
## 180 0 0 0
## 181 0 1 0
## 182 0 0 1
## 183 0 0 1
## 184 0 0 1
## 185 0 0 0
## 186 0 0 1
## 187 0 0 0
## 188 1 0 0
## 189 0 0 0
## 190 0 0 1
## 191 0 0 1
## 192 0 0 0
## 193 0 0 1
## 194 0 0 0
## 195 0 0 1
## 196 0 0 0
## 197 0 0 1
## 198 0 1 0
## 199 0 0 0
## 200 0 0 0
## 201 0 0 0
## 202 0 0 1
## 203 0 0 0
## 204 0 0 0
## 205 0 0 0
## 206 0 0 0
## 207 0 0 0
## 208 0 0 0
## 209 0 0 1
## 210 0 0 0
## 211 0 0 1
## 212 0 0 0
## 213 1 0 0
## 214 0 0 0
## 215 0 0 0
## 216 0 0 0
## 217 0 0 0
## 218 0 0 1
## 219 0 0 1
## 220 0 0 1
## 221 0 1 0
## 222 0 0 1
## 223 0 0 1
## 224 0 0 1
## 225 0 0 1
## 226 0 0 1
## 227 0 0 0
## 228 0 0 0
## 229 0 0 0
## 230 0 1 0
## 231 0 0 1
## 232 0 0 0
## 233 0 0 0
## 234 0 0 1
## 235 0 0 0
## 236 1 0 0
## 237 1 0 0
## 238 0 0 0
## 239 0 0 1
## 240 0 0 0
## 241 0 0 0
## 242 0 0 0
## 243 0 0 0
## 244 0 0 1
## 245 0 0 1
## 246 0 0 0
## 247 0 0 0
## 248 0 0 1
## 249 0 0 1
## 250 1 0 0
## 251 0 0 0
## 252 0 0 1
## 253 0 0 1
## 254 0 0 1
## 255 0 0 0
## 256 0 0 1
## 257 0 0 1
## 258 0 0 1
## 259 0 1 0
## 260 1 0 0
## 261 0 0 1
## 262 0 0 0
## 263 0 0 0
## 264 0 0 0
## 265 0 0 0
## 266 0 0 0
## 267 0 0 0
## 268 0 1 0
## 269 0 0 0
## 270 0 0 0
## 271 0 0 0
## 272 0 0 0
## 273 1 0 0
## 274 0 0 0
## 275 0 1 0
## 276 0 0 1
## 277 0 0 1
## 278 0 0 0
## 279 0 1 0
## 280 0 0 1
## 281 0 0 0
## 282 0 0 1
## 283 0 0 0
## 284 0 0 0
## 285 0 1 0
## 286 0 1 0
## 287 0 0 0
## 288 1 0 0
## 289 0 0 1
## 290 0 1 0
## 291 0 0 1
## 292 0 1 0
## 293 0 0 0
## 294 0 0 0
## 295 0 0 0
## 296 0 1 0
## 297 0 1 0
## 298 0 0 0
## 299 0 0 1
## 300 0 0 0
## 301 1 0 0
## 302 0 0 1
## 303 0 0 0
## 304 0 0 0
## 305 0 0 1
## 306 0 0 1
## 307 0 0 0
## 308 0 1 0
## 309 0 0 1
## 310 0 0 1
## 311 1 0 0
## 312 0 0 1
## 313 0 1 0
## 314 0 0 0
## 315 0 1 0
## 316 0 0 0
## 317 0 0 1
## 318 0 0 1
## 319 0 0 1
## 320 0 0 0
## 321 1 0 0
## 322 0 1 0
## 323 0 0 0
## 324 0 0 1
## 325 0 0 1
## 326 0 0 0
## 327 0 0 0
## 328 0 0 0
## 329 0 0 0
## 330 0 0 0
## 331 1 0 0
## 332 0 0 1
## 333 0 1 0
## 334 0 0 1
## 335 0 0 0
## 336 0 0 1
## 337 0 1 0
## 338 0 0 1
## 339 0 0 1
## 340 0 0 1
## 341 0 1 0
## 342 0 0 0
## 343 0 1 0
## 344 0 0 0
## 345 0 1 0
## 346 0 0 1
## 347 0 1 0
## 348 1 0 0
## 349 0 0 1
## 350 0 0 0
## 351 0 1 0
## 352 0 0 1
## 353 1 0 0
## 354 0 0 1
## 355 0 0 0
## 356 0 1 0
## 357 0 0 0
## 358 0 0 1
## 359 0 0 1
## 360 0 0 0
## 361 0 0 1
## 362 0 0 0
## 363 0 0 1
## 364 0 0 1
## 365 1 0 0
## 366 0 0 0
## 367 0 0 0
## 368 0 1 0
## 369 0 0 0
## 370 0 0 0
## 371 0 0 1
## 372 0 0 0
## 373 0 1 0
## 374 0 0 0
## 375 0 0 0
## 376 0 0 0
## 377 1 0 0
## 378 0 0 0
## 379 0 0 0
## 380 0 0 1
## 381 0 0 0
## 382 1 0 0
## 383 0 0 0
## 384 0 1 0
## 385 0 0 1
## 386 0 0 1
## 387 0 1 0
## 388 1 0 0
## 389 0 0 1
## 390 0 0 0
## 391 0 0 1
## 392 0 1 0
## 393 0 0 0
## 394 0 0 0
## 395 1 0 0
## 396 0 0 0
## 397 1 0 0
## 398 0 0 1
## 399 0 0 0
## 400 0 0 1
## 401 0 1 0
## 402 0 0 1
## 403 0 1 0
## 404 0 0 1
## 405 0 0 0
## 406 0 1 0
## 407 0 0 0
## 408 0 1 0
## 409 0 0 0
## 410 0 0 0
## 411 0 0 0
## 412 0 0 0
## 413 1 0 0
## 414 0 0 1
## 415 0 0 1
## 416 0 0 0
## 417 0 1 0
## 418 0 0 1
## 419 0 0 0
## 420 0 0 1
## 421 0 0 0
## 422 0 0 1
## 423 0 0 0
## 424 0 0 0
## 425 0 0 0
## 426 0 0 1
## 427 0 0 0
## 428 0 0 1
## 429 0 0 0
## 430 1 0 0
## 431 0 0 0
## 432 0 0 1
## 433 1 0 0
## 434 0 0 1
## 435 0 0 1
## 436 0 0 1
## 437 0 0 0
## 438 0 0 0
## 439 1 0 0
## 440 0 1 0
## 441 0 0 0
## 442 0 0 1
## 443 0 0 1
## 444 0 0 0
## 445 0 0 1
## 446 0 0 0
## 447 0 1 0
## 448 0 0 1
## 449 0 0 0
## 450 0 0 1
## 451 0 0 1
## 452 0 0 1
## 453 0 0 0
## 454 0 0 0
## 455 0 0 0
## 456 0 1 0
## 457 0 0 1
## 458 0 0 0
## 459 0 1 0
## 460 0 1 0
## 461 0 0 1
## 462 0 1 0
## 463 0 1 0
## 464 0 0 0
## 465 0 0 0
## 466 0 0 1
## 467 0 1 0
## 468 0 0 0
## 469 0 0 1
## 470 0 0 0
## 471 0 1 0
## 472 0 1 0
## 473 0 0 1
## 474 1 0 0
## 475 0 0 1
## 476 0 1 0
## 477 0 0 1
## 478 0 0 0
## 479 0 0 0
## 480 0 0 0
## 481 0 0 1
## 482 0 1 0
## 483 0 0 0
## 484 0 0 0
## 485 0 0 1
## 486 1 0 0
## 487 0 0 1
## 488 0 0 0
## 489 0 0 1
## 490 0 0 1
## 491 0 0 0
## 492 0 0 0
## 493 0 0 1
## 494 0 0 0
## 495 0 0 1
## 496 0 0 1
## 497 0 1 0
## 498 0 0 0
## 499 0 0 0
## 500 0 0 0
## 501 0 1 0
## 502 0 0 0
## 503 0 0 0
## 504 0 1 0
## 505 0 1 0
## 506 0 0 1
## 507 0 0 1
## 508 1 0 0
## 509 0 0 1
## 510 0 0 0
## 511 0 0 0
## 512 0 0 1
## 513 0 0 0
## 514 0 0 1
## 515 0 1 0
## 516 0 0 0
## 517 0 1 0
## 518 0 1 0
## 519 0 0 0
## 520 0 0 0
## 521 0 0 0
## 522 0 0 1
## 523 0 0 1
## 524 0 0 0
## 525 0 0 1
## 526 0 1 0
## 527 0 0 1
## 528 0 0 0
## 529 0 0 1
## 530 0 1 0
## 531 0 0 0
## 532 0 0 1
## 533 0 0 1
## 534 0 0 0
## 535 0 1 0
## 536 0 1 0
## 537 1 0 0
## 538 0 0 0
## 539 0 0 0
## 540 0 1 0
## 541 0 1 0
## 542 0 0 0
## 543 0 0 0
## 544 0 0 1
## 545 0 0 0
## 546 1 0 0
## 547 0 0 1
## 548 0 0 0
## 549 0 0 1
## 550 0 0 0
## 551 0 0 0
## 552 0 0 0
## 553 0 0 0
## 554 0 1 0
## 555 0 0 0
## 556 0 1 0
## 557 0 1 0
## 558 0 0 1
## 559 0 0 0
## 560 0 1 0
## 561 0 0 0
## 562 0 0 0
## 563 0 1 0
## 564 0 0 1
## 565 0 0 1
## 566 0 0 0
## 567 0 0 0
## 568 0 0 0
## 569 0 0 0
## 570 0 0 1
## 571 0 1 0
## 572 0 0 0
## 573 1 0 0
## 574 0 0 1
## 575 0 0 0
## 576 0 0 0
## 577 0 0 0
## 578 0 0 1
## 579 0 1 0
## 580 0 1 0
## 581 0 0 0
## 582 0 1 0
## 583 0 0 1
## 584 0 1 0
## 585 0 0 0
## 586 0 0 1
## 587 0 0 1
## 588 0 0 1
## 589 0 0 1
## 590 0 0 0
## 591 0 0 0
## 592 0 0 1
## 593 0 0 0
## 594 0 0 1
## 595 0 0 0
## 596 0 1 0
## 597 0 0 0
## 598 0 0 1
## 599 0 0 0
## 600 0 0 1
## 601 0 1 0
## 602 0 0 1
## 603 0 0 0
## 604 0 0 1
## 605 0 1 0
## 606 0 0 1
## 607 0 0 1
## 608 0 0 1
## 609 0 1 0
## 610 0 0 0
## 611 1 0 0
## 612 0 0 0
## 613 0 1 0
## 614 0 0 1
## 615 0 0 0
## 616 0 0 1
## 617 0 0 1
## 618 0 0 1
## 619 0 0 1
## 620 0 0 1
## 621 0 0 0
## 622 0 0 1
## 623 0 0 1
## 624 0 1 0
## 625 0 0 1
## 626 0 0 0
## 627 0 0 1
## 628 0 0 0
## 629 0 0 1
## 630 0 0 0
## 631 0 0 1
## 632 0 0 1
## 633 0 1 0
## 634 0 1 0
## 635 0 1 0
## 636 0 0 0
## 637 0 0 0
## 638 0 0 0
## 639 0 1 0
## 640 0 0 0
## 641 1 0 0
## 642 0 0 0
## 643 0 0 1
## 644 0 0 0
## 645 0 0 0
## 646 0 1 0
## 647 0 0 1
## 648 0 0 1
## 649 0 0 0
## 650 0 0 1
## 651 0 0 0
## 652 0 0 1
## 653 0 0 0
## 654 0 0 0
## 655 0 0 0
## 656 1 0 0
## 657 0 0 0
## 658 0 0 0
## 659 0 0 1
## 660 0 0 0
## 661 0 0 1
## 662 0 0 1
## 663 0 0 0
## 664 1 0 0
## 665 0 0 1
## 666 1 0 0
## 667 0 0 1
## 668 0 0 1
## 669 0 0 0
## 670 0 0 0
## 671 0 0 1
## 672 0 0 0
## 673 0 0 0
## 674 0 0 1
## 675 0 1 0
## 676 0 0 0
## 677 0 0 0
## 678 0 0 1
## 679 0 0 0
## 680 0 1 0
## 681 0 1 0
## 682 0 0 1
## 683 0 0 1
## 684 0 1 0
## 685 0 0 0
## 686 0 0 1
## 687 0 0 0
## 688 0 0 0
## 689 0 0 0
## 690 0 0 1
## 691 0 0 1
## 692 0 0 1
## 693 0 1 0
## 694 0 1 0
## 695 0 0 0
## 696 0 0 1
## 697 0 0 0
## 698 1 0 0
## 699 0 0 1
## 700 0 0 0
## 701 0 0 1
## 702 0 0 0
## 703 0 0 0
## 704 0 0 0
## 705 0 1 0
## 706 0 0 0
## 707 0 0 0
## 708 0 1 0
## 709 0 0 0
## 710 0 0 1
## 711 0 0 0
## 712 0 0 0
## 713 0 0 0
## 714 0 0 1
## 715 0 0 0
## 716 0 0 0
## 717 0 0 0
## 718 0 0 1
## 719 0 0 1
## 720 0 0 0
## 721 0 1 0
## 722 0 1 0
## 723 0 0 1
## 724 0 0 1
## 725 0 0 1
## 726 0 0 1
## 727 0 0 1
## 728 0 0 1
## 729 0 0 0
## 730 0 0 1
## 731 0 1 0
## 732 0 0 1
## 733 0 0 0
## 734 0 0 1
## 735 0 0 0
## 736 0 1 0
## 737 0 0 1
## 738 0 0 1
## 739 0 0 0
## 740 0 0 1
## 741 0 0 0
## 742 0 0 1
## 743 0 0 0
## 744 0 0 1
## 745 0 0 0
## 746 0 1 0
## 747 1 0 0
## 748 0 1 0
## 749 0 0 1
## 750 0 0 0
## 751 0 0 0
## 752 0 1 0
## 753 0 0 0
## 754 0 0 0
## 755 0 0 0
## 756 0 0 0
## 757 0 0 1
## 758 0 0 1
## 759 0 0 1
## 760 0 0 0
## 761 0 0 0
## 762 0 0 1
## 763 0 0 1
## 764 0 0 0
## 765 0 0 0
## 766 0 0 0
## 767 0 1 0
## 768 0 1 0
## 769 0 0 0
## 770 0 0 0
## 771 0 0 0
## 772 0 0 1
## 773 0 0 0
## 774 0 0 0
## 775 1 0 0
## 776 0 0 1
## 777 0 0 0
## 778 0 0 0
## 779 0 0 0
## 780 1 0 0
## 781 0 0 0
## 782 0 0 0
## 783 0 0 1
## 784 0 1 0
## 785 1 0 0
## 786 0 0 1
## 787 0 0 0
## 788 0 0 0
## 789 0 0 0
## 790 0 0 1
## 791 0 0 0
## 792 0 0 0
## 793 0 0 1
## 794 0 0 0
## 795 0 0 0
## 796 0 1 0
## 797 0 0 0
## 798 0 1 0
## 799 0 0 0
## 800 0 1 0
## 801 0 0 0
## 802 0 0 0
## 803 0 0 0
## 804 0 0 0
## 805 1 0 0
## 806 0 0 0
## 807 0 1 0
## 808 0 0 0
## 809 1 0 0
## 810 0 1 0
## 811 0 1 0
## 812 0 0 0
## 813 0 0 0
## 814 0 0 1
## 815 0 0 0
## 816 0 0 1
## 817 0 0 1
## 818 0 0 0
## 819 1 0 0
## 820 0 0 1
## 821 0 0 1
## 822 0 0 1
## 823 0 0 0
## 824 0 0 0
## 825 0 1 0
## 826 0 0 0
## 827 0 0 0
## 828 0 0 1
## 829 0 0 0
## 830 0 0 1
## 831 0 0 1
## 832 0 1 0
## 833 0 0 0
## 834 0 0 0
## 835 0 1 0
## 836 0 0 1
## 837 0 0 1
## 838 0 1 0
## 839 0 0 0
## 840 0 0 0
## 841 0 0 0
## 842 0 0 1
## 843 0 1 0
## 844 0 0 0
## 845 0 0 0
## 846 0 0 0
## 847 0 0 1
## 848 0 1 0
## 849 0 0 0
## 850 0 0 0
## 851 0 0 1
## 852 0 0 0
## 853 0 0 1
## 854 0 0 0
## 855 0 0 0
## 856 0 1 0
## 857 0 0 0
## 858 0 0 1
## 859 0 0 1
## 860 0 0 1
## 861 0 0 1
## 862 0 0 1
## 863 0 1 0
## 864 0 1 0
## 865 0 0 1
## 866 0 0 1
## 867 0 1 0
## 868 0 0 0
## 869 0 0 0
## 870 0 0 0
## 871 0 0 0
## 872 0 0 0
## 873 0 0 0
## 874 0 1 0
## 875 0 0 1
## 876 0 0 1
## 877 0 1 0
## 878 0 0 0
## 879 0 1 0
## 880 0 0 0
## 881 0 0 0
## 882 0 0 1
## 883 0 0 0
## 884 1 0 0
## 885 0 0 0
## 886 0 1 0
## 887 0 0 0
## 888 0 0 1
## 889 0 0 0
## 890 0 1 0
## 891 0 0 0
## 892 0 0 0
## 893 0 0 1
## 894 0 0 1
## 895 0 0 1
## 896 0 0 0
## 897 0 1 0
## 898 0 0 0
## 899 0 0 0
## 900 0 0 1
## 901 0 0 0
## 902 0 1 0
## 903 0 0 0
## 904 0 0 1
## 905 0 0 0
## 906 0 0 1
## 907 0 0 0
## 908 0 0 1
## 909 0 1 0
## 910 0 0 1
## 911 0 0 1
## 912 0 1 0
## 913 0 0 0
## 914 0 0 0
## 915 0 0 1
## 916 0 0 1
## 917 0 0 1
## 918 0 0 0
## 919 1 0 0
## 920 0 0 0
## 921 0 0 1
## 922 0 0 0
## 923 0 1 0
## 924 0 0 0
## 925 0 1 0
## 926 0 1 0
## 927 0 1 0
## 928 0 0 0
## 929 0 0 0
## 930 0 0 1
## 931 0 1 0
## 932 0 1 0
## 933 0 0 1
## 934 0 0 0
## 935 0 0 1
## 936 0 1 0
## 937 0 0 1
## 938 0 1 0
## 939 0 0 1
## 940 0 0 1
## 941 0 1 0
## 942 0 0 1
## 943 0 0 0
## 944 0 0 0
## 945 0 1 0
## 946 0 1 0
## 947 0 1 0
## 948 1 0 0
## 949 0 1 0
## 950 0 0 0
## 951 1 0 0
## 952 0 0 0
## 953 0 1 0
## 954 1 0 0
## 955 0 0 1
## 956 0 0 0
## 957 0 0 0
## 958 0 0 0
## 959 0 0 1
## 960 0 0 0
## 961 0 0 0
## 962 0 0 1
## 963 0 0 1
## 964 0 0 0
## 965 0 1 0
## 966 0 0 1
## 967 0 0 1
## 968 0 0 0
## 969 0 0 0
## 970 0 0 1
## 971 0 0 1
## 972 0 0 1
## 973 1 0 0
## 974 0 0 0
## 975 0 0 1
## 976 0 0 1
## 977 0 0 1
## 978 0 0 0
## 979 0 0 0
## 980 0 0 1
## 981 0 0 0
## 982 1 0 0
## 983 0 0 1
## 984 0 0 1
## 985 0 0 0
## 986 0 0 1
## 987 0 1 0
## 988 1 0 0
## 989 1 0 0
## 990 0 0 0
## 991 0 1 0
## 992 0 0 0
## 993 0 0 0
## 994 1 0 0
## 995 0 0 0
## 996 0 0 0
## 997 0 0 1
## 998 0 0 0
## 999 0 0 1
## 1000 1 0 0
## employmentlengthA74 employmentlengthA75 installmentrate
## 1 0 1 4
## 2 0 0 2
## 3 1 0 2
## 4 1 0 2
## 5 0 0 3
## 6 0 0 2
## 7 0 1 3
## 8 0 0 2
## 9 1 0 2
## 10 0 0 4
## 11 0 0 3
## 12 0 0 3
## 13 0 0 1
## 14 0 1 4
## 15 0 0 2
## 16 0 0 4
## 17 0 1 4
## 18 0 0 2
## 19 0 1 4
## 20 0 1 3
## 21 0 0 4
## 22 0 0 2
## 23 0 0 1
## 24 0 0 3
## 25 0 0 2
## 26 0 0 1
## 27 0 1 4
## 28 0 0 3
## 29 0 0 3
## 30 0 1 3
## 31 0 0 3
## 32 0 0 2
## 33 0 0 2
## 34 0 1 4
## 35 0 0 4
## 36 0 0 4
## 37 0 0 1
## 38 0 0 4
## 39 0 0 2
## 40 0 0 4
## 41 0 1 4
## 42 0 0 3
## 43 0 0 2
## 44 1 0 1
## 45 0 1 4
## 46 0 0 4
## 47 0 1 4
## 48 0 0 1
## 49 0 0 1
## 50 0 0 4
## 51 0 0 4
## 52 0 1 1
## 53 0 0 3
## 54 0 0 2
## 55 0 1 4
## 56 0 0 1
## 57 0 0 2
## 58 0 0 2
## 59 0 1 3
## 60 0 0 4
## 61 0 0 2
## 62 0 1 4
## 63 0 1 4
## 64 0 0 2
## 65 0 0 4
## 66 0 1 4
## 67 0 0 2
## 68 0 0 4
## 69 0 0 4
## 70 0 0 4
## 71 0 0 1
## 72 0 1 4
## 73 0 1 3
## 74 1 0 2
## 75 0 1 4
## 76 0 1 4
## 77 0 0 4
## 78 1 0 2
## 79 0 0 2
## 80 0 0 2
## 81 0 0 1
## 82 0 1 4
## 83 0 0 3
## 84 0 1 4
## 85 0 1 3
## 86 0 0 4
## 87 0 0 4
## 88 0 0 1
## 89 1 0 4
## 90 1 0 4
## 91 0 1 4
## 92 0 1 4
## 93 0 1 4
## 94 0 1 4
## 95 0 1 4
## 96 0 0 3
## 97 1 0 4
## 98 0 0 4
## 99 0 1 4
## 100 1 0 3
## 101 0 1 4
## 102 1 0 4
## 103 0 0 3
## 104 1 0 4
## 105 0 0 2
## 106 0 0 2
## 107 0 1 2
## 108 1 0 2
## 109 0 0 1
## 110 0 1 1
## 111 0 1 1
## 112 0 0 4
## 113 1 0 3
## 114 0 0 4
## 115 0 1 3
## 116 0 1 4
## 117 1 0 4
## 118 0 0 2
## 119 0 0 1
## 120 1 0 3
## 121 0 0 3
## 122 0 1 4
## 123 0 0 3
## 124 0 1 4
## 125 0 0 4
## 126 0 0 4
## 127 0 0 4
## 128 0 0 4
## 129 0 0 4
## 130 0 0 3
## 131 1 0 1
## 132 0 0 4
## 133 0 0 2
## 134 0 0 4
## 135 1 0 2
## 136 0 1 4
## 137 0 0 2
## 138 0 0 4
## 139 1 0 4
## 140 0 0 2
## 141 0 0 2
## 142 0 0 4
## 143 0 0 3
## 144 0 0 2
## 145 0 0 4
## 146 1 0 4
## 147 0 1 1
## 148 1 0 4
## 149 0 0 3
## 150 0 1 4
## 151 0 1 2
## 152 0 0 1
## 153 0 0 4
## 154 0 1 2
## 155 1 0 4
## 156 0 0 2
## 157 0 1 3
## 158 0 1 4
## 159 1 0 2
## 160 0 0 1
## 161 0 1 3
## 162 0 0 4
## 163 1 0 4
## 164 0 0 2
## 165 0 1 4
## 166 0 0 1
## 167 0 0 4
## 168 0 0 4
## 169 1 0 2
## 170 0 1 4
## 171 0 1 4
## 172 0 0 4
## 173 0 0 3
## 174 0 0 4
## 175 0 0 2
## 176 0 0 4
## 177 0 0 2
## 178 0 1 4
## 179 1 0 4
## 180 0 1 4
## 181 0 0 1
## 182 0 0 2
## 183 0 0 4
## 184 0 0 4
## 185 0 1 4
## 186 0 0 4
## 187 0 1 2
## 188 0 0 2
## 189 1 0 4
## 190 0 0 1
## 191 0 0 2
## 192 1 0 4
## 193 0 0 4
## 194 1 0 2
## 195 0 0 4
## 196 0 1 2
## 197 0 0 1
## 198 0 0 4
## 199 0 1 4
## 200 0 1 4
## 201 0 1 4
## 202 0 0 4
## 203 1 0 3
## 204 1 0 4
## 205 0 1 4
## 206 0 1 3
## 207 0 1 4
## 208 1 0 4
## 209 0 0 2
## 210 1 0 3
## 211 0 0 1
## 212 0 1 2
## 213 0 0 2
## 214 0 1 4
## 215 0 1 4
## 216 1 0 1
## 217 1 0 3
## 218 0 0 2
## 219 0 0 2
## 220 0 0 2
## 221 0 0 4
## 222 0 0 4
## 223 0 0 4
## 224 0 0 4
## 225 0 0 3
## 226 0 0 4
## 227 1 0 1
## 228 0 1 4
## 229 1 0 4
## 230 0 0 4
## 231 0 0 4
## 232 0 1 2
## 233 1 0 3
## 234 0 0 4
## 235 1 0 2
## 236 0 0 4
## 237 0 0 1
## 238 0 1 4
## 239 0 0 4
## 240 0 1 1
## 241 0 1 4
## 242 1 0 3
## 243 0 1 3
## 244 0 0 3
## 245 0 0 4
## 246 1 0 4
## 247 0 1 4
## 248 0 0 4
## 249 0 0 2
## 250 0 0 3
## 251 1 0 3
## 252 0 0 1
## 253 0 0 4
## 254 0 0 2
## 255 1 0 2
## 256 0 0 1
## 257 0 0 4
## 258 0 0 4
## 259 0 0 1
## 260 0 0 4
## 261 0 0 2
## 262 0 1 4
## 263 0 1 2
## 264 0 1 2
## 265 0 1 3
## 266 0 1 4
## 267 0 1 4
## 268 0 0 4
## 269 0 1 1
## 270 0 1 4
## 271 1 0 4
## 272 1 0 3
## 273 0 0 4
## 274 1 0 4
## 275 0 0 1
## 276 0 0 1
## 277 0 0 2
## 278 0 1 2
## 279 0 0 1
## 280 0 0 4
## 281 0 1 3
## 282 0 0 4
## 283 1 0 4
## 284 0 1 4
## 285 0 0 4
## 286 0 0 1
## 287 1 0 4
## 288 0 0 2
## 289 0 0 4
## 290 0 0 4
## 291 0 0 2
## 292 0 0 1
## 293 0 1 2
## 294 0 1 4
## 295 0 1 4
## 296 0 0 1
## 297 0 0 1
## 298 0 1 4
## 299 0 0 3
## 300 1 0 3
## 301 0 0 1
## 302 0 0 4
## 303 1 0 4
## 304 1 0 4
## 305 0 0 2
## 306 0 0 4
## 307 1 0 2
## 308 0 0 4
## 309 0 0 3
## 310 0 0 4
## 311 0 0 3
## 312 0 0 4
## 313 0 0 2
## 314 1 0 2
## 315 0 0 1
## 316 0 1 4
## 317 0 0 2
## 318 0 0 1
## 319 0 0 4
## 320 0 1 1
## 321 0 0 4
## 322 0 0 4
## 323 1 0 2
## 324 0 0 4
## 325 0 0 4
## 326 1 0 1
## 327 0 1 2
## 328 1 0 4
## 329 0 1 4
## 330 0 1 4
## 331 0 0 2
## 332 0 0 4
## 333 0 0 4
## 334 0 0 2
## 335 0 1 3
## 336 0 0 1
## 337 0 0 2
## 338 0 0 4
## 339 0 0 4
## 340 0 0 4
## 341 0 0 2
## 342 1 0 1
## 343 0 0 1
## 344 0 1 1
## 345 0 0 1
## 346 0 0 4
## 347 0 0 4
## 348 0 0 1
## 349 0 0 1
## 350 0 1 4
## 351 0 0 1
## 352 0 0 1
## 353 0 0 2
## 354 0 0 4
## 355 0 1 4
## 356 0 0 4
## 357 0 1 1
## 358 0 0 4
## 359 0 0 4
## 360 1 0 4
## 361 0 0 4
## 362 0 1 2
## 363 0 0 2
## 364 0 0 1
## 365 0 0 4
## 366 1 0 2
## 367 1 0 3
## 368 0 0 1
## 369 0 1 4
## 370 1 0 2
## 371 0 0 4
## 372 0 1 3
## 373 0 0 1
## 374 0 1 2
## 375 0 1 3
## 376 1 0 2
## 377 0 0 2
## 378 0 1 3
## 379 0 1 4
## 380 0 0 4
## 381 1 0 4
## 382 0 0 3
## 383 1 0 4
## 384 0 0 4
## 385 0 0 2
## 386 0 0 2
## 387 0 0 4
## 388 0 0 4
## 389 0 0 2
## 390 1 0 3
## 391 0 0 2
## 392 0 0 1
## 393 1 0 2
## 394 1 0 1
## 395 0 0 2
## 396 1 0 2
## 397 0 0 3
## 398 0 0 3
## 399 0 1 1
## 400 0 0 4
## 401 0 0 3
## 402 0 0 4
## 403 0 0 2
## 404 0 0 4
## 405 0 1 4
## 406 0 0 1
## 407 1 0 4
## 408 0 0 4
## 409 0 1 3
## 410 1 0 4
## 411 0 1 4
## 412 1 0 3
## 413 0 0 4
## 414 0 0 3
## 415 0 0 4
## 416 0 1 2
## 417 0 0 4
## 418 0 0 1
## 419 1 0 1
## 420 0 0 4
## 421 1 0 2
## 422 0 0 4
## 423 1 0 2
## 424 1 0 4
## 425 0 1 1
## 426 0 0 1
## 427 0 1 4
## 428 0 0 4
## 429 0 1 1
## 430 0 0 2
## 431 1 0 1
## 432 0 0 2
## 433 0 0 4
## 434 0 0 4
## 435 0 0 3
## 436 0 0 2
## 437 1 0 2
## 438 0 1 4
## 439 0 0 4
## 440 0 0 4
## 441 0 1 4
## 442 0 0 2
## 443 0 0 2
## 444 0 1 4
## 445 0 0 2
## 446 0 1 4
## 447 0 0 4
## 448 0 0 2
## 449 0 1 3
## 450 0 0 3
## 451 0 0 4
## 452 0 0 3
## 453 0 1 2
## 454 0 1 4
## 455 1 0 2
## 456 0 0 4
## 457 0 0 2
## 458 0 1 3
## 459 0 0 4
## 460 0 0 3
## 461 0 0 1
## 462 0 0 2
## 463 0 0 3
## 464 0 1 4
## 465 1 0 4
## 466 0 0 3
## 467 0 0 4
## 468 0 1 3
## 469 0 0 2
## 470 1 0 3
## 471 0 0 3
## 472 0 0 4
## 473 0 0 4
## 474 0 0 4
## 475 0 0 4
## 476 0 0 1
## 477 0 0 4
## 478 1 0 4
## 479 1 0 3
## 480 0 1 4
## 481 0 0 1
## 482 0 0 4
## 483 0 1 4
## 484 1 0 3
## 485 0 0 4
## 486 0 0 4
## 487 0 0 2
## 488 0 1 4
## 489 0 0 3
## 490 0 0 2
## 491 0 1 2
## 492 0 1 2
## 493 0 0 1
## 494 0 1 4
## 495 0 0 3
## 496 0 0 2
## 497 0 0 4
## 498 1 0 4
## 499 0 1 4
## 500 0 1 2
## 501 0 0 4
## 502 0 1 2
## 503 0 1 2
## 504 0 0 4
## 505 0 0 4
## 506 0 0 4
## 507 0 0 2
## 508 0 0 1
## 509 0 0 4
## 510 0 1 4
## 511 1 0 4
## 512 0 0 2
## 513 1 0 2
## 514 0 0 4
## 515 0 0 4
## 516 1 0 4
## 517 0 0 2
## 518 0 0 2
## 519 0 1 3
## 520 0 1 4
## 521 0 1 3
## 522 0 0 2
## 523 0 0 3
## 524 1 0 3
## 525 0 0 4
## 526 0 0 2
## 527 0 0 4
## 528 1 0 2
## 529 0 0 4
## 530 0 0 3
## 531 1 0 3
## 532 0 0 2
## 533 0 0 4
## 534 1 0 4
## 535 0 0 4
## 536 0 0 2
## 537 0 0 4
## 538 0 1 3
## 539 0 1 4
## 540 0 0 1
## 541 0 0 1
## 542 0 1 4
## 543 0 1 4
## 544 0 0 2
## 545 0 1 4
## 546 0 0 4
## 547 0 0 4
## 548 1 0 3
## 549 0 0 4
## 550 1 0 2
## 551 1 0 4
## 552 0 1 2
## 553 1 0 1
## 554 0 0 4
## 555 1 0 4
## 556 0 0 2
## 557 0 0 3
## 558 0 0 1
## 559 1 0 3
## 560 0 0 2
## 561 0 1 4
## 562 1 0 4
## 563 0 0 2
## 564 0 0 1
## 565 0 0 4
## 566 1 0 3
## 567 1 0 2
## 568 0 1 2
## 569 1 0 4
## 570 0 0 3
## 571 0 0 4
## 572 1 0 3
## 573 0 0 2
## 574 0 0 4
## 575 0 1 4
## 576 1 0 2
## 577 1 0 2
## 578 0 0 3
## 579 0 0 4
## 580 0 0 4
## 581 0 1 3
## 582 0 0 1
## 583 0 0 4
## 584 0 0 4
## 585 0 1 4
## 586 0 0 1
## 587 0 0 2
## 588 0 0 4
## 589 0 0 4
## 590 0 1 3
## 591 1 0 4
## 592 0 0 4
## 593 0 1 4
## 594 0 0 3
## 595 0 1 4
## 596 0 0 1
## 597 1 0 4
## 598 0 0 1
## 599 1 0 2
## 600 0 0 1
## 601 0 0 1
## 602 0 0 4
## 603 1 0 4
## 604 0 0 4
## 605 0 0 4
## 606 0 0 4
## 607 0 0 3
## 608 0 0 4
## 609 0 0 4
## 610 0 1 4
## 611 0 0 4
## 612 0 1 1
## 613 0 0 4
## 614 0 0 1
## 615 1 0 4
## 616 0 0 2
## 617 0 0 2
## 618 0 0 1
## 619 0 0 2
## 620 0 0 4
## 621 1 0 2
## 622 0 0 3
## 623 0 0 4
## 624 0 0 4
## 625 0 0 4
## 626 0 1 4
## 627 0 0 2
## 628 1 0 2
## 629 0 0 4
## 630 0 1 1
## 631 0 0 2
## 632 0 0 4
## 633 0 0 4
## 634 0 0 2
## 635 0 0 3
## 636 0 1 4
## 637 1 0 4
## 638 1 0 2
## 639 0 0 4
## 640 1 0 3
## 641 0 0 4
## 642 0 1 4
## 643 0 0 3
## 644 1 0 4
## 645 1 0 4
## 646 0 0 4
## 647 0 0 2
## 648 0 0 2
## 649 1 0 4
## 650 0 0 4
## 651 1 0 4
## 652 0 0 4
## 653 0 1 4
## 654 0 1 2
## 655 1 0 4
## 656 0 0 1
## 657 0 1 4
## 658 1 0 4
## 659 0 0 2
## 660 0 1 2
## 661 0 0 3
## 662 0 0 4
## 663 0 1 4
## 664 0 0 4
## 665 0 0 2
## 666 0 0 4
## 667 0 0 4
## 668 0 0 1
## 669 0 1 3
## 670 0 1 4
## 671 0 0 3
## 672 1 0 2
## 673 0 1 2
## 674 0 0 1
## 675 0 0 4
## 676 1 0 4
## 677 0 1 4
## 678 0 0 2
## 679 0 1 4
## 680 0 0 3
## 681 0 0 1
## 682 0 0 4
## 683 0 0 4
## 684 0 0 3
## 685 1 0 1
## 686 0 0 4
## 687 1 0 4
## 688 0 1 4
## 689 0 1 3
## 690 0 0 1
## 691 0 0 2
## 692 0 0 3
## 693 0 0 2
## 694 0 0 1
## 695 1 0 4
## 696 0 0 2
## 697 1 0 4
## 698 0 0 1
## 699 0 0 4
## 700 0 1 4
## 701 0 0 4
## 702 0 1 4
## 703 0 1 4
## 704 0 1 4
## 705 0 0 4
## 706 0 1 1
## 707 1 0 3
## 708 0 0 4
## 709 0 1 4
## 710 0 0 2
## 711 0 1 4
## 712 0 1 4
## 713 0 1 4
## 714 0 0 4
## 715 1 0 4
## 716 0 1 1
## 717 0 1 3
## 718 0 0 4
## 719 0 0 3
## 720 0 1 3
## 721 0 0 4
## 722 0 0 4
## 723 0 0 4
## 724 0 0 4
## 725 0 0 3
## 726 0 0 2
## 727 0 0 2
## 728 0 0 4
## 729 0 1 4
## 730 0 0 2
## 731 0 0 1
## 732 0 0 2
## 733 1 0 4
## 734 0 0 2
## 735 1 0 1
## 736 0 0 3
## 737 0 0 1
## 738 0 0 3
## 739 1 0 1
## 740 0 0 4
## 741 1 0 2
## 742 0 0 4
## 743 0 1 4
## 744 0 0 4
## 745 1 0 4
## 746 0 0 3
## 747 0 0 1
## 748 0 0 3
## 749 0 0 1
## 750 1 0 2
## 751 0 1 2
## 752 0 0 1
## 753 1 0 2
## 754 1 0 4
## 755 0 1 4
## 756 1 0 4
## 757 0 0 1
## 758 0 0 3
## 759 0 0 2
## 760 0 1 4
## 761 0 1 1
## 762 0 0 4
## 763 0 0 4
## 764 0 1 4
## 765 1 0 4
## 766 0 1 3
## 767 0 0 2
## 768 0 0 1
## 769 0 1 1
## 770 0 1 2
## 771 0 1 2
## 772 0 0 3
## 773 0 1 1
## 774 0 1 4
## 775 0 0 2
## 776 0 0 4
## 777 1 0 4
## 778 1 0 4
## 779 0 1 4
## 780 0 0 2
## 781 1 0 2
## 782 0 1 4
## 783 0 0 2
## 784 0 0 4
## 785 0 0 1
## 786 0 0 4
## 787 0 1 3
## 788 0 1 4
## 789 0 1 4
## 790 0 0 4
## 791 0 1 2
## 792 0 1 3
## 793 0 0 1
## 794 0 1 3
## 795 0 1 4
## 796 0 0 2
## 797 0 1 1
## 798 0 0 2
## 799 0 1 4
## 800 0 0 4
## 801 0 1 4
## 802 0 1 3
## 803 0 1 1
## 804 0 1 4
## 805 0 0 1
## 806 1 0 2
## 807 0 0 3
## 808 0 1 4
## 809 0 0 1
## 810 0 0 2
## 811 0 0 3
## 812 1 0 3
## 813 1 0 4
## 814 0 0 3
## 815 1 0 4
## 816 0 0 2
## 817 0 0 1
## 818 1 0 1
## 819 0 0 2
## 820 0 0 4
## 821 0 0 3
## 822 0 0 3
## 823 0 1 2
## 824 0 1 4
## 825 0 0 3
## 826 0 1 4
## 827 0 1 1
## 828 0 0 2
## 829 0 1 3
## 830 0 0 4
## 831 0 0 4
## 832 0 0 4
## 833 0 1 2
## 834 0 1 2
## 835 0 0 2
## 836 0 0 4
## 837 0 0 4
## 838 0 0 1
## 839 0 1 4
## 840 0 1 4
## 841 1 0 4
## 842 0 0 3
## 843 0 0 4
## 844 1 0 4
## 845 0 1 4
## 846 1 0 2
## 847 0 0 2
## 848 0 0 4
## 849 1 0 3
## 850 0 1 4
## 851 0 0 4
## 852 1 0 3
## 853 0 0 4
## 854 1 0 4
## 855 0 1 2
## 856 0 0 4
## 857 1 0 4
## 858 0 0 4
## 859 0 0 3
## 860 0 0 1
## 861 0 0 4
## 862 0 0 4
## 863 0 0 4
## 864 0 0 4
## 865 0 0 2
## 866 0 0 2
## 867 0 0 4
## 868 0 1 2
## 869 0 1 3
## 870 0 1 4
## 871 1 0 2
## 872 0 1 1
## 873 1 0 4
## 874 0 0 4
## 875 0 0 2
## 876 0 0 4
## 877 0 0 3
## 878 0 1 4
## 879 0 0 3
## 880 1 0 2
## 881 1 0 3
## 882 0 0 2
## 883 0 1 4
## 884 0 0 4
## 885 1 0 3
## 886 0 0 4
## 887 1 0 4
## 888 0 0 2
## 889 0 1 4
## 890 0 0 3
## 891 0 1 4
## 892 0 1 4
## 893 0 0 4
## 894 0 0 3
## 895 0 0 4
## 896 1 0 3
## 897 0 0 4
## 898 1 0 3
## 899 1 0 1
## 900 0 0 2
## 901 0 1 2
## 902 0 0 2
## 903 0 1 2
## 904 0 0 4
## 905 0 1 4
## 906 0 0 2
## 907 1 0 2
## 908 0 0 2
## 909 0 0 1
## 910 0 0 1
## 911 0 0 4
## 912 0 0 2
## 913 0 1 2
## 914 0 1 1
## 915 0 0 4
## 916 0 0 1
## 917 0 0 1
## 918 0 1 1
## 919 0 0 1
## 920 0 1 4
## 921 0 0 4
## 922 1 0 4
## 923 0 0 3
## 924 1 0 3
## 925 0 0 2
## 926 0 0 4
## 927 0 0 4
## 928 1 0 4
## 929 0 1 4
## 930 0 0 4
## 931 0 0 4
## 932 0 0 4
## 933 0 0 3
## 934 0 1 4
## 935 0 0 4
## 936 0 0 4
## 937 0 0 3
## 938 0 0 4
## 939 0 0 4
## 940 0 0 2
## 941 0 0 2
## 942 0 0 3
## 943 1 0 4
## 944 1 0 2
## 945 0 0 4
## 946 0 0 1
## 947 0 0 4
## 948 0 0 4
## 949 0 0 4
## 950 0 1 2
## 951 0 0 3
## 952 1 0 2
## 953 0 0 3
## 954 0 0 4
## 955 0 0 4
## 956 0 1 4
## 957 0 1 4
## 958 0 1 2
## 959 0 0 3
## 960 0 1 4
## 961 0 1 2
## 962 0 0 1
## 963 0 0 3
## 964 0 1 3
## 965 0 0 3
## 966 0 0 4
## 967 0 0 4
## 968 0 1 4
## 969 1 0 2
## 970 0 0 1
## 971 0 0 4
## 972 0 0 1
## 973 0 0 1
## 974 0 1 4
## 975 0 0 4
## 976 0 0 3
## 977 0 0 2
## 978 0 1 4
## 979 0 1 4
## 980 0 0 2
## 981 1 0 2
## 982 0 0 3
## 983 0 0 1
## 984 0 0 2
## 985 1 0 2
## 986 0 0 4
## 987 0 0 2
## 988 0 0 2
## 989 0 0 4
## 990 0 1 4
## 991 0 0 2
## 992 0 1 4
## 993 1 0 2
## 994 0 0 4
## 995 0 1 4
## 996 1 0 3
## 997 0 0 4
## 998 0 1 4
## 999 0 0 4
## 1000 0 0 3
## marriagesexA91 marriagesexA92 marriagesexA93 marriagesexA94
## 1 0 0 1 0
## 2 0 1 0 0
## 3 0 0 1 0
## 4 0 0 1 0
## 5 0 0 1 0
## 6 0 0 1 0
## 7 0 0 1 0
## 8 0 0 1 0
## 9 1 0 0 0
## 10 0 0 0 1
## 11 0 1 0 0
## 12 0 1 0 0
## 13 0 1 0 0
## 14 0 0 1 0
## 15 0 1 0 0
## 16 0 1 0 0
## 17 0 0 1 0
## 18 0 0 1 0
## 19 0 1 0 0
## 20 0 0 1 0
## 21 0 0 1 0
## 22 0 0 1 0
## 23 0 0 1 0
## 24 0 0 1 0
## 25 0 0 0 1
## 26 0 0 1 0
## 27 0 0 0 1
## 28 0 1 0 0
## 29 0 0 1 0
## 30 0 0 1 0
## 31 0 0 0 1
## 32 0 0 1 0
## 33 0 0 1 0
## 34 0 0 1 0
## 35 0 1 0 0
## 36 0 0 1 0
## 37 0 0 1 0
## 38 0 0 1 0
## 39 0 0 1 0
## 40 0 0 1 0
## 41 0 0 1 0
## 42 1 0 0 0
## 43 0 0 1 0
## 44 0 0 0 1
## 45 0 1 0 0
## 46 0 1 0 0
## 47 0 0 1 0
## 48 0 1 0 0
## 49 0 0 1 0
## 50 0 1 0 0
## 51 0 0 1 0
## 52 0 0 1 0
## 53 0 0 1 0
## 54 0 0 1 0
## 55 0 0 1 0
## 56 0 0 1 0
## 57 0 0 1 0
## 58 0 1 0 0
## 59 0 1 0 0
## 60 0 1 0 0
## 61 0 0 0 1
## 62 0 0 1 0
## 63 0 0 1 0
## 64 0 0 1 0
## 65 0 1 0 0
## 66 0 0 1 0
## 67 0 1 0 0
## 68 0 0 0 1
## 69 0 0 1 0
## 70 0 1 0 0
## 71 0 1 0 0
## 72 0 0 1 0
## 73 0 0 1 0
## 74 0 1 0 0
## 75 0 0 1 0
## 76 0 0 1 0
## 77 0 0 1 0
## 78 0 0 1 0
## 79 0 0 1 0
## 80 0 0 0 1
## 81 0 1 0 0
## 82 0 0 1 0
## 83 0 1 0 0
## 84 0 1 0 0
## 85 0 0 1 0
## 86 0 1 0 0
## 87 0 1 0 0
## 88 0 0 1 0
## 89 0 0 1 0
## 90 0 0 1 0
## 91 0 0 1 0
## 92 0 0 1 0
## 93 0 1 0 0
## 94 0 0 1 0
## 95 0 0 1 0
## 96 0 0 1 0
## 97 0 1 0 0
## 98 0 0 1 0
## 99 0 0 1 0
## 100 0 0 1 0
## 101 0 0 0 1
## 102 0 0 1 0
## 103 0 1 0 0
## 104 0 0 1 0
## 105 0 0 0 1
## 106 0 0 1 0
## 107 0 0 1 0
## 108 0 0 1 0
## 109 0 1 0 0
## 110 0 0 0 1
## 111 1 0 0 0
## 112 0 1 0 0
## 113 0 0 1 0
## 114 0 1 0 0
## 115 0 0 0 1
## 116 0 0 1 0
## 117 0 1 0 0
## 118 0 1 0 0
## 119 0 1 0 0
## 120 1 0 0 0
## 121 0 1 0 0
## 122 0 1 0 0
## 123 0 0 1 0
## 124 0 0 1 0
## 125 0 1 0 0
## 126 0 0 1 0
## 127 0 0 0 1
## 128 0 0 1 0
## 129 0 0 1 0
## 130 0 1 0 0
## 131 0 1 0 0
## 132 0 0 1 0
## 133 0 0 1 0
## 134 0 0 1 0
## 135 0 1 0 0
## 136 0 1 0 0
## 137 0 0 1 0
## 138 0 0 1 0
## 139 0 0 1 0
## 140 0 1 0 0
## 141 0 0 0 1
## 142 0 1 0 0
## 143 0 0 1 0
## 144 0 0 1 0
## 145 0 1 0 0
## 146 0 0 1 0
## 147 0 1 0 0
## 148 0 1 0 0
## 149 0 0 1 0
## 150 0 0 1 0
## 151 0 0 1 0
## 152 0 0 1 0
## 153 0 0 1 0
## 154 0 1 0 0
## 155 0 0 1 0
## 156 0 1 0 0
## 157 0 0 1 0
## 158 0 0 0 1
## 159 0 0 1 0
## 160 0 0 1 0
## 161 0 0 1 0
## 162 0 1 0 0
## 163 0 0 1 0
## 164 0 0 1 0
## 165 0 0 1 0
## 166 0 0 1 0
## 167 0 1 0 0
## 168 0 1 0 0
## 169 0 1 0 0
## 170 1 0 0 0
## 171 0 0 1 0
## 172 0 1 0 0
## 173 0 1 0 0
## 174 0 0 1 0
## 175 0 0 1 0
## 176 0 1 0 0
## 177 1 0 0 0
## 178 0 0 1 0
## 179 0 0 1 0
## 180 0 0 1 0
## 181 1 0 0 0
## 182 1 0 0 0
## 183 0 0 1 0
## 184 0 0 1 0
## 185 0 0 1 0
## 186 0 0 1 0
## 187 0 1 0 0
## 188 0 0 1 0
## 189 0 0 0 1
## 190 0 1 0 0
## 191 0 0 1 0
## 192 0 0 1 0
## 193 0 0 1 0
## 194 0 0 0 1
## 195 0 0 1 0
## 196 0 1 0 0
## 197 0 1 0 0
## 198 0 1 0 0
## 199 0 0 1 0
## 200 1 0 0 0
## 201 0 0 1 0
## 202 0 0 0 1
## 203 0 0 1 0
## 204 0 0 0 1
## 205 0 0 1 0
## 206 0 0 1 0
## 207 0 0 1 0
## 208 0 0 1 0
## 209 0 0 0 1
## 210 0 0 1 0
## 211 0 0 1 0
## 212 0 1 0 0
## 213 0 0 1 0
## 214 0 0 1 0
## 215 0 0 1 0
## 216 0 1 0 0
## 217 0 0 1 0
## 218 0 0 1 0
## 219 1 0 0 0
## 220 0 1 0 0
## 221 0 0 0 1
## 222 0 1 0 0
## 223 0 0 1 0
## 224 0 0 1 0
## 225 0 0 1 0
## 226 0 0 1 0
## 227 0 0 1 0
## 228 0 0 1 0
## 229 0 0 1 0
## 230 0 0 1 0
## 231 0 0 1 0
## 232 0 0 1 0
## 233 0 0 1 0
## 234 0 0 0 1
## 235 0 0 1 0
## 236 0 0 1 0
## 237 0 0 1 0
## 238 1 0 0 0
## 239 0 1 0 0
## 240 0 0 1 0
## 241 0 1 0 0
## 242 0 0 1 0
## 243 0 0 1 0
## 244 0 1 0 0
## 245 0 1 0 0
## 246 0 0 1 0
## 247 0 0 1 0
## 248 0 0 1 0
## 249 0 0 1 0
## 250 0 1 0 0
## 251 0 1 0 0
## 252 0 1 0 0
## 253 0 1 0 0
## 254 0 0 1 0
## 255 0 0 1 0
## 256 0 0 1 0
## 257 0 0 1 0
## 258 1 0 0 0
## 259 0 1 0 0
## 260 0 1 0 0
## 261 0 0 1 0
## 262 0 1 0 0
## 263 0 0 1 0
## 264 0 1 0 0
## 265 0 0 1 0
## 266 0 0 1 0
## 267 0 0 1 0
## 268 0 1 0 0
## 269 1 0 0 0
## 270 0 0 1 0
## 271 0 0 1 0
## 272 0 1 0 0
## 273 0 0 1 0
## 274 0 0 1 0
## 275 1 0 0 0
## 276 0 0 1 0
## 277 0 1 0 0
## 278 1 0 0 0
## 279 0 1 0 0
## 280 0 0 1 0
## 281 0 0 1 0
## 282 0 0 1 0
## 283 0 0 1 0
## 284 0 0 1 0
## 285 1 0 0 0
## 286 0 1 0 0
## 287 0 0 1 0
## 288 0 0 1 0
## 289 0 1 0 0
## 290 0 0 0 1
## 291 0 0 0 1
## 292 0 0 0 1
## 293 0 1 0 0
## 294 0 0 1 0
## 295 1 0 0 0
## 296 0 1 0 0
## 297 0 1 0 0
## 298 0 0 1 0
## 299 0 0 1 0
## 300 0 0 1 0
## 301 0 1 0 0
## 302 0 1 0 0
## 303 0 0 1 0
## 304 0 0 1 0
## 305 0 0 1 0
## 306 1 0 0 0
## 307 0 1 0 0
## 308 0 0 0 1
## 309 0 1 0 0
## 310 0 0 0 1
## 311 0 0 1 0
## 312 0 0 1 0
## 313 0 1 0 0
## 314 0 0 0 1
## 315 0 0 1 0
## 316 0 0 1 0
## 317 0 0 1 0
## 318 0 1 0 0
## 319 0 0 1 0
## 320 0 1 0 0
## 321 0 0 0 1
## 322 1 0 0 0
## 323 0 0 1 0
## 324 0 0 1 0
## 325 0 1 0 0
## 326 0 0 1 0
## 327 0 0 1 0
## 328 0 1 0 0
## 329 0 0 1 0
## 330 0 0 1 0
## 331 0 0 1 0
## 332 0 1 0 0
## 333 0 1 0 0
## 334 0 1 0 0
## 335 0 0 1 0
## 336 1 0 0 0
## 337 0 1 0 0
## 338 0 1 0 0
## 339 0 0 1 0
## 340 1 0 0 0
## 341 0 1 0 0
## 342 0 1 0 0
## 343 0 0 0 1
## 344 0 0 1 0
## 345 0 0 1 0
## 346 0 1 0 0
## 347 0 0 1 0
## 348 0 1 0 0
## 349 0 0 1 0
## 350 0 0 1 0
## 351 0 1 0 0
## 352 0 1 0 0
## 353 0 0 1 0
## 354 0 0 1 0
## 355 0 0 1 0
## 356 0 0 1 0
## 357 0 0 1 0
## 358 0 0 1 0
## 359 0 0 0 1
## 360 0 1 0 0
## 361 0 0 1 0
## 362 0 0 1 0
## 363 0 1 0 0
## 364 0 0 0 1
## 365 0 0 1 0
## 366 0 0 1 0
## 367 0 0 1 0
## 368 0 1 0 0
## 369 0 0 1 0
## 370 0 1 0 0
## 371 0 0 1 0
## 372 0 0 1 0
## 373 0 1 0 0
## 374 0 0 1 0
## 375 0 1 0 0
## 376 0 1 0 0
## 377 0 0 0 1
## 378 0 0 1 0
## 379 0 0 1 0
## 380 0 1 0 0
## 381 0 0 1 0
## 382 0 1 0 0
## 383 0 1 0 0
## 384 0 0 1 0
## 385 0 0 1 0
## 386 0 1 0 0
## 387 0 1 0 0
## 388 0 0 1 0
## 389 0 0 1 0
## 390 0 1 0 0
## 391 0 0 0 1
## 392 0 1 0 0
## 393 0 0 1 0
## 394 0 1 0 0
## 395 0 0 1 0
## 396 0 0 1 0
## 397 0 1 0 0
## 398 0 0 0 1
## 399 1 0 0 0
## 400 0 1 0 0
## 401 0 0 0 1
## 402 0 0 0 1
## 403 0 0 1 0
## 404 0 0 1 0
## 405 0 0 1 0
## 406 0 0 0 1
## 407 0 0 1 0
## 408 0 0 0 1
## 409 1 0 0 0
## 410 0 0 0 1
## 411 0 1 0 0
## 412 0 0 1 0
## 413 0 0 1 0
## 414 0 0 1 0
## 415 0 1 0 0
## 416 0 0 1 0
## 417 0 0 1 0
## 418 0 1 0 0
## 419 0 1 0 0
## 420 0 1 0 0
## 421 0 1 0 0
## 422 0 0 1 0
## 423 0 0 1 0
## 424 0 0 1 0
## 425 0 1 0 0
## 426 0 0 0 1
## 427 0 0 1 0
## 428 0 0 1 0
## 429 0 0 1 0
## 430 0 1 0 0
## 431 0 0 1 0
## 432 0 0 1 0
## 433 0 0 1 0
## 434 1 0 0 0
## 435 0 0 1 0
## 436 0 0 0 1
## 437 0 0 0 1
## 438 0 1 0 0
## 439 0 0 1 0
## 440 0 1 0 0
## 441 0 0 1 0
## 442 0 1 0 0
## 443 0 0 1 0
## 444 0 0 1 0
## 445 0 1 0 0
## 446 0 1 0 0
## 447 0 1 0 0
## 448 0 0 1 0
## 449 0 1 0 0
## 450 0 0 0 1
## 451 0 0 1 0
## 452 0 1 0 0
## 453 0 0 1 0
## 454 0 0 1 0
## 455 0 0 1 0
## 456 0 1 0 0
## 457 0 0 1 0
## 458 0 0 1 0
## 459 0 1 0 0
## 460 0 0 1 0
## 461 0 0 1 0
## 462 0 0 1 0
## 463 0 1 0 0
## 464 0 0 1 0
## 465 0 0 1 0
## 466 0 0 1 0
## 467 0 1 0 0
## 468 0 0 1 0
## 469 0 1 0 0
## 470 0 0 1 0
## 471 0 0 0 1
## 472 0 1 0 0
## 473 0 0 1 0
## 474 0 0 1 0
## 475 0 0 0 1
## 476 0 1 0 0
## 477 0 0 1 0
## 478 0 0 1 0
## 479 0 0 1 0
## 480 0 0 1 0
## 481 0 1 0 0
## 482 0 0 1 0
## 483 0 1 0 0
## 484 0 1 0 0
## 485 0 0 1 0
## 486 0 0 1 0
## 487 0 0 1 0
## 488 0 1 0 0
## 489 0 0 1 0
## 490 0 0 1 0
## 491 0 0 1 0
## 492 0 1 0 0
## 493 0 1 0 0
## 494 0 0 1 0
## 495 0 0 1 0
## 496 0 0 0 1
## 497 0 0 1 0
## 498 0 0 1 0
## 499 0 0 0 1
## 500 1 0 0 0
## 501 0 1 0 0
## 502 0 0 1 0
## 503 1 0 0 0
## 504 0 0 1 0
## 505 0 1 0 0
## 506 0 0 1 0
## 507 0 0 1 0
## 508 0 0 1 0
## 509 0 0 0 1
## 510 0 0 1 0
## 511 0 0 1 0
## 512 0 0 1 0
## 513 0 0 1 0
## 514 0 0 0 1
## 515 0 0 1 0
## 516 0 1 0 0
## 517 0 0 1 0
## 518 0 1 0 0
## 519 0 0 1 0
## 520 0 0 1 0
## 521 0 0 1 0
## 522 0 1 0 0
## 523 0 0 1 0
## 524 0 1 0 0
## 525 0 1 0 0
## 526 0 0 1 0
## 527 0 1 0 0
## 528 0 0 1 0
## 529 1 0 0 0
## 530 0 0 1 0
## 531 0 0 1 0
## 532 0 1 0 0
## 533 0 0 0 1
## 534 0 0 0 1
## 535 0 0 1 0
## 536 1 0 0 0
## 537 0 1 0 0
## 538 0 1 0 0
## 539 0 0 1 0
## 540 0 1 0 0
## 541 0 0 0 1
## 542 0 0 1 0
## 543 0 0 1 0
## 544 0 0 1 0
## 545 0 0 1 0
## 546 0 0 1 0
## 547 0 1 0 0
## 548 0 0 1 0
## 549 0 1 0 0
## 550 0 0 1 0
## 551 0 1 0 0
## 552 0 0 1 0
## 553 0 0 0 1
## 554 0 0 1 0
## 555 0 1 0 0
## 556 0 0 1 0
## 557 0 1 0 0
## 558 0 1 0 0
## 559 0 0 1 0
## 560 0 0 1 0
## 561 0 0 1 0
## 562 0 0 1 0
## 563 0 1 0 0
## 564 0 0 1 0
## 565 0 0 1 0
## 566 0 1 0 0
## 567 1 0 0 0
## 568 0 0 1 0
## 569 0 0 1 0
## 570 0 1 0 0
## 571 0 1 0 0
## 572 0 0 1 0
## 573 0 1 0 0
## 574 0 1 0 0
## 575 0 0 1 0
## 576 0 1 0 0
## 577 0 1 0 0
## 578 0 1 0 0
## 579 1 0 0 0
## 580 0 0 0 1
## 581 0 0 1 0
## 582 0 0 1 0
## 583 0 1 0 0
## 584 0 0 1 0
## 585 0 1 0 0
## 586 0 1 0 0
## 587 0 0 1 0
## 588 0 0 1 0
## 589 0 0 0 1
## 590 0 0 1 0
## 591 0 1 0 0
## 592 0 1 0 0
## 593 0 1 0 0
## 594 0 1 0 0
## 595 0 0 1 0
## 596 0 1 0 0
## 597 0 1 0 0
## 598 0 0 1 0
## 599 0 0 1 0
## 600 0 0 1 0
## 601 0 1 0 0
## 602 0 1 0 0
## 603 0 1 0 0
## 604 0 1 0 0
## 605 0 1 0 0
## 606 0 0 1 0
## 607 0 0 1 0
## 608 0 1 0 0
## 609 0 0 1 0
## 610 0 0 1 0
## 611 0 1 0 0
## 612 0 1 0 0
## 613 0 1 0 0
## 614 0 1 0 0
## 615 0 1 0 0
## 616 0 0 1 0
## 617 0 0 1 0
## 618 0 0 1 0
## 619 0 1 0 0
## 620 1 0 0 0
## 621 0 0 1 0
## 622 0 0 1 0
## 623 1 0 0 0
## 624 0 1 0 0
## 625 0 0 1 0
## 626 0 0 1 0
## 627 0 0 1 0
## 628 0 0 1 0
## 629 0 0 1 0
## 630 0 0 1 0
## 631 0 1 0 0
## 632 0 0 1 0
## 633 0 0 1 0
## 634 0 1 0 0
## 635 0 1 0 0
## 636 0 0 1 0
## 637 0 1 0 0
## 638 0 0 1 0
## 639 0 1 0 0
## 640 0 0 1 0
## 641 0 1 0 0
## 642 0 0 1 0
## 643 0 0 1 0
## 644 0 0 0 1
## 645 0 0 0 1
## 646 0 0 1 0
## 647 1 0 0 0
## 648 0 1 0 0
## 649 0 0 1 0
## 650 0 0 1 0
## 651 0 0 1 0
## 652 0 0 1 0
## 653 0 0 1 0
## 654 0 0 1 0
## 655 0 0 1 0
## 656 0 0 1 0
## 657 0 0 1 0
## 658 0 0 1 0
## 659 0 1 0 0
## 660 0 0 1 0
## 661 0 0 0 1
## 662 0 0 0 1
## 663 0 0 1 0
## 664 0 0 1 0
## 665 0 1 0 0
## 666 0 0 1 0
## 667 0 0 1 0
## 668 0 1 0 0
## 669 0 0 1 0
## 670 0 0 1 0
## 671 0 0 1 0
## 672 0 0 1 0
## 673 0 0 1 0
## 674 0 0 0 1
## 675 0 0 1 0
## 676 0 1 0 0
## 677 0 0 1 0
## 678 0 0 0 1
## 679 0 0 1 0
## 680 0 1 0 0
## 681 0 1 0 0
## 682 0 0 1 0
## 683 0 0 0 1
## 684 0 0 0 1
## 685 0 0 1 0
## 686 0 0 1 0
## 687 0 0 1 0
## 688 0 0 1 0
## 689 0 0 1 0
## 690 0 0 1 0
## 691 1 0 0 0
## 692 0 1 0 0
## 693 0 0 1 0
## 694 0 0 1 0
## 695 0 0 1 0
## 696 0 0 1 0
## 697 0 0 1 0
## 698 0 1 0 0
## 699 0 0 1 0
## 700 0 0 1 0
## 701 0 1 0 0
## 702 0 0 1 0
## 703 0 1 0 0
## 704 0 0 1 0
## 705 0 1 0 0
## 706 0 1 0 0
## 707 0 0 1 0
## 708 0 1 0 0
## 709 0 1 0 0
## 710 0 0 1 0
## 711 0 0 1 0
## 712 0 1 0 0
## 713 0 0 1 0
## 714 0 0 1 0
## 715 0 0 1 0
## 716 0 0 1 0
## 717 0 0 1 0
## 718 0 0 1 0
## 719 0 0 1 0
## 720 0 0 0 1
## 721 0 0 1 0
## 722 0 1 0 0
## 723 0 1 0 0
## 724 0 1 0 0
## 725 0 1 0 0
## 726 0 1 0 0
## 727 0 0 0 1
## 728 0 1 0 0
## 729 0 1 0 0
## 730 1 0 0 0
## 731 0 0 1 0
## 732 0 0 1 0
## 733 0 1 0 0
## 734 0 1 0 0
## 735 0 1 0 0
## 736 0 1 0 0
## 737 0 1 0 0
## 738 0 0 1 0
## 739 0 0 1 0
## 740 0 1 0 0
## 741 0 0 1 0
## 742 0 0 1 0
## 743 0 0 1 0
## 744 0 0 1 0
## 745 0 0 1 0
## 746 0 0 1 0
## 747 0 1 0 0
## 748 0 1 0 0
## 749 0 0 1 0
## 750 0 0 1 0
## 751 0 1 0 0
## 752 0 1 0 0
## 753 0 1 0 0
## 754 0 1 0 0
## 755 0 0 1 0
## 756 0 1 0 0
## 757 0 0 1 0
## 758 0 0 1 0
## 759 0 0 1 0
## 760 0 0 1 0
## 761 0 1 0 0
## 762 0 1 0 0
## 763 0 0 1 0
## 764 0 0 1 0
## 765 0 0 0 1
## 766 0 0 0 1
## 767 1 0 0 0
## 768 0 1 0 0
## 769 0 0 1 0
## 770 0 0 1 0
## 771 0 1 0 0
## 772 0 1 0 0
## 773 0 0 1 0
## 774 0 0 1 0
## 775 0 0 1 0
## 776 0 1 0 0
## 777 0 0 1 0
## 778 0 1 0 0
## 779 0 0 1 0
## 780 0 1 0 0
## 781 0 0 1 0
## 782 0 0 1 0
## 783 0 0 1 0
## 784 0 1 0 0
## 785 1 0 0 0
## 786 0 0 1 0
## 787 0 0 1 0
## 788 0 0 1 0
## 789 0 0 1 0
## 790 0 0 1 0
## 791 0 1 0 0
## 792 0 0 1 0
## 793 0 0 0 1
## 794 1 0 0 0
## 795 0 0 1 0
## 796 0 1 0 0
## 797 0 0 1 0
## 798 0 1 0 0
## 799 0 0 0 1
## 800 0 0 1 0
## 801 0 0 1 0
## 802 0 1 0 0
## 803 0 1 0 0
## 804 0 0 1 0
## 805 0 1 0 0
## 806 0 0 1 0
## 807 0 0 0 1
## 808 0 0 1 0
## 809 0 0 1 0
## 810 0 1 0 0
## 811 0 0 0 1
## 812 0 0 0 1
## 813 0 0 1 0
## 814 0 0 1 0
## 815 0 0 1 0
## 816 0 1 0 0
## 817 1 0 0 0
## 818 0 1 0 0
## 819 1 0 0 0
## 820 0 0 0 1
## 821 0 0 0 1
## 822 0 0 0 1
## 823 0 0 1 0
## 824 0 0 1 0
## 825 1 0 0 0
## 826 0 0 0 1
## 827 0 1 0 0
## 828 0 0 1 0
## 829 0 0 1 0
## 830 0 0 1 0
## 831 0 0 1 0
## 832 0 1 0 0
## 833 0 0 1 0
## 834 0 1 0 0
## 835 0 1 0 0
## 836 0 0 1 0
## 837 0 1 0 0
## 838 0 1 0 0
## 839 0 0 1 0
## 840 0 0 0 1
## 841 0 0 1 0
## 842 0 0 1 0
## 843 0 1 0 0
## 844 0 0 1 0
## 845 0 0 1 0
## 846 0 0 1 0
## 847 0 0 1 0
## 848 0 0 0 1
## 849 0 0 1 0
## 850 0 0 1 0
## 851 0 0 0 1
## 852 0 0 1 0
## 853 0 0 1 0
## 854 0 0 1 0
## 855 0 0 1 0
## 856 0 0 0 1
## 857 0 1 0 0
## 858 0 0 1 0
## 859 0 1 0 0
## 860 0 0 1 0
## 861 0 0 1 0
## 862 0 0 0 1
## 863 0 1 0 0
## 864 0 0 1 0
## 865 0 0 1 0
## 866 0 1 0 0
## 867 0 1 0 0
## 868 0 0 1 0
## 869 0 0 1 0
## 870 0 1 0 0
## 871 0 1 0 0
## 872 0 0 1 0
## 873 0 0 1 0
## 874 0 1 0 0
## 875 0 0 1 0
## 876 0 1 0 0
## 877 0 0 1 0
## 878 0 0 1 0
## 879 0 0 1 0
## 880 0 0 1 0
## 881 0 0 1 0
## 882 1 0 0 0
## 883 0 0 1 0
## 884 0 1 0 0
## 885 1 0 0 0
## 886 0 1 0 0
## 887 0 0 1 0
## 888 0 0 1 0
## 889 0 0 1 0
## 890 0 0 1 0
## 891 0 0 1 0
## 892 0 0 1 0
## 893 0 0 1 0
## 894 0 0 1 0
## 895 0 0 1 0
## 896 0 0 1 0
## 897 0 1 0 0
## 898 0 1 0 0
## 899 0 1 0 0
## 900 0 0 1 0
## 901 0 0 1 0
## 902 1 0 0 0
## 903 0 0 1 0
## 904 0 0 0 1
## 905 0 0 1 0
## 906 0 0 1 0
## 907 0 0 1 0
## 908 0 0 0 1
## 909 0 1 0 0
## 910 0 1 0 0
## 911 0 1 0 0
## 912 0 1 0 0
## 913 0 1 0 0
## 914 1 0 0 0
## 915 0 0 1 0
## 916 0 1 0 0
## 917 0 0 1 0
## 918 0 0 1 0
## 919 1 0 0 0
## 920 0 0 1 0
## 921 0 1 0 0
## 922 0 0 1 0
## 923 0 1 0 0
## 924 0 0 1 0
## 925 1 0 0 0
## 926 0 0 1 0
## 927 0 1 0 0
## 928 0 0 1 0
## 929 0 0 1 0
## 930 0 0 1 0
## 931 0 0 1 0
## 932 0 1 0 0
## 933 0 0 1 0
## 934 0 0 1 0
## 935 0 1 0 0
## 936 0 0 1 0
## 937 0 1 0 0
## 938 0 0 0 1
## 939 0 0 1 0
## 940 0 0 1 0
## 941 0 0 1 0
## 942 0 0 1 0
## 943 0 0 1 0
## 944 0 0 1 0
## 945 0 1 0 0
## 946 0 1 0 0
## 947 0 0 1 0
## 948 0 0 1 0
## 949 0 0 0 1
## 950 0 0 1 0
## 951 0 0 0 1
## 952 0 0 1 0
## 953 0 1 0 0
## 954 0 1 0 0
## 955 0 1 0 0
## 956 0 1 0 0
## 957 0 0 1 0
## 958 0 0 1 0
## 959 0 0 1 0
## 960 0 0 1 0
## 961 0 0 0 1
## 962 1 0 0 0
## 963 0 0 1 0
## 964 0 0 1 0
## 965 0 0 0 1
## 966 0 1 0 0
## 967 0 0 1 0
## 968 0 1 0 0
## 969 0 0 0 1
## 970 0 0 1 0
## 971 0 0 1 0
## 972 0 0 1 0
## 973 0 1 0 0
## 974 0 0 1 0
## 975 0 1 0 0
## 976 0 1 0 0
## 977 0 1 0 0
## 978 0 0 1 0
## 979 0 0 1 0
## 980 0 0 0 1
## 981 0 0 1 0
## 982 0 0 1 0
## 983 0 1 0 0
## 984 0 0 1 0
## 985 0 0 1 0
## 986 0 1 0 0
## 987 1 0 0 0
## 988 0 1 0 0
## 989 0 0 1 0
## 990 0 0 1 0
## 991 0 0 1 0
## 992 0 0 1 0
## 993 0 0 0 1
## 994 0 0 1 0
## 995 0 0 1 0
## 996 0 1 0 0
## 997 1 0 0 0
## 998 0 0 1 0
## 999 0 0 1 0
## 1000 0 0 1 0
## otherdebtorsA101 otherdebtorsA102 otherdebtorsA103
## 1 1 0 0
## 2 1 0 0
## 3 1 0 0
## 4 0 0 1
## 5 1 0 0
## 6 1 0 0
## 7 1 0 0
## 8 1 0 0
## 9 1 0 0
## 10 1 0 0
## 11 1 0 0
## 12 1 0 0
## 13 1 0 0
## 14 1 0 0
## 15 1 0 0
## 16 1 0 0
## 17 1 0 0
## 18 1 0 0
## 19 1 0 0
## 20 1 0 0
## 21 1 0 0
## 22 1 0 0
## 23 1 0 0
## 24 1 0 0
## 25 1 0 0
## 26 1 0 0
## 27 1 0 0
## 28 1 0 0
## 29 0 0 1
## 30 1 0 0
## 31 1 0 0
## 32 1 0 0
## 33 1 0 0
## 34 1 0 0
## 35 1 0 0
## 36 1 0 0
## 37 1 0 0
## 38 0 1 0
## 39 1 0 0
## 40 1 0 0
## 41 1 0 0
## 42 1 0 0
## 43 1 0 0
## 44 1 0 0
## 45 1 0 0
## 46 1 0 0
## 47 1 0 0
## 48 1 0 0
## 49 1 0 0
## 50 0 1 0
## 51 1 0 0
## 52 1 0 0
## 53 1 0 0
## 54 1 0 0
## 55 1 0 0
## 56 0 0 1
## 57 1 0 0
## 58 1 0 0
## 59 1 0 0
## 60 0 1 0
## 61 1 0 0
## 62 0 0 1
## 63 1 0 0
## 64 1 0 0
## 65 1 0 0
## 66 1 0 0
## 67 1 0 0
## 68 1 0 0
## 69 1 0 0
## 70 1 0 0
## 71 1 0 0
## 72 1 0 0
## 73 1 0 0
## 74 1 0 0
## 75 1 0 0
## 76 1 0 0
## 77 1 0 0
## 78 1 0 0
## 79 1 0 0
## 80 1 0 0
## 81 1 0 0
## 82 1 0 0
## 83 1 0 0
## 84 0 0 1
## 85 1 0 0
## 86 0 0 1
## 87 1 0 0
## 88 1 0 0
## 89 1 0 0
## 90 1 0 0
## 91 1 0 0
## 92 1 0 0
## 93 1 0 0
## 94 0 1 0
## 95 1 0 0
## 96 1 0 0
## 97 1 0 0
## 98 1 0 0
## 99 1 0 0
## 100 1 0 0
## 101 1 0 0
## 102 1 0 0
## 103 1 0 0
## 104 1 0 0
## 105 1 0 0
## 106 0 1 0
## 107 1 0 0
## 108 1 0 0
## 109 1 0 0
## 110 1 0 0
## 111 1 0 0
## 112 1 0 0
## 113 1 0 0
## 114 1 0 0
## 115 1 0 0
## 116 1 0 0
## 117 1 0 0
## 118 0 1 0
## 119 1 0 0
## 120 1 0 0
## 121 1 0 0
## 122 1 0 0
## 123 1 0 0
## 124 1 0 0
## 125 1 0 0
## 126 1 0 0
## 127 1 0 0
## 128 1 0 0
## 129 1 0 0
## 130 0 1 0
## 131 1 0 0
## 132 1 0 0
## 133 1 0 0
## 134 1 0 0
## 135 1 0 0
## 136 1 0 0
## 137 1 0 0
## 138 1 0 0
## 139 0 0 1
## 140 1 0 0
## 141 1 0 0
## 142 1 0 0
## 143 1 0 0
## 144 1 0 0
## 145 1 0 0
## 146 1 0 0
## 147 1 0 0
## 148 1 0 0
## 149 0 0 1
## 150 1 0 0
## 151 1 0 0
## 152 1 0 0
## 153 1 0 0
## 154 1 0 0
## 155 1 0 0
## 156 1 0 0
## 157 0 0 1
## 158 1 0 0
## 159 1 0 0
## 160 1 0 0
## 161 1 0 0
## 162 1 0 0
## 163 1 0 0
## 164 1 0 0
## 165 1 0 0
## 166 1 0 0
## 167 1 0 0
## 168 1 0 0
## 169 1 0 0
## 170 1 0 0
## 171 1 0 0
## 172 1 0 0
## 173 1 0 0
## 174 0 0 1
## 175 1 0 0
## 176 1 0 0
## 177 1 0 0
## 178 1 0 0
## 179 1 0 0
## 180 1 0 0
## 181 1 0 0
## 182 1 0 0
## 183 1 0 0
## 184 1 0 0
## 185 1 0 0
## 186 1 0 0
## 187 1 0 0
## 188 1 0 0
## 189 1 0 0
## 190 1 0 0
## 191 1 0 0
## 192 1 0 0
## 193 1 0 0
## 194 1 0 0
## 195 0 0 1
## 196 1 0 0
## 197 1 0 0
## 198 1 0 0
## 199 1 0 0
## 200 1 0 0
## 201 1 0 0
## 202 1 0 0
## 203 1 0 0
## 204 1 0 0
## 205 1 0 0
## 206 1 0 0
## 207 1 0 0
## 208 1 0 0
## 209 1 0 0
## 210 1 0 0
## 211 1 0 0
## 212 1 0 0
## 213 1 0 0
## 214 1 0 0
## 215 1 0 0
## 216 1 0 0
## 217 1 0 0
## 218 1 0 0
## 219 1 0 0
## 220 1 0 0
## 221 0 0 1
## 222 1 0 0
## 223 1 0 0
## 224 1 0 0
## 225 1 0 0
## 226 1 0 0
## 227 0 1 0
## 228 1 0 0
## 229 1 0 0
## 230 1 0 0
## 231 1 0 0
## 232 1 0 0
## 233 1 0 0
## 234 0 0 1
## 235 1 0 0
## 236 1 0 0
## 237 1 0 0
## 238 1 0 0
## 239 1 0 0
## 240 0 0 1
## 241 1 0 0
## 242 1 0 0
## 243 1 0 0
## 244 1 0 0
## 245 1 0 0
## 246 1 0 0
## 247 1 0 0
## 248 1 0 0
## 249 1 0 0
## 250 0 1 0
## 251 1 0 0
## 252 1 0 0
## 253 0 0 1
## 254 1 0 0
## 255 1 0 0
## 256 1 0 0
## 257 1 0 0
## 258 1 0 0
## 259 1 0 0
## 260 1 0 0
## 261 1 0 0
## 262 1 0 0
## 263 1 0 0
## 264 1 0 0
## 265 1 0 0
## 266 1 0 0
## 267 1 0 0
## 268 1 0 0
## 269 1 0 0
## 270 1 0 0
## 271 1 0 0
## 272 1 0 0
## 273 0 1 0
## 274 1 0 0
## 275 1 0 0
## 276 1 0 0
## 277 1 0 0
## 278 1 0 0
## 279 1 0 0
## 280 1 0 0
## 281 1 0 0
## 282 1 0 0
## 283 1 0 0
## 284 1 0 0
## 285 1 0 0
## 286 1 0 0
## 287 1 0 0
## 288 1 0 0
## 289 0 0 1
## 290 1 0 0
## 291 1 0 0
## 292 1 0 0
## 293 1 0 0
## 294 1 0 0
## 295 1 0 0
## 296 1 0 0
## 297 1 0 0
## 298 0 1 0
## 299 1 0 0
## 300 1 0 0
## 301 1 0 0
## 302 1 0 0
## 303 1 0 0
## 304 0 1 0
## 305 1 0 0
## 306 1 0 0
## 307 1 0 0
## 308 1 0 0
## 309 1 0 0
## 310 1 0 0
## 311 1 0 0
## 312 1 0 0
## 313 1 0 0
## 314 1 0 0
## 315 1 0 0
## 316 1 0 0
## 317 0 0 1
## 318 1 0 0
## 319 1 0 0
## 320 1 0 0
## 321 1 0 0
## 322 1 0 0
## 323 1 0 0
## 324 1 0 0
## 325 1 0 0
## 326 1 0 0
## 327 1 0 0
## 328 1 0 0
## 329 1 0 0
## 330 1 0 0
## 331 1 0 0
## 332 1 0 0
## 333 1 0 0
## 334 1 0 0
## 335 1 0 0
## 336 1 0 0
## 337 0 0 1
## 338 1 0 0
## 339 1 0 0
## 340 1 0 0
## 341 1 0 0
## 342 1 0 0
## 343 1 0 0
## 344 0 1 0
## 345 0 0 1
## 346 1 0 0
## 347 0 0 1
## 348 1 0 0
## 349 1 0 0
## 350 1 0 0
## 351 1 0 0
## 352 1 0 0
## 353 1 0 0
## 354 1 0 0
## 355 1 0 0
## 356 1 0 0
## 357 0 1 0
## 358 1 0 0
## 359 1 0 0
## 360 1 0 0
## 361 1 0 0
## 362 1 0 0
## 363 1 0 0
## 364 1 0 0
## 365 1 0 0
## 366 1 0 0
## 367 1 0 0
## 368 1 0 0
## 369 1 0 0
## 370 1 0 0
## 371 1 0 0
## 372 1 0 0
## 373 1 0 0
## 374 1 0 0
## 375 1 0 0
## 376 0 0 1
## 377 1 0 0
## 378 1 0 0
## 379 1 0 0
## 380 1 0 0
## 381 1 0 0
## 382 1 0 0
## 383 1 0 0
## 384 1 0 0
## 385 1 0 0
## 386 1 0 0
## 387 1 0 0
## 388 1 0 0
## 389 1 0 0
## 390 1 0 0
## 391 1 0 0
## 392 1 0 0
## 393 1 0 0
## 394 1 0 0
## 395 1 0 0
## 396 1 0 0
## 397 1 0 0
## 398 1 0 0
## 399 1 0 0
## 400 1 0 0
## 401 1 0 0
## 402 1 0 0
## 403 1 0 0
## 404 1 0 0
## 405 1 0 0
## 406 1 0 0
## 407 1 0 0
## 408 1 0 0
## 409 1 0 0
## 410 1 0 0
## 411 1 0 0
## 412 1 0 0
## 413 1 0 0
## 414 1 0 0
## 415 1 0 0
## 416 1 0 0
## 417 1 0 0
## 418 1 0 0
## 419 1 0 0
## 420 1 0 0
## 421 1 0 0
## 422 1 0 0
## 423 1 0 0
## 424 1 0 0
## 425 1 0 0
## 426 1 0 0
## 427 1 0 0
## 428 1 0 0
## 429 1 0 0
## 430 1 0 0
## 431 1 0 0
## 432 0 1 0
## 433 1 0 0
## 434 1 0 0
## 435 1 0 0
## 436 1 0 0
## 437 1 0 0
## 438 1 0 0
## 439 0 1 0
## 440 1 0 0
## 441 1 0 0
## 442 0 1 0
## 443 1 0 0
## 444 1 0 0
## 445 1 0 0
## 446 1 0 0
## 447 1 0 0
## 448 0 0 1
## 449 1 0 0
## 450 1 0 0
## 451 1 0 0
## 452 1 0 0
## 453 1 0 0
## 454 1 0 0
## 455 0 1 0
## 456 1 0 0
## 457 1 0 0
## 458 1 0 0
## 459 1 0 0
## 460 1 0 0
## 461 0 0 1
## 462 1 0 0
## 463 1 0 0
## 464 1 0 0
## 465 1 0 0
## 466 0 0 1
## 467 1 0 0
## 468 1 0 0
## 469 1 0 0
## 470 1 0 0
## 471 1 0 0
## 472 1 0 0
## 473 1 0 0
## 474 1 0 0
## 475 1 0 0
## 476 1 0 0
## 477 1 0 0
## 478 1 0 0
## 479 1 0 0
## 480 1 0 0
## 481 1 0 0
## 482 1 0 0
## 483 1 0 0
## 484 1 0 0
## 485 1 0 0
## 486 1 0 0
## 487 1 0 0
## 488 0 1 0
## 489 1 0 0
## 490 0 0 1
## 491 1 0 0
## 492 1 0 0
## 493 1 0 0
## 494 1 0 0
## 495 1 0 0
## 496 1 0 0
## 497 0 1 0
## 498 1 0 0
## 499 0 0 1
## 500 1 0 0
## 501 1 0 0
## 502 1 0 0
## 503 1 0 0
## 504 1 0 0
## 505 1 0 0
## 506 0 0 1
## 507 1 0 0
## 508 1 0 0
## 509 1 0 0
## 510 1 0 0
## 511 1 0 0
## 512 1 0 0
## 513 1 0 0
## 514 0 1 0
## 515 1 0 0
## 516 1 0 0
## 517 1 0 0
## 518 1 0 0
## 519 1 0 0
## 520 1 0 0
## 521 1 0 0
## 522 1 0 0
## 523 1 0 0
## 524 1 0 0
## 525 0 0 1
## 526 1 0 0
## 527 1 0 0
## 528 1 0 0
## 529 1 0 0
## 530 1 0 0
## 531 1 0 0
## 532 1 0 0
## 533 1 0 0
## 534 1 0 0
## 535 1 0 0
## 536 1 0 0
## 537 1 0 0
## 538 1 0 0
## 539 1 0 0
## 540 1 0 0
## 541 1 0 0
## 542 1 0 0
## 543 1 0 0
## 544 1 0 0
## 545 1 0 0
## 546 1 0 0
## 547 1 0 0
## 548 1 0 0
## 549 1 0 0
## 550 1 0 0
## 551 1 0 0
## 552 1 0 0
## 553 0 0 1
## 554 1 0 0
## 555 1 0 0
## 556 1 0 0
## 557 1 0 0
## 558 1 0 0
## 559 1 0 0
## 560 1 0 0
## 561 1 0 0
## 562 0 0 1
## 563 1 0 0
## 564 1 0 0
## 565 1 0 0
## 566 1 0 0
## 567 1 0 0
## 568 1 0 0
## 569 1 0 0
## 570 1 0 0
## 571 1 0 0
## 572 0 1 0
## 573 1 0 0
## 574 1 0 0
## 575 1 0 0
## 576 0 1 0
## 577 1 0 0
## 578 1 0 0
## 579 1 0 0
## 580 1 0 0
## 581 0 0 1
## 582 1 0 0
## 583 1 0 0
## 584 1 0 0
## 585 1 0 0
## 586 1 0 0
## 587 1 0 0
## 588 0 0 1
## 589 1 0 0
## 590 1 0 0
## 591 1 0 0
## 592 1 0 0
## 593 1 0 0
## 594 1 0 0
## 595 1 0 0
## 596 1 0 0
## 597 1 0 0
## 598 1 0 0
## 599 1 0 0
## 600 1 0 0
## 601 0 0 1
## 602 1 0 0
## 603 1 0 0
## 604 1 0 0
## 605 1 0 0
## 606 1 0 0
## 607 1 0 0
## 608 0 1 0
## 609 1 0 0
## 610 1 0 0
## 611 1 0 0
## 612 1 0 0
## 613 1 0 0
## 614 0 0 1
## 615 1 0 0
## 616 1 0 0
## 617 1 0 0
## 618 1 0 0
## 619 0 1 0
## 620 1 0 0
## 621 1 0 0
## 622 1 0 0
## 623 1 0 0
## 624 1 0 0
## 625 1 0 0
## 626 1 0 0
## 627 1 0 0
## 628 1 0 0
## 629 1 0 0
## 630 1 0 0
## 631 1 0 0
## 632 1 0 0
## 633 1 0 0
## 634 0 1 0
## 635 1 0 0
## 636 1 0 0
## 637 1 0 0
## 638 1 0 0
## 639 1 0 0
## 640 1 0 0
## 641 1 0 0
## 642 1 0 0
## 643 1 0 0
## 644 0 0 1
## 645 1 0 0
## 646 1 0 0
## 647 0 0 1
## 648 1 0 0
## 649 1 0 0
## 650 1 0 0
## 651 1 0 0
## 652 1 0 0
## 653 0 1 0
## 654 1 0 0
## 655 1 0 0
## 656 1 0 0
## 657 1 0 0
## 658 1 0 0
## 659 1 0 0
## 660 1 0 0
## 661 1 0 0
## 662 1 0 0
## 663 1 0 0
## 664 1 0 0
## 665 1 0 0
## 666 0 1 0
## 667 1 0 0
## 668 1 0 0
## 669 0 1 0
## 670 1 0 0
## 671 1 0 0
## 672 1 0 0
## 673 1 0 0
## 674 1 0 0
## 675 1 0 0
## 676 1 0 0
## 677 1 0 0
## 678 1 0 0
## 679 1 0 0
## 680 1 0 0
## 681 1 0 0
## 682 1 0 0
## 683 1 0 0
## 684 1 0 0
## 685 1 0 0
## 686 1 0 0
## 687 1 0 0
## 688 1 0 0
## 689 0 1 0
## 690 1 0 0
## 691 1 0 0
## 692 1 0 0
## 693 1 0 0
## 694 1 0 0
## 695 1 0 0
## 696 1 0 0
## 697 0 0 1
## 698 1 0 0
## 699 1 0 0
## 700 1 0 0
## 701 1 0 0
## 702 1 0 0
## 703 1 0 0
## 704 1 0 0
## 705 1 0 0
## 706 1 0 0
## 707 1 0 0
## 708 1 0 0
## 709 1 0 0
## 710 1 0 0
## 711 1 0 0
## 712 1 0 0
## 713 1 0 0
## 714 1 0 0
## 715 1 0 0
## 716 1 0 0
## 717 1 0 0
## 718 1 0 0
## 719 1 0 0
## 720 1 0 0
## 721 1 0 0
## 722 1 0 0
## 723 1 0 0
## 724 1 0 0
## 725 1 0 0
## 726 1 0 0
## 727 1 0 0
## 728 1 0 0
## 729 1 0 0
## 730 1 0 0
## 731 1 0 0
## 732 1 0 0
## 733 0 0 1
## 734 1 0 0
## 735 1 0 0
## 736 1 0 0
## 737 1 0 0
## 738 1 0 0
## 739 1 0 0
## 740 1 0 0
## 741 1 0 0
## 742 1 0 0
## 743 1 0 0
## 744 1 0 0
## 745 1 0 0
## 746 1 0 0
## 747 1 0 0
## 748 1 0 0
## 749 1 0 0
## 750 1 0 0
## 751 1 0 0
## 752 1 0 0
## 753 1 0 0
## 754 1 0 0
## 755 1 0 0
## 756 1 0 0
## 757 1 0 0
## 758 1 0 0
## 759 0 0 1
## 760 1 0 0
## 761 1 0 0
## 762 1 0 0
## 763 1 0 0
## 764 1 0 0
## 765 1 0 0
## 766 0 0 1
## 767 1 0 0
## 768 1 0 0
## 769 1 0 0
## 770 1 0 0
## 771 1 0 0
## 772 1 0 0
## 773 1 0 0
## 774 1 0 0
## 775 1 0 0
## 776 1 0 0
## 777 1 0 0
## 778 0 0 1
## 779 1 0 0
## 780 1 0 0
## 781 0 0 1
## 782 1 0 0
## 783 1 0 0
## 784 1 0 0
## 785 1 0 0
## 786 1 0 0
## 787 1 0 0
## 788 1 0 0
## 789 1 0 0
## 790 1 0 0
## 791 1 0 0
## 792 1 0 0
## 793 1 0 0
## 794 1 0 0
## 795 1 0 0
## 796 1 0 0
## 797 1 0 0
## 798 1 0 0
## 799 1 0 0
## 800 1 0 0
## 801 1 0 0
## 802 0 0 1
## 803 1 0 0
## 804 1 0 0
## 805 1 0 0
## 806 1 0 0
## 807 1 0 0
## 808 1 0 0
## 809 1 0 0
## 810 1 0 0
## 811 1 0 0
## 812 0 0 1
## 813 1 0 0
## 814 1 0 0
## 815 1 0 0
## 816 1 0 0
## 817 1 0 0
## 818 1 0 0
## 819 0 1 0
## 820 1 0 0
## 821 1 0 0
## 822 1 0 0
## 823 1 0 0
## 824 1 0 0
## 825 1 0 0
## 826 1 0 0
## 827 1 0 0
## 828 1 0 0
## 829 1 0 0
## 830 1 0 0
## 831 1 0 0
## 832 1 0 0
## 833 1 0 0
## 834 1 0 0
## 835 1 0 0
## 836 1 0 0
## 837 1 0 0
## 838 1 0 0
## 839 1 0 0
## 840 0 1 0
## 841 1 0 0
## 842 1 0 0
## 843 1 0 0
## 844 1 0 0
## 845 1 0 0
## 846 1 0 0
## 847 1 0 0
## 848 1 0 0
## 849 1 0 0
## 850 1 0 0
## 851 0 0 1
## 852 1 0 0
## 853 1 0 0
## 854 1 0 0
## 855 1 0 0
## 856 1 0 0
## 857 1 0 0
## 858 1 0 0
## 859 1 0 0
## 860 0 0 1
## 861 1 0 0
## 862 1 0 0
## 863 1 0 0
## 864 1 0 0
## 865 1 0 0
## 866 1 0 0
## 867 1 0 0
## 868 1 0 0
## 869 1 0 0
## 870 1 0 0
## 871 1 0 0
## 872 1 0 0
## 873 1 0 0
## 874 1 0 0
## 875 0 1 0
## 876 1 0 0
## 877 0 1 0
## 878 1 0 0
## 879 1 0 0
## 880 1 0 0
## 881 1 0 0
## 882 1 0 0
## 883 1 0 0
## 884 1 0 0
## 885 1 0 0
## 886 1 0 0
## 887 1 0 0
## 888 1 0 0
## 889 1 0 0
## 890 0 0 1
## 891 1 0 0
## 892 1 0 0
## 893 1 0 0
## 894 1 0 0
## 895 1 0 0
## 896 1 0 0
## 897 1 0 0
## 898 1 0 0
## 899 1 0 0
## 900 0 1 0
## 901 0 0 1
## 902 1 0 0
## 903 1 0 0
## 904 1 0 0
## 905 1 0 0
## 906 1 0 0
## 907 0 1 0
## 908 1 0 0
## 909 1 0 0
## 910 1 0 0
## 911 1 0 0
## 912 1 0 0
## 913 1 0 0
## 914 1 0 0
## 915 1 0 0
## 916 1 0 0
## 917 0 1 0
## 918 1 0 0
## 919 1 0 0
## 920 1 0 0
## 921 1 0 0
## 922 1 0 0
## 923 1 0 0
## 924 1 0 0
## 925 1 0 0
## 926 1 0 0
## 927 1 0 0
## 928 1 0 0
## 929 1 0 0
## 930 1 0 0
## 931 0 1 0
## 932 1 0 0
## 933 1 0 0
## 934 1 0 0
## 935 1 0 0
## 936 1 0 0
## 937 1 0 0
## 938 1 0 0
## 939 1 0 0
## 940 1 0 0
## 941 1 0 0
## 942 1 0 0
## 943 1 0 0
## 944 1 0 0
## 945 0 0 1
## 946 1 0 0
## 947 1 0 0
## 948 1 0 0
## 949 0 1 0
## 950 1 0 0
## 951 1 0 0
## 952 1 0 0
## 953 1 0 0
## 954 1 0 0
## 955 0 0 1
## 956 1 0 0
## 957 1 0 0
## 958 1 0 0
## 959 1 0 0
## 960 1 0 0
## 961 1 0 0
## 962 1 0 0
## 963 1 0 0
## 964 1 0 0
## 965 1 0 0
## 966 1 0 0
## 967 1 0 0
## 968 1 0 0
## 969 1 0 0
## 970 1 0 0
## 971 0 0 1
## 972 1 0 0
## 973 0 1 0
## 974 0 1 0
## 975 1 0 0
## 976 1 0 0
## 977 0 0 1
## 978 1 0 0
## 979 1 0 0
## 980 1 0 0
## 981 1 0 0
## 982 1 0 0
## 983 1 0 0
## 984 1 0 0
## 985 1 0 0
## 986 1 0 0
## 987 1 0 0
## 988 1 0 0
## 989 1 0 0
## 990 1 0 0
## 991 1 0 0
## 992 1 0 0
## 993 1 0 0
## 994 1 0 0
## 995 1 0 0
## 996 1 0 0
## 997 1 0 0
## 998 1 0 0
## 999 1 0 0
## 1000 1 0 0
## presentresidencelength propertyA121 propertyA122 propertyA123
## 1 4 1 0 0
## 2 2 1 0 0
## 3 3 1 0 0
## 4 4 0 1 0
## 5 4 0 0 0
## 6 4 0 0 0
## 7 4 0 1 0
## 8 2 0 0 1
## 9 4 1 0 0
## 10 2 0 0 1
## 11 1 0 0 1
## 12 4 0 1 0
## 13 1 0 0 1
## 14 4 0 0 1
## 15 4 0 0 1
## 16 2 0 0 1
## 17 4 0 1 0
## 18 3 0 0 1
## 19 2 0 0 0
## 20 2 0 0 1
## 21 4 0 0 1
## 22 3 1 0 0
## 23 3 1 0 0
## 24 4 0 1 0
## 25 1 0 0 1
## 26 2 1 0 0
## 27 4 0 0 1
## 28 3 1 0 0
## 29 2 1 0 0
## 30 4 0 0 0
## 31 3 1 0 0
## 32 2 0 0 1
## 33 2 0 0 1
## 34 4 0 0 0
## 35 1 0 1 0
## 36 2 0 1 0
## 37 3 0 0 0
## 38 2 1 0 0
## 39 2 0 0 1
## 40 3 1 0 0
## 41 2 0 0 1
## 42 1 0 0 1
## 43 4 1 0 0
## 44 4 0 0 1
## 45 4 0 0 0
## 46 4 0 0 1
## 47 4 0 0 1
## 48 2 0 1 0
## 49 4 0 1 0
## 50 2 1 0 0
## 51 2 0 1 0
## 52 2 0 0 1
## 53 2 0 0 1
## 54 1 0 1 0
## 55 4 0 0 0
## 56 2 1 0 0
## 57 1 0 0 0
## 58 2 0 0 1
## 59 2 0 0 1
## 60 4 0 0 0
## 61 1 1 0 0
## 62 4 1 0 0
## 63 4 0 0 0
## 64 2 0 0 1
## 65 4 0 1 0
## 66 4 0 1 0
## 67 2 0 0 1
## 68 1 1 0 0
## 69 4 0 0 0
## 70 4 0 0 1
## 71 2 0 1 0
## 72 2 0 1 0
## 73 4 0 0 0
## 74 1 1 0 0
## 75 4 0 0 0
## 76 4 0 0 0
## 77 3 0 0 1
## 78 4 0 1 0
## 79 2 0 1 0
## 80 1 0 1 0
## 81 1 0 0 1
## 82 3 0 1 0
## 83 4 0 1 0
## 84 4 1 0 0
## 85 4 1 0 0
## 86 2 1 0 0
## 87 1 0 1 0
## 88 4 0 0 0
## 89 3 0 0 1
## 90 3 1 0 0
## 91 4 1 0 0
## 92 3 1 0 0
## 93 3 0 1 0
## 94 4 0 0 0
## 95 4 1 0 0
## 96 4 0 0 0
## 97 2 0 0 1
## 98 4 0 0 1
## 99 4 1 0 0
## 100 4 0 1 0
## 101 4 1 0 0
## 102 4 0 0 1
## 103 2 1 0 0
## 104 3 0 0 1
## 105 4 0 0 1
## 106 3 0 0 1
## 107 4 0 0 0
## 108 2 0 0 1
## 109 2 0 1 0
## 110 2 1 0 0
## 111 2 0 0 1
## 112 4 0 1 0
## 113 3 1 0 0
## 114 2 1 0 0
## 115 1 1 0 0
## 116 1 1 0 0
## 117 3 0 0 1
## 118 3 1 0 0
## 119 4 0 0 1
## 120 3 0 0 1
## 121 2 1 0 0
## 122 2 0 0 1
## 123 2 1 0 0
## 124 4 0 0 0
## 125 3 1 0 0
## 126 2 0 1 0
## 127 2 1 0 0
## 128 2 0 0 1
## 129 2 0 0 1
## 130 2 1 0 0
## 131 2 0 0 1
## 132 3 0 1 0
## 133 3 0 1 0
## 134 4 0 0 0
## 135 4 1 0 0
## 136 2 1 0 0
## 137 2 0 0 1
## 138 3 1 0 0
## 139 2 1 0 0
## 140 2 0 0 1
## 141 2 1 0 0
## 142 1 0 0 0
## 143 2 0 0 1
## 144 2 0 0 1
## 145 4 0 1 0
## 146 2 0 0 1
## 147 4 0 0 0
## 148 3 0 0 1
## 149 2 0 1 0
## 150 4 0 0 1
## 151 4 0 0 0
## 152 4 0 1 0
## 153 1 0 0 1
## 154 4 0 0 0
## 155 4 0 0 1
## 156 4 0 0 1
## 157 4 1 0 0
## 158 1 0 0 1
## 159 3 0 0 1
## 160 2 1 0 0
## 161 4 1 0 0
## 162 1 0 1 0
## 163 3 0 1 0
## 164 4 0 0 0
## 165 4 0 1 0
## 166 2 0 0 1
## 167 2 0 0 1
## 168 1 1 0 0
## 169 4 0 1 0
## 170 4 1 0 0
## 171 3 0 0 1
## 172 1 1 0 0
## 173 2 0 1 0
## 174 2 1 0 0
## 175 1 0 1 0
## 176 1 1 0 0
## 177 1 0 0 1
## 178 4 0 0 1
## 179 2 0 0 1
## 180 4 1 0 0
## 181 1 0 0 1
## 182 2 1 0 0
## 183 2 0 1 0
## 184 4 1 0 0
## 185 4 0 0 1
## 186 2 0 1 0
## 187 4 0 0 0
## 188 3 0 0 1
## 189 1 0 1 0
## 190 4 0 0 1
## 191 3 0 1 0
## 192 4 0 0 0
## 193 2 0 0 1
## 194 2 1 0 0
## 195 4 0 1 0
## 196 3 0 0 1
## 197 1 0 0 1
## 198 4 0 0 1
## 199 4 0 0 0
## 200 3 0 0 0
## 201 2 0 0 1
## 202 3 1 0 0
## 203 4 0 0 1
## 204 4 0 1 0
## 205 1 1 0 0
## 206 4 0 0 0
## 207 4 1 0 0
## 208 3 0 1 0
## 209 2 0 0 1
## 210 2 0 1 0
## 211 2 1 0 0
## 212 4 1 0 0
## 213 4 0 1 0
## 214 4 1 0 0
## 215 2 0 0 1
## 216 3 0 1 0
## 217 1 0 1 0
## 218 2 1 0 0
## 219 2 1 0 0
## 220 4 0 0 1
## 221 1 1 0 0
## 222 4 0 1 0
## 223 2 1 0 0
## 224 4 1 0 0
## 225 2 0 0 1
## 226 2 0 0 1
## 227 2 0 0 0
## 228 4 0 0 0
## 229 2 0 0 1
## 230 1 0 0 0
## 231 2 0 0 1
## 232 4 0 0 0
## 233 1 0 0 0
## 234 2 1 0 0
## 235 1 1 0 0
## 236 2 0 0 1
## 237 2 0 1 0
## 238 2 0 0 1
## 239 2 0 1 0
## 240 3 0 1 0
## 241 2 0 0 1
## 242 2 0 1 0
## 243 4 0 0 0
## 244 2 1 0 0
## 245 3 1 0 0
## 246 1 1 0 0
## 247 4 1 0 0
## 248 1 0 0 0
## 249 2 1 0 0
## 250 4 1 0 0
## 251 4 1 0 0
## 252 2 0 0 1
## 253 2 0 0 0
## 254 3 0 1 0
## 255 1 0 0 1
## 256 1 1 0 0
## 257 2 1 0 0
## 258 1 0 0 0
## 259 4 0 0 1
## 260 4 1 0 0
## 261 2 1 0 0
## 262 4 0 0 1
## 263 4 0 0 0
## 264 4 0 0 0
## 265 4 1 0 0
## 266 3 0 0 1
## 267 4 1 0 0
## 268 3 0 0 1
## 269 4 0 1 0
## 270 2 0 0 1
## 271 3 0 1 0
## 272 4 0 0 1
## 273 4 0 0 0
## 274 4 1 0 0
## 275 1 0 0 0
## 276 2 1 0 0
## 277 2 0 0 1
## 278 4 0 1 0
## 279 4 0 1 0
## 280 4 0 0 1
## 281 4 0 0 0
## 282 2 1 0 0
## 283 4 0 0 1
## 284 4 0 1 0
## 285 2 0 0 1
## 286 1 1 0 0
## 287 3 0 1 0
## 288 4 0 0 0
## 289 4 1 0 0
## 290 4 1 0 0
## 291 2 1 0 0
## 292 4 0 0 1
## 293 4 0 0 0
## 294 4 0 0 0
## 295 2 0 0 1
## 296 2 0 0 1
## 297 4 0 0 1
## 298 2 0 1 0
## 299 4 1 0 0
## 300 2 0 0 1
## 301 4 1 0 0
## 302 1 0 0 1
## 303 2 1 0 0
## 304 3 0 1 0
## 305 2 0 0 0
## 306 2 1 0 0
## 307 4 0 1 0
## 308 3 0 0 0
## 309 4 1 0 0
## 310 4 1 0 0
## 311 4 0 0 0
## 312 1 0 0 1
## 313 4 0 0 1
## 314 3 0 0 1
## 315 2 1 0 0
## 316 4 0 0 1
## 317 3 0 1 0
## 318 4 0 1 0
## 319 2 0 0 1
## 320 4 0 1 0
## 321 2 0 0 1
## 322 3 0 1 0
## 323 1 0 0 0
## 324 2 0 0 1
## 325 3 1 0 0
## 326 4 1 0 0
## 327 4 0 1 0
## 328 3 0 0 1
## 329 2 0 0 1
## 330 4 0 0 1
## 331 4 0 0 0
## 332 2 1 0 0
## 333 2 0 1 0
## 334 4 0 0 1
## 335 4 0 0 0
## 336 4 1 0 0
## 337 4 0 1 0
## 338 2 0 0 1
## 339 4 0 1 0
## 340 2 0 0 1
## 341 4 0 0 0
## 342 4 0 0 1
## 343 3 1 0 0
## 344 1 1 0 0
## 345 1 0 1 0
## 346 2 0 0 1
## 347 4 1 0 0
## 348 4 0 0 0
## 349 2 1 0 0
## 350 3 0 0 0
## 351 4 1 0 0
## 352 2 0 0 1
## 353 4 0 0 0
## 354 2 0 1 0
## 355 4 0 0 0
## 356 2 1 0 0
## 357 4 1 0 0
## 358 2 0 0 1
## 359 2 1 0 0
## 360 4 1 0 0
## 361 4 0 0 0
## 362 3 0 0 1
## 363 2 0 0 1
## 364 2 0 1 0
## 365 1 0 0 1
## 366 4 0 0 1
## 367 1 0 0 1
## 368 4 0 0 1
## 369 2 0 0 1
## 370 4 1 0 0
## 371 4 1 0 0
## 372 4 0 0 1
## 373 3 1 0 0
## 374 4 0 0 0
## 375 4 0 0 0
## 376 4 0 0 1
## 377 3 1 0 0
## 378 4 0 0 0
## 379 2 0 0 0
## 380 4 0 0 1
## 381 4 0 0 1
## 382 4 0 0 0
## 383 4 0 1 0
## 384 1 1 0 0
## 385 2 0 1 0
## 386 1 0 0 1
## 387 2 1 0 0
## 388 4 0 1 0
## 389 4 0 0 1
## 390 2 0 0 1
## 391 2 0 1 0
## 392 4 1 0 0
## 393 4 0 0 0
## 394 4 0 0 1
## 395 3 0 0 1
## 396 3 0 0 0
## 397 4 0 0 0
## 398 2 0 1 0
## 399 1 1 0 0
## 400 1 1 0 0
## 401 4 1 0 0
## 402 4 1 0 0
## 403 2 0 0 1
## 404 2 0 0 1
## 405 4 0 0 1
## 406 1 0 1 0
## 407 4 0 0 1
## 408 2 1 0 0
## 409 2 0 0 1
## 410 2 1 0 0
## 411 4 0 0 1
## 412 2 0 0 1
## 413 2 0 0 1
## 414 2 0 0 0
## 415 2 0 1 0
## 416 2 0 1 0
## 417 1 1 0 0
## 418 2 0 0 1
## 419 2 0 0 1
## 420 2 0 1 0
## 421 3 0 0 1
## 422 2 0 0 1
## 423 3 1 0 0
## 424 3 1 0 0
## 425 2 0 1 0
## 426 3 0 0 1
## 427 2 0 0 1
## 428 3 1 0 0
## 429 4 0 0 1
## 430 4 0 0 0
## 431 4 1 0 0
## 432 3 0 0 1
## 433 4 0 0 0
## 434 2 1 0 0
## 435 2 1 0 0
## 436 1 1 0 0
## 437 4 1 0 0
## 438 4 1 0 0
## 439 4 0 0 1
## 440 1 1 0 0
## 441 4 0 0 1
## 442 3 0 1 0
## 443 3 0 0 1
## 444 4 0 0 1
## 445 3 0 0 1
## 446 4 0 1 0
## 447 4 0 0 1
## 448 2 1 0 0
## 449 4 1 0 0
## 450 3 0 1 0
## 451 2 0 0 1
## 452 1 1 0 0
## 453 4 0 1 0
## 454 4 0 0 1
## 455 3 0 1 0
## 456 1 0 0 0
## 457 2 1 0 0
## 458 4 0 0 0
## 459 1 1 0 0
## 460 2 0 0 1
## 461 2 0 1 0
## 462 3 1 0 0
## 463 1 1 0 0
## 464 4 0 1 0
## 465 1 0 0 1
## 466 4 0 0 0
## 467 2 0 0 1
## 468 3 0 0 1
## 469 2 0 0 1
## 470 3 0 0 1
## 471 2 0 0 1
## 472 4 0 1 0
## 473 3 0 0 1
## 474 4 0 1 0
## 475 2 0 0 1
## 476 4 0 1 0
## 477 4 0 0 1
## 478 2 0 0 1
## 479 4 1 0 0
## 480 4 0 0 1
## 481 1 1 0 0
## 482 1 0 1 0
## 483 4 0 1 0
## 484 2 0 1 0
## 485 4 1 0 0
## 486 4 0 1 0
## 487 4 0 0 1
## 488 4 0 0 0
## 489 2 1 0 0
## 490 3 0 1 0
## 491 2 0 0 0
## 492 4 0 0 0
## 493 1 0 1 0
## 494 4 0 1 0
## 495 2 1 0 0
## 496 4 0 0 1
## 497 1 0 0 0
## 498 3 0 1 0
## 499 2 1 0 0
## 500 4 0 0 1
## 501 1 0 1 0
## 502 4 0 0 0
## 503 4 1 0 0
## 504 4 0 0 0
## 505 4 0 1 0
## 506 4 0 1 0
## 507 2 0 0 1
## 508 2 0 1 0
## 509 2 0 1 0
## 510 2 0 0 1
## 511 2 1 0 0
## 512 2 0 0 0
## 513 4 0 1 0
## 514 4 1 0 0
## 515 1 0 1 0
## 516 3 0 1 0
## 517 4 1 0 0
## 518 4 0 1 0
## 519 2 0 1 0
## 520 4 0 0 0
## 521 4 0 0 0
## 522 2 1 0 0
## 523 4 0 0 0
## 524 4 0 0 1
## 525 4 1 0 0
## 526 3 0 0 1
## 527 3 0 0 1
## 528 1 1 0 0
## 529 4 0 0 1
## 530 4 1 0 0
## 531 1 0 0 1
## 532 4 0 0 1
## 533 4 1 0 0
## 534 3 0 1 0
## 535 2 0 0 1
## 536 1 0 0 1
## 537 3 0 1 0
## 538 4 0 1 0
## 539 4 0 0 0
## 540 1 0 1 0
## 541 1 1 0 0
## 542 4 0 0 0
## 543 4 0 1 0
## 544 1 1 0 0
## 545 4 1 0 0
## 546 2 1 0 0
## 547 4 0 0 1
## 548 1 0 0 1
## 549 4 1 0 0
## 550 1 0 0 0
## 551 4 1 0 0
## 552 4 0 1 0
## 553 1 1 0 0
## 554 1 0 0 1
## 555 4 0 1 0
## 556 1 0 0 1
## 557 3 0 0 1
## 558 4 0 1 0
## 559 4 0 0 1
## 560 2 1 0 0
## 561 4 0 0 0
## 562 4 0 0 1
## 563 1 0 1 0
## 564 4 0 0 0
## 565 2 0 1 0
## 566 2 0 1 0
## 567 3 0 0 1
## 568 2 0 0 1
## 569 1 0 0 1
## 570 2 0 0 1
## 571 4 1 0 0
## 572 2 0 0 1
## 573 4 0 1 0
## 574 4 0 1 0
## 575 4 0 0 1
## 576 3 0 0 1
## 577 1 1 0 0
## 578 2 0 0 1
## 579 4 0 0 1
## 580 3 0 0 1
## 581 3 1 0 0
## 582 3 1 0 0
## 583 2 1 0 0
## 584 1 0 0 0
## 585 4 0 0 0
## 586 4 1 0 0
## 587 2 1 0 0
## 588 1 0 1 0
## 589 3 1 0 0
## 590 3 0 1 0
## 591 3 1 0 0
## 592 4 0 0 1
## 593 4 1 0 0
## 594 4 0 1 0
## 595 3 0 0 1
## 596 1 0 1 0
## 597 4 0 0 1
## 598 4 1 0 0
## 599 2 0 1 0
## 600 2 0 0 0
## 601 1 1 0 0
## 602 1 0 1 0
## 603 4 0 0 0
## 604 2 0 0 1
## 605 2 0 1 0
## 606 4 1 0 0
## 607 2 1 0 0
## 608 4 0 0 0
## 609 1 1 0 0
## 610 4 0 0 0
## 611 3 0 1 0
## 612 4 0 0 0
## 613 2 0 0 1
## 614 4 0 0 1
## 615 1 1 0 0
## 616 2 0 0 1
## 617 2 0 0 0
## 618 3 1 0 0
## 619 4 0 0 1
## 620 2 1 0 0
## 621 3 0 1 0
## 622 2 0 1 0
## 623 2 1 0 0
## 624 1 0 0 1
## 625 4 0 0 0
## 626 2 0 0 1
## 627 2 1 0 0
## 628 3 0 0 0
## 629 4 1 0 0
## 630 4 1 0 0
## 631 4 0 0 1
## 632 3 0 0 1
## 633 1 0 1 0
## 634 2 0 0 1
## 635 4 0 0 1
## 636 4 0 1 0
## 637 1 0 0 1
## 638 4 0 0 1
## 639 3 0 0 1
## 640 2 0 1 0
## 641 1 1 0 0
## 642 4 0 0 1
## 643 2 0 1 0
## 644 2 0 0 1
## 645 1 0 1 0
## 646 4 0 0 1
## 647 2 1 0 0
## 648 2 0 1 0
## 649 3 0 0 0
## 650 4 0 0 1
## 651 1 0 0 0
## 652 2 0 1 0
## 653 1 1 0 0
## 654 4 0 0 1
## 655 3 0 0 1
## 656 4 0 0 0
## 657 4 0 0 1
## 658 3 0 0 1
## 659 1 0 0 1
## 660 1 0 0 0
## 661 4 1 0 0
## 662 2 0 0 1
## 663 2 1 0 0
## 664 1 0 1 0
## 665 4 0 1 0
## 666 2 0 0 0
## 667 2 0 0 1
## 668 1 1 0 0
## 669 4 0 1 0
## 670 4 0 1 0
## 671 3 0 1 0
## 672 2 0 0 1
## 673 4 0 1 0
## 674 2 0 0 1
## 675 2 1 0 0
## 676 4 0 0 1
## 677 4 0 0 1
## 678 2 0 0 1
## 679 4 1 0 0
## 680 1 1 0 0
## 681 2 0 0 0
## 682 4 0 0 0
## 683 3 1 0 0
## 684 3 0 0 0
## 685 3 0 1 0
## 686 4 0 0 0
## 687 2 0 1 0
## 688 3 0 0 0
## 689 4 0 0 1
## 690 3 0 1 0
## 691 3 0 1 0
## 692 2 1 0 0
## 693 1 0 0 1
## 694 3 1 0 0
## 695 2 0 0 1
## 696 4 0 1 0
## 697 3 1 0 0
## 698 2 0 1 0
## 699 2 0 0 1
## 700 4 0 0 1
## 701 4 0 0 1
## 702 4 0 0 0
## 703 2 0 0 0
## 704 2 0 1 0
## 705 1 0 1 0
## 706 4 0 0 0
## 707 2 0 1 0
## 708 3 0 1 0
## 709 4 1 0 0
## 710 2 1 0 0
## 711 3 0 1 0
## 712 4 0 0 0
## 713 4 1 0 0
## 714 4 1 0 0
## 715 2 0 0 0
## 716 4 0 0 1
## 717 2 0 0 1
## 718 2 0 0 0
## 719 2 0 0 1
## 720 4 0 0 1
## 721 2 0 0 1
## 722 2 0 1 0
## 723 2 1 0 0
## 724 3 1 0 0
## 725 3 1 0 0
## 726 2 1 0 0
## 727 2 0 1 0
## 728 4 0 0 1
## 729 3 0 0 0
## 730 4 1 0 0
## 731 2 0 0 1
## 732 4 1 0 0
## 733 2 1 0 0
## 734 4 0 0 1
## 735 1 1 0 0
## 736 2 0 0 0
## 737 4 0 0 1
## 738 4 0 0 1
## 739 3 0 0 0
## 740 4 0 0 1
## 741 3 0 0 1
## 742 4 1 0 0
## 743 3 0 1 0
## 744 4 1 0 0
## 745 4 0 1 0
## 746 1 0 1 0
## 747 4 0 0 1
## 748 1 1 0 0
## 749 3 0 0 1
## 750 2 0 0 1
## 751 1 0 1 0
## 752 2 0 0 1
## 753 4 1 0 0
## 754 2 0 0 1
## 755 4 0 0 0
## 756 4 0 0 0
## 757 1 1 0 0
## 758 4 0 0 0
## 759 2 1 0 0
## 760 3 0 1 0
## 761 4 0 0 1
## 762 4 1 0 0
## 763 3 0 1 0
## 764 4 0 0 0
## 765 3 0 1 0
## 766 3 1 0 0
## 767 4 0 1 0
## 768 4 1 0 0
## 769 4 0 0 1
## 770 4 1 0 0
## 771 4 1 0 0
## 772 2 0 0 0
## 773 4 0 0 1
## 774 4 0 1 0
## 775 4 0 0 0
## 776 4 1 0 0
## 777 4 0 0 1
## 778 1 1 0 0
## 779 2 0 0 1
## 780 4 0 0 1
## 781 2 1 0 0
## 782 4 1 0 0
## 783 2 1 0 0
## 784 2 0 1 0
## 785 4 1 0 0
## 786 2 0 1 0
## 787 4 0 0 1
## 788 3 0 0 1
## 789 4 0 0 0
## 790 3 0 0 0
## 791 4 0 1 0
## 792 4 0 0 1
## 793 2 0 1 0
## 794 4 0 0 0
## 795 3 0 0 0
## 796 4 0 1 0
## 797 4 0 1 0
## 798 4 0 1 0
## 799 4 0 0 1
## 800 2 1 0 0
## 801 4 0 0 0
## 802 4 1 0 0
## 803 4 0 1 0
## 804 4 0 0 1
## 805 2 1 0 0
## 806 1 0 0 1
## 807 3 1 0 0
## 808 4 1 0 0
## 809 2 0 0 0
## 810 1 1 0 0
## 811 2 1 0 0
## 812 3 1 0 0
## 813 4 0 0 1
## 814 4 0 0 1
## 815 4 0 0 0
## 816 2 0 1 0
## 817 4 1 0 0
## 818 2 0 0 1
## 819 3 0 0 1
## 820 3 1 0 0
## 821 2 1 0 0
## 822 1 0 0 1
## 823 2 0 1 0
## 824 4 1 0 0
## 825 2 0 0 1
## 826 3 0 0 1
## 827 4 1 0 0
## 828 2 0 0 1
## 829 4 0 0 0
## 830 4 0 0 0
## 831 2 0 0 1
## 832 3 0 0 1
## 833 4 0 0 1
## 834 4 0 0 1
## 835 3 1 0 0
## 836 4 0 0 1
## 837 2 0 0 1
## 838 3 1 0 0
## 839 4 0 1 0
## 840 3 1 0 0
## 841 2 0 1 0
## 842 2 1 0 0
## 843 4 1 0 0
## 844 4 0 0 1
## 845 4 0 1 0
## 846 3 0 0 1
## 847 4 0 0 1
## 848 2 1 0 0
## 849 4 1 0 0
## 850 4 1 0 0
## 851 2 0 1 0
## 852 4 0 1 0
## 853 4 0 0 0
## 854 4 0 0 0
## 855 2 0 0 1
## 856 3 1 0 0
## 857 3 0 1 0
## 858 2 0 0 0
## 859 2 0 1 0
## 860 2 1 0 0
## 861 2 1 0 0
## 862 2 0 0 1
## 863 4 1 0 0
## 864 2 1 0 0
## 865 2 1 0 0
## 866 4 0 0 1
## 867 1 0 0 1
## 868 4 0 1 0
## 869 2 0 1 0
## 870 4 0 1 0
## 871 4 0 0 1
## 872 4 1 0 0
## 873 1 1 0 0
## 874 1 1 0 0
## 875 2 0 1 0
## 876 4 0 0 1
## 877 4 0 0 0
## 878 2 0 0 1
## 879 2 0 0 0
## 880 3 0 1 0
## 881 3 0 0 1
## 882 4 0 0 0
## 883 4 1 0 0
## 884 4 0 0 1
## 885 3 0 0 1
## 886 4 0 1 0
## 887 3 0 0 0
## 888 2 0 0 1
## 889 4 0 0 1
## 890 4 1 0 0
## 891 4 0 0 1
## 892 4 0 0 1
## 893 4 0 1 0
## 894 4 0 0 1
## 895 3 0 1 0
## 896 2 0 0 1
## 897 4 0 1 0
## 898 2 0 1 0
## 899 4 1 0 0
## 900 3 0 0 1
## 901 4 0 1 0
## 902 4 1 0 0
## 903 4 0 0 0
## 904 2 1 0 0
## 905 1 1 0 0
## 906 2 1 0 0
## 907 2 1 0 0
## 908 2 0 0 1
## 909 2 0 1 0
## 910 2 1 0 0
## 911 4 1 0 0
## 912 4 0 0 1
## 913 4 0 0 1
## 914 2 1 0 0
## 915 2 0 1 0
## 916 2 0 1 0
## 917 2 1 0 0
## 918 4 0 0 0
## 919 1 0 1 0
## 920 2 0 1 0
## 921 2 0 0 0
## 922 1 0 0 1
## 923 4 0 1 0
## 924 4 0 1 0
## 925 1 0 1 0
## 926 2 0 0 1
## 927 4 0 1 0
## 928 4 0 0 0
## 929 4 0 0 1
## 930 2 1 0 0
## 931 1 0 1 0
## 932 2 0 0 1
## 933 1 1 0 0
## 934 4 0 1 0
## 935 1 0 0 1
## 936 3 0 0 0
## 937 2 1 0 0
## 938 3 0 0 1
## 939 4 0 0 0
## 940 4 0 1 0
## 941 3 0 1 0
## 942 2 1 0 0
## 943 2 0 0 1
## 944 1 1 0 0
## 945 1 0 1 0
## 946 1 0 0 1
## 947 4 0 0 0
## 948 4 0 0 0
## 949 1 0 1 0
## 950 4 0 0 1
## 951 3 0 0 1
## 952 1 0 0 1
## 953 4 0 0 1
## 954 2 0 0 1
## 955 4 0 1 0
## 956 4 0 1 0
## 957 4 0 1 0
## 958 4 1 0 0
## 959 2 0 0 1
## 960 4 0 0 0
## 961 2 1 0 0
## 962 4 0 1 0
## 963 2 0 0 0
## 964 2 0 0 1
## 965 1 0 1 0
## 966 1 0 0 1
## 967 2 0 1 0
## 968 2 0 0 1
## 969 4 0 1 0
## 970 2 1 0 0
## 971 2 1 0 0
## 972 4 0 1 0
## 973 4 0 0 0
## 974 4 0 0 0
## 975 2 0 0 1
## 976 3 0 0 1
## 977 3 1 0 0
## 978 2 0 1 0
## 979 4 0 0 1
## 980 2 0 1 0
## 981 2 0 1 0
## 982 2 0 0 1
## 983 1 0 0 1
## 984 2 0 1 0
## 985 2 0 1 0
## 986 3 0 1 0
## 987 1 0 1 0
## 988 4 1 0 0
## 989 2 0 0 0
## 990 2 0 1 0
## 991 1 0 1 0
## 992 4 0 0 1
## 993 4 0 0 1
## 994 3 0 1 0
## 995 3 0 0 1
## 996 4 1 0 0
## 997 4 0 1 0
## 998 4 0 0 1
## 999 4 0 0 0
## 1000 4 0 0 1
## propertyA124 age otherinstallmentplansA141 otherinstallmentplansA142
## 1 0 67 0 0
## 2 0 22 0 0
## 3 0 49 0 0
## 4 0 45 0 0
## 5 1 53 0 0
## 6 1 35 0 0
## 7 0 53 0 0
## 8 0 35 0 0
## 9 0 61 0 0
## 10 0 28 0 0
## 11 0 25 0 0
## 12 0 24 0 0
## 13 0 22 0 0
## 14 0 60 0 0
## 15 0 28 0 0
## 16 0 32 0 0
## 17 0 53 0 0
## 18 0 25 1 0
## 19 1 44 0 0
## 20 0 31 0 0
## 21 0 48 0 0
## 22 0 44 0 0
## 23 0 48 0 0
## 24 0 44 0 0
## 25 0 26 0 0
## 26 0 36 1 0
## 27 0 39 0 0
## 28 0 42 0 0
## 29 0 34 0 0
## 30 1 63 0 0
## 31 0 36 1 0
## 32 0 27 0 1
## 33 0 30 0 0
## 34 1 57 0 0
## 35 0 33 1 0
## 36 0 25 0 0
## 37 1 31 1 0
## 38 0 37 0 1
## 39 0 37 0 0
## 40 0 24 0 0
## 41 0 30 1 0
## 42 0 26 0 0
## 43 0 44 0 0
## 44 0 24 0 0
## 45 1 58 0 1
## 46 0 35 0 0
## 47 0 39 0 0
## 48 0 23 0 0
## 49 0 39 0 0
## 50 0 28 0 0
## 51 0 29 1 0
## 52 0 30 0 0
## 53 0 25 0 0
## 54 0 31 0 0
## 55 1 57 1 0
## 56 0 26 0 1
## 57 1 52 0 0
## 58 0 31 0 1
## 59 0 23 0 0
## 60 1 23 0 0
## 61 0 27 1 0
## 62 0 50 0 0
## 63 1 61 0 0
## 64 0 25 0 0
## 65 0 26 0 0
## 66 0 48 0 0
## 67 0 29 1 0
## 68 0 22 0 0
## 69 1 37 0 1
## 70 0 25 0 0
## 71 0 30 1 0
## 72 0 46 0 0
## 73 1 51 1 0
## 74 0 41 1 0
## 75 1 40 0 0
## 76 1 66 0 0
## 77 0 34 0 0
## 78 0 51 0 0
## 79 0 39 0 0
## 80 0 22 0 0
## 81 0 44 0 0
## 82 0 47 0 1
## 83 0 24 0 0
## 84 0 58 0 0
## 85 0 52 0 0
## 86 0 29 0 0
## 87 0 27 0 0
## 88 1 47 0 0
## 89 0 30 0 0
## 90 0 28 0 0
## 91 0 56 0 0
## 92 0 54 0 0
## 93 0 33 1 0
## 94 1 20 0 0
## 95 0 54 0 0
## 96 1 58 0 0
## 97 0 61 0 0
## 98 0 34 0 0
## 99 0 36 0 0
## 100 0 36 1 0
## 101 0 41 0 0
## 102 0 24 0 0
## 103 0 24 0 0
## 104 0 35 0 0
## 105 0 26 0 0
## 106 0 39 0 0
## 107 1 39 1 0
## 108 0 32 0 0
## 109 0 30 0 0
## 110 0 35 0 0
## 111 0 31 1 0
## 112 0 23 0 0
## 113 0 28 0 0
## 114 0 25 0 1
## 115 0 35 0 0
## 116 0 47 0 0
## 117 0 30 0 0
## 118 0 27 0 0
## 119 0 23 0 0
## 120 0 36 0 0
## 121 0 25 0 0
## 122 0 41 0 0
## 123 0 24 0 0
## 124 1 63 0 0
## 125 0 27 0 0
## 126 0 30 0 0
## 127 0 40 0 0
## 128 0 30 0 0
## 129 0 34 0 0
## 130 0 29 0 0
## 131 0 24 0 0
## 132 0 29 0 1
## 133 0 27 1 0
## 134 1 47 1 0
## 135 0 21 0 0
## 136 0 38 0 0
## 137 0 27 0 0
## 138 0 66 0 0
## 139 0 35 1 0
## 140 0 44 0 0
## 141 0 27 0 0
## 142 1 30 0 0
## 143 0 27 0 0
## 144 0 22 0 0
## 145 0 23 0 0
## 146 0 30 0 0
## 147 1 39 0 0
## 148 0 51 0 0
## 149 0 28 0 0
## 150 0 46 0 0
## 151 1 42 1 0
## 152 0 38 0 0
## 153 0 24 0 0
## 154 1 29 0 0
## 155 0 36 0 0
## 156 0 20 0 0
## 157 0 48 0 0
## 158 0 45 1 0
## 159 0 38 1 0
## 160 0 34 0 0
## 161 0 36 0 0
## 162 0 30 0 0
## 163 0 36 0 0
## 164 1 67 1 0
## 165 0 36 0 0
## 166 0 32 0 0
## 167 0 33 0 0
## 168 0 20 0 0
## 169 0 25 0 0
## 170 0 31 0 0
## 171 0 33 0 0
## 172 0 26 0 0
## 173 0 34 0 0
## 174 0 33 0 0
## 175 0 26 0 0
## 176 0 53 1 0
## 177 0 42 0 0
## 178 0 52 0 0
## 179 0 31 0 0
## 180 0 65 0 0
## 181 0 28 0 0
## 182 0 30 0 1
## 183 0 40 0 0
## 184 0 50 0 0
## 185 0 36 1 0
## 186 0 31 0 0
## 187 1 67 1 0
## 188 0 67 0 0
## 189 0 20 0 0
## 190 0 33 1 0
## 191 0 54 0 0
## 192 1 34 0 0
## 193 0 36 0 0
## 194 0 29 0 0
## 195 0 21 0 0
## 196 0 34 0 0
## 197 0 28 0 0
## 198 0 27 1 0
## 199 1 36 1 0
## 200 1 40 0 0
## 201 0 52 0 0
## 202 0 27 0 0
## 203 0 26 0 0
## 204 0 21 0 0
## 205 0 38 0 0
## 206 1 38 0 0
## 207 0 43 0 0
## 208 0 26 0 0
## 209 0 21 0 1
## 210 0 55 0 0
## 211 0 33 0 0
## 212 0 45 0 0
## 213 0 50 0 1
## 214 0 66 0 0
## 215 0 51 0 0
## 216 0 39 0 0
## 217 0 31 1 0
## 218 0 23 0 0
## 219 0 24 0 0
## 220 0 64 0 0
## 221 0 26 1 0
## 222 0 23 1 0
## 223 0 30 1 0
## 224 0 32 0 0
## 225 0 30 0 0
## 226 0 27 0 0
## 227 1 27 1 0
## 228 1 53 0 0
## 229 0 22 0 0
## 230 1 22 1 0
## 231 0 26 0 0
## 232 1 51 0 0
## 233 1 35 0 0
## 234 0 25 0 0
## 235 0 42 0 0
## 236 0 30 0 1
## 237 0 23 0 0
## 238 0 61 1 0
## 239 0 35 0 0
## 240 0 39 0 0
## 241 0 29 1 0
## 242 0 51 0 0
## 243 1 24 0 0
## 244 0 27 0 0
## 245 0 35 0 0
## 246 0 25 0 0
## 247 0 52 0 0
## 248 1 35 1 0
## 249 0 26 0 0
## 250 0 22 0 0
## 251 0 39 0 0
## 252 0 46 0 0
## 253 1 24 1 0
## 254 0 35 0 0
## 255 0 24 0 0
## 256 0 27 0 0
## 257 0 35 0 0
## 258 1 29 0 0
## 259 0 23 0 0
## 260 0 57 0 0
## 261 0 27 0 0
## 262 0 55 0 0
## 263 1 36 0 0
## 264 1 57 1 0
## 265 0 32 0 0
## 266 0 37 0 0
## 267 0 36 0 0
## 268 0 38 0 1
## 269 0 45 0 0
## 270 0 25 0 0
## 271 0 32 0 0
## 272 0 37 0 0
## 273 1 36 0 0
## 274 0 28 0 0
## 275 1 34 0 0
## 276 0 32 0 0
## 277 0 26 0 0
## 278 0 49 0 0
## 279 0 32 0 0
## 280 0 29 0 0
## 281 1 23 0 0
## 282 0 50 0 0
## 283 0 49 1 0
## 284 0 63 0 0
## 285 0 37 0 0
## 286 0 35 0 0
## 287 0 26 0 0
## 288 1 31 0 0
## 289 0 49 0 0
## 290 0 48 0 1
## 291 0 26 0 0
## 292 0 28 0 0
## 293 1 44 0 0
## 294 1 56 0 0
## 295 0 46 1 0
## 296 0 26 0 0
## 297 0 20 0 0
## 298 0 45 0 0
## 299 0 43 0 0
## 300 0 32 0 0
## 301 0 54 0 0
## 302 0 42 0 0
## 303 0 37 1 0
## 304 0 49 0 0
## 305 1 44 1 0
## 306 0 33 0 0
## 307 0 24 0 1
## 308 1 33 0 0
## 309 0 24 0 0
## 310 0 22 0 0
## 311 1 40 1 0
## 312 0 25 0 1
## 313 0 26 0 0
## 314 0 25 1 0
## 315 0 29 0 0
## 316 0 31 1 0
## 317 0 38 0 0
## 318 0 48 0 0
## 319 0 32 0 0
## 320 0 27 0 0
## 321 0 28 0 0
## 322 0 32 0 0
## 323 1 34 0 0
## 324 0 28 0 0
## 325 0 36 0 0
## 326 0 39 0 0
## 327 0 49 0 0
## 328 0 34 0 0
## 329 0 31 0 0
## 330 0 28 0 0
## 331 1 67 0 0
## 332 0 30 0 0
## 333 0 24 0 0
## 334 0 24 1 0
## 335 1 23 1 0
## 336 0 44 0 0
## 337 0 23 0 0
## 338 0 24 0 0
## 339 0 28 0 0
## 340 0 31 0 0
## 341 1 24 0 0
## 342 0 26 0 0
## 343 0 25 0 0
## 344 0 33 1 0
## 345 0 37 0 0
## 346 0 43 0 0
## 347 0 23 0 0
## 348 1 23 0 0
## 349 0 34 0 0
## 350 1 32 0 0
## 351 0 23 0 0
## 352 0 29 0 0
## 353 1 38 0 0
## 354 0 28 0 0
## 355 1 46 0 0
## 356 0 23 0 1
## 357 0 49 0 0
## 358 0 26 0 0
## 359 0 28 0 0
## 360 0 23 0 0
## 361 1 61 0 0
## 362 0 37 0 0
## 363 0 36 0 1
## 364 0 21 0 0
## 365 0 25 0 0
## 366 0 36 0 0
## 367 0 27 0 0
## 368 0 22 0 0
## 369 0 42 0 0
## 370 0 40 0 0
## 371 0 36 0 0
## 372 0 33 0 0
## 373 0 23 0 0
## 374 1 63 1 0
## 375 1 60 1 0
## 376 0 37 0 0
## 377 0 34 0 0
## 378 1 36 0 0
## 379 1 57 0 0
## 380 0 52 0 0
## 381 0 39 0 0
## 382 1 38 0 0
## 383 0 25 0 0
## 384 0 26 0 0
## 385 0 26 0 0
## 386 0 25 0 0
## 387 0 21 0 0
## 388 0 40 0 1
## 389 0 27 1 0
## 390 0 27 0 0
## 391 0 30 0 0
## 392 0 19 0 0
## 393 1 39 1 0
## 394 0 31 0 0
## 395 0 31 0 0
## 396 1 32 0 0
## 397 1 55 0 0
## 398 0 46 0 0
## 399 0 46 0 0
## 400 0 43 0 0
## 401 0 39 0 0
## 402 0 28 1 0
## 403 0 27 1 0
## 404 0 27 0 0
## 405 0 43 0 0
## 406 0 22 0 0
## 407 0 43 0 0
## 408 0 27 0 0
## 409 0 26 0 0
## 410 0 28 0 0
## 411 0 20 0 0
## 412 0 35 0 0
## 413 0 42 0 1
## 414 1 40 0 0
## 415 0 35 0 0
## 416 0 35 0 0
## 417 0 33 0 0
## 418 0 23 0 0
## 419 0 31 1 0
## 420 0 33 0 0
## 421 0 20 0 0
## 422 0 30 0 0
## 423 0 47 0 0
## 424 0 34 0 0
## 425 0 25 1 0
## 426 0 21 0 0
## 427 0 29 0 0
## 428 0 46 0 0
## 429 0 20 0 0
## 430 1 55 0 0
## 431 0 67 0 0
## 432 0 29 1 0
## 433 1 36 0 0
## 434 0 33 0 0
## 435 0 25 0 0
## 436 0 25 0 0
## 437 0 23 0 0
## 438 0 37 0 0
## 439 0 65 0 0
## 440 0 26 0 0
## 441 0 39 0 0
## 442 0 30 0 0
## 443 0 29 1 0
## 444 0 41 1 0
## 445 0 30 0 0
## 446 0 41 0 0
## 447 0 34 0 0
## 448 0 35 0 0
## 449 0 55 0 0
## 450 0 61 0 1
## 451 0 30 0 0
## 452 0 29 0 0
## 453 0 34 0 0
## 454 0 35 0 0
## 455 0 31 0 0
## 456 1 29 0 0
## 457 0 36 0 0
## 458 1 35 0 0
## 459 0 27 0 0
## 460 0 32 0 0
## 461 0 37 0 0
## 462 0 36 0 0
## 463 0 34 0 0
## 464 0 38 0 0
## 465 0 34 0 1
## 466 1 63 1 0
## 467 0 29 0 0
## 468 0 32 1 0
## 469 0 26 0 0
## 470 0 35 0 0
## 471 0 22 0 0
## 472 0 23 0 0
## 473 0 28 0 0
## 474 0 36 0 0
## 475 0 33 0 0
## 476 0 26 0 0
## 477 0 24 0 0
## 478 0 25 1 0
## 479 0 39 0 0
## 480 0 44 0 0
## 481 0 23 0 0
## 482 0 26 0 0
## 483 0 57 0 0
## 484 0 30 0 0
## 485 0 44 0 0
## 486 0 47 0 0
## 487 0 52 0 0
## 488 1 62 0 0
## 489 0 35 0 0
## 490 0 26 0 0
## 491 1 26 0 0
## 492 1 42 0 0
## 493 0 27 0 0
## 494 0 38 0 0
## 495 0 39 0 0
## 496 0 20 0 0
## 497 1 29 0 0
## 498 0 40 0 0
## 499 0 32 0 0
## 500 0 28 0 0
## 501 0 27 0 0
## 502 1 42 0 0
## 503 0 49 0 0
## 504 1 38 1 0
## 505 0 24 0 0
## 506 0 27 0 0
## 507 0 36 0 0
## 508 0 34 0 0
## 509 0 28 0 0
## 510 0 45 0 0
## 511 0 26 0 0
## 512 1 32 0 0
## 513 0 26 0 0
## 514 0 20 0 0
## 515 0 54 0 0
## 516 0 37 0 0
## 517 0 40 0 0
## 518 0 23 0 0
## 519 0 43 0 0
## 520 1 36 0 0
## 521 1 44 0 0
## 522 0 24 0 0
## 523 1 53 0 0
## 524 0 23 0 0
## 525 0 26 0 0
## 526 0 30 0 0
## 527 0 31 0 0
## 528 0 42 0 0
## 529 0 31 0 0
## 530 0 41 0 0
## 531 0 32 0 0
## 532 0 28 0 0
## 533 0 41 0 0
## 534 0 26 0 0
## 535 0 25 0 0
## 536 0 33 0 0
## 537 0 67 0 0
## 538 0 37 0 0
## 539 1 42 1 0
## 540 0 45 0 1
## 541 0 23 0 0
## 542 1 60 0 0
## 543 0 31 0 0
## 544 0 34 0 0
## 545 0 61 0 0
## 546 0 43 0 0
## 547 0 37 0 0
## 548 0 32 1 0
## 549 0 24 1 0
## 550 1 35 0 0
## 551 0 23 0 0
## 552 0 45 1 0
## 553 0 34 0 0
## 554 0 27 0 0
## 555 0 67 0 0
## 556 0 22 0 1
## 557 0 28 0 0
## 558 0 29 1 0
## 559 0 27 1 0
## 560 0 31 0 0
## 561 1 49 1 0
## 562 0 24 1 0
## 563 0 29 1 0
## 564 1 37 0 0
## 565 0 37 1 0
## 566 0 23 0 0
## 567 0 36 0 0
## 568 0 34 0 0
## 569 0 41 0 0
## 570 0 31 0 0
## 571 0 23 0 0
## 572 0 38 0 0
## 573 0 26 0 0
## 574 0 22 0 0
## 575 0 27 0 0
## 576 0 24 1 0
## 577 0 27 0 0
## 578 0 33 0 0
## 579 0 27 0 0
## 580 0 27 0 0
## 581 0 30 1 0
## 582 0 49 1 0
## 583 0 26 0 0
## 584 1 33 0 0
## 585 1 52 0 0
## 586 0 20 1 0
## 587 0 36 0 0
## 588 0 21 0 0
## 589 0 47 0 0
## 590 0 60 0 0
## 591 0 58 0 0
## 592 0 42 0 0
## 593 0 36 1 0
## 594 0 20 0 0
## 595 0 40 0 1
## 596 0 32 0 1
## 597 0 23 0 0
## 598 0 36 0 0
## 599 0 31 1 0
## 600 1 32 0 0
## 601 0 45 0 0
## 602 0 30 0 0
## 603 1 34 1 0
## 604 0 28 0 0
## 605 0 23 0 0
## 606 0 22 0 1
## 607 0 67 0 0
## 608 1 50 0 0
## 609 0 33 0 0
## 610 1 45 1 0
## 611 0 22 0 0
## 612 1 48 0 0
## 613 0 29 1 0
## 614 0 22 1 0
## 615 0 22 0 0
## 616 0 48 1 0
## 617 1 27 0 0
## 618 0 37 0 0
## 619 0 21 0 0
## 620 0 49 0 0
## 621 0 27 0 0
## 622 0 32 1 0
## 623 0 38 1 0
## 624 0 22 0 0
## 625 1 65 0 0
## 626 0 35 0 0
## 627 0 41 0 0
## 628 1 29 0 0
## 629 0 36 0 0
## 630 0 64 0 0
## 631 0 28 0 0
## 632 0 44 1 0
## 633 0 23 0 0
## 634 0 19 0 0
## 635 0 25 0 0
## 636 0 47 1 0
## 637 0 28 0 0
## 638 0 21 0 0
## 639 0 34 0 0
## 640 0 26 1 0
## 641 0 27 0 0
## 642 0 38 0 0
## 643 0 40 0 0
## 644 0 33 0 0
## 645 0 32 0 0
## 646 0 27 0 0
## 647 0 32 0 0
## 648 0 26 0 0
## 649 1 38 1 0
## 650 0 40 0 0
## 651 1 50 0 0
## 652 0 37 0 0
## 653 0 45 0 0
## 654 0 42 0 0
## 655 0 35 0 0
## 656 1 22 0 0
## 657 0 41 1 0
## 658 0 37 0 1
## 659 0 28 0 0
## 660 1 41 0 0
## 661 0 23 0 0
## 662 0 23 0 0
## 663 0 50 0 0
## 664 0 35 0 1
## 665 0 50 0 0
## 666 1 27 1 0
## 667 0 34 0 1
## 668 0 27 0 1
## 669 0 43 0 0
## 670 0 47 0 0
## 671 0 27 0 0
## 672 0 31 0 0
## 673 0 42 0 0
## 674 0 24 0 0
## 675 0 41 1 0
## 676 0 26 0 0
## 677 0 33 0 0
## 678 0 24 0 0
## 679 0 64 1 0
## 680 0 26 0 0
## 681 1 56 0 0
## 682 1 37 0 0
## 683 0 33 1 0
## 684 1 47 0 0
## 685 0 31 0 0
## 686 1 34 0 0
## 687 0 27 0 0
## 688 1 30 0 0
## 689 0 35 0 0
## 690 0 31 0 0
## 691 0 25 0 0
## 692 0 25 0 0
## 693 0 29 0 0
## 694 0 44 0 0
## 695 0 28 0 0
## 696 0 50 0 0
## 697 0 29 0 0
## 698 0 38 0 0
## 699 0 24 0 0
## 700 0 40 0 0
## 701 0 29 0 0
## 702 1 46 0 0
## 703 1 47 0 0
## 704 0 41 0 1
## 705 0 32 0 0
## 706 1 35 0 0
## 707 0 24 0 0
## 708 0 25 0 0
## 709 0 25 0 0
## 710 0 37 0 0
## 711 0 32 1 0
## 712 1 35 0 0
## 713 0 46 0 0
## 714 0 25 0 0
## 715 1 27 0 0
## 716 0 63 0 0
## 717 0 40 0 0
## 718 1 32 0 0
## 719 0 31 0 0
## 720 0 31 1 0
## 721 0 34 0 0
## 722 0 24 1 0
## 723 0 24 0 0
## 724 0 66 0 0
## 725 0 21 0 0
## 726 0 41 1 0
## 727 0 47 0 0
## 728 0 25 1 0
## 729 1 59 0 0
## 730 0 36 0 0
## 731 0 33 0 0
## 732 0 21 0 0
## 733 0 44 0 0
## 734 0 28 0 0
## 735 0 37 0 0
## 736 1 29 1 0
## 737 0 23 0 0
## 738 0 35 0 0
## 739 1 45 0 0
## 740 0 26 0 0
## 741 0 32 1 0
## 742 0 23 0 1
## 743 0 41 0 0
## 744 0 22 0 1
## 745 0 30 0 0
## 746 0 28 1 0
## 747 0 23 0 0
## 748 0 37 0 0
## 749 0 26 0 0
## 750 0 33 0 0
## 751 0 49 1 0
## 752 0 23 0 0
## 753 0 23 0 0
## 754 0 25 0 0
## 755 1 55 0 0
## 756 1 32 0 0
## 757 0 67 0 0
## 758 1 39 0 0
## 759 0 31 0 0
## 760 0 35 0 0
## 761 0 59 0 0
## 762 0 24 0 0
## 763 0 24 0 0
## 764 1 30 0 0
## 765 0 27 0 0
## 766 0 40 1 0
## 767 0 31 0 0
## 768 0 31 0 0
## 769 0 28 0 0
## 770 0 63 0 0
## 771 0 26 0 0
## 772 1 25 0 0
## 773 0 36 0 0
## 774 0 52 1 0
## 775 1 66 1 0
## 776 0 25 0 0
## 777 0 37 0 0
## 778 0 25 0 0
## 779 0 38 0 0
## 780 0 67 0 0
## 781 0 25 0 0
## 782 0 60 0 0
## 783 0 31 0 0
## 784 0 23 1 0
## 785 0 60 0 0
## 786 0 35 0 0
## 787 0 40 0 0
## 788 0 38 0 0
## 789 1 50 0 0
## 790 1 27 1 0
## 791 0 39 0 0
## 792 0 41 0 0
## 793 0 27 0 0
## 794 1 51 0 0
## 795 1 32 0 0
## 796 0 22 0 0
## 797 0 51 0 0
## 798 0 22 0 0
## 799 0 54 0 0
## 800 0 35 0 0
## 801 1 54 0 0
## 802 0 48 1 0
## 803 0 24 0 0
## 804 0 35 0 0
## 805 0 24 0 0
## 806 0 24 0 0
## 807 0 26 0 0
## 808 0 65 0 0
## 809 1 55 1 0
## 810 0 26 0 0
## 811 0 26 0 0
## 812 0 28 1 0
## 813 0 24 0 0
## 814 0 54 0 0
## 815 1 46 0 0
## 816 0 54 0 0
## 817 0 62 0 0
## 818 0 24 0 0
## 819 0 43 0 0
## 820 0 26 1 0
## 821 0 27 0 0
## 822 0 24 0 0
## 823 0 41 1 0
## 824 0 47 0 0
## 825 0 35 0 0
## 826 0 30 0 0
## 827 0 33 1 0
## 828 0 36 0 1
## 829 1 47 0 0
## 830 1 38 0 0
## 831 0 44 0 0
## 832 0 23 0 0
## 833 0 29 0 0
## 834 0 42 0 0
## 835 0 25 0 0
## 836 0 48 1 0
## 837 0 21 0 0
## 838 0 23 0 0
## 839 0 63 0 0
## 840 0 46 0 0
## 841 0 29 0 0
## 842 0 28 0 1
## 843 0 23 0 0
## 844 0 50 1 0
## 845 0 47 1 0
## 846 0 35 0 0
## 847 0 67 0 0
## 848 0 28 0 0
## 849 0 59 0 0
## 850 0 57 0 1
## 851 0 33 1 0
## 852 0 43 0 0
## 853 1 35 0 0
## 854 1 32 0 0
## 855 0 45 0 0
## 856 0 33 0 0
## 857 0 40 0 0
## 858 1 28 0 0
## 859 0 29 0 0
## 860 0 26 0 0
## 861 0 27 0 0
## 862 0 28 0 0
## 863 0 35 0 0
## 864 0 32 0 1
## 865 0 25 1 0
## 866 0 20 0 0
## 867 0 27 0 1
## 868 0 42 0 1
## 869 0 37 0 0
## 870 0 24 0 0
## 871 0 40 0 0
## 872 0 46 0 0
## 873 0 26 0 0
## 874 0 24 0 0
## 875 0 29 0 0
## 876 0 40 0 0
## 877 1 36 1 0
## 878 0 28 0 0
## 879 1 27 0 0
## 880 0 36 0 0
## 881 0 38 0 0
## 882 1 48 0 0
## 883 0 36 0 0
## 884 0 65 0 0
## 885 0 43 0 0
## 886 0 53 0 0
## 887 1 34 0 0
## 888 0 23 0 0
## 889 0 34 0 0
## 890 0 40 1 0
## 891 0 43 0 1
## 892 0 46 0 0
## 893 0 38 1 0
## 894 0 34 0 0
## 895 0 29 0 0
## 896 0 31 0 1
## 897 0 28 0 0
## 898 0 35 0 0
## 899 0 33 1 0
## 900 0 42 0 0
## 901 0 43 1 0
## 902 0 44 0 0
## 903 1 42 0 0
## 904 0 40 0 0
## 905 0 36 0 0
## 906 0 20 0 0
## 907 0 24 0 0
## 908 0 27 0 0
## 909 0 46 0 0
## 910 0 33 0 0
## 911 0 34 0 0
## 912 0 25 1 0
## 913 0 25 0 0
## 914 0 28 0 0
## 915 0 31 0 0
## 916 0 32 1 0
## 917 0 32 0 0
## 918 1 67 1 0
## 919 0 33 0 0
## 920 0 39 0 0
## 921 1 28 0 0
## 922 0 37 0 0
## 923 0 22 0 0
## 924 0 30 0 0
## 925 0 55 1 0
## 926 0 46 1 0
## 927 0 21 0 0
## 928 1 39 0 1
## 929 0 58 0 0
## 930 0 43 0 0
## 931 0 24 0 0
## 932 0 22 0 0
## 933 0 30 0 0
## 934 0 42 0 0
## 935 0 23 1 0
## 936 1 30 0 1
## 937 0 28 0 0
## 938 0 30 0 0
## 939 1 42 0 0
## 940 0 46 0 0
## 941 0 45 0 0
## 942 0 31 0 0
## 943 0 31 0 1
## 944 0 42 0 0
## 945 0 46 0 0
## 946 0 30 0 0
## 947 1 30 0 0
## 948 1 38 0 0
## 949 0 43 0 0
## 950 0 31 0 0
## 951 0 40 0 0
## 952 0 24 0 0
## 953 0 28 0 0
## 954 0 26 0 0
## 955 0 29 0 0
## 956 0 57 0 0
## 957 0 49 0 1
## 958 0 37 0 0
## 959 0 45 0 0
## 960 1 30 0 0
## 961 0 30 0 0
## 962 0 47 0 0
## 963 1 29 0 0
## 964 0 35 1 0
## 965 0 22 0 0
## 966 0 26 0 0
## 967 0 23 0 0
## 968 0 54 1 0
## 969 0 29 0 0
## 970 0 40 0 0
## 971 0 22 0 0
## 972 0 43 0 0
## 973 1 29 0 0
## 974 1 36 0 0
## 975 0 33 0 0
## 976 0 57 0 0
## 977 0 64 0 0
## 978 0 42 0 0
## 979 0 47 0 0
## 980 0 25 0 0
## 981 0 49 0 0
## 982 0 33 1 0
## 983 0 28 1 0
## 984 0 26 0 0
## 985 0 30 0 0
## 986 0 25 0 0
## 987 0 33 0 0
## 988 0 64 0 0
## 989 1 29 0 0
## 990 0 48 0 0
## 991 0 37 0 0
## 992 0 34 1 0
## 993 0 23 0 0
## 994 0 30 0 0
## 995 0 50 0 0
## 996 0 31 0 0
## 997 0 40 0 0
## 998 0 38 0 0
## 999 1 23 0 0
## 1000 0 27 0 0
## otherinstallmentplansA143 housingA151 housingA152 housingA153
## 1 1 0 1 0
## 2 1 0 1 0
## 3 1 0 1 0
## 4 1 0 0 1
## 5 1 0 0 1
## 6 1 0 0 1
## 7 1 0 1 0
## 8 1 1 0 0
## 9 1 0 1 0
## 10 1 0 1 0
## 11 1 1 0 0
## 12 1 1 0 0
## 13 1 0 1 0
## 14 1 0 1 0
## 15 1 1 0 0
## 16 1 0 1 0
## 17 1 0 1 0
## 18 0 0 1 0
## 19 1 0 0 1
## 20 1 0 1 0
## 21 1 0 1 0
## 22 1 1 0 0
## 23 1 1 0 0
## 24 1 0 1 0
## 25 1 0 1 0
## 26 0 0 1 0
## 27 1 0 1 0
## 28 1 1 0 0
## 29 1 0 1 0
## 30 1 0 1 0
## 31 0 0 1 0
## 32 0 0 1 0
## 33 1 0 1 0
## 34 1 1 0 0
## 35 0 0 1 0
## 36 1 0 1 0
## 37 0 0 0 1
## 38 0 0 1 0
## 39 1 0 1 0
## 40 1 0 1 0
## 41 0 0 1 0
## 42 1 0 1 0
## 43 1 0 1 0
## 44 1 1 0 0
## 45 0 0 0 1
## 46 1 0 1 0
## 47 1 0 1 0
## 48 1 1 0 0
## 49 1 0 1 0
## 50 1 0 1 0
## 51 0 0 1 0
## 52 1 0 1 0
## 53 1 0 1 0
## 54 1 0 1 0
## 55 0 0 0 1
## 56 0 0 1 0
## 57 1 0 1 0
## 58 0 0 1 0
## 59 1 0 1 0
## 60 1 1 0 0
## 61 0 0 1 0
## 62 1 0 1 0
## 63 1 0 0 1
## 64 1 0 1 0
## 65 1 0 1 0
## 66 1 0 1 0
## 67 0 0 1 0
## 68 1 0 1 0
## 69 0 0 0 1
## 70 1 0 1 0
## 71 0 0 1 0
## 72 1 1 0 0
## 73 0 0 0 1
## 74 0 0 1 0
## 75 1 0 1 0
## 76 1 0 0 1
## 77 1 0 1 0
## 78 1 0 1 0
## 79 1 0 1 0
## 80 1 0 1 0
## 81 1 0 1 0
## 82 0 0 1 0
## 83 1 1 0 0
## 84 1 0 1 0
## 85 1 0 1 0
## 86 1 0 1 0
## 87 1 0 1 0
## 88 1 0 0 1
## 89 1 0 1 0
## 90 1 0 1 0
## 91 1 0 1 0
## 92 1 0 1 0
## 93 0 0 1 0
## 94 1 1 0 0
## 95 1 0 1 0
## 96 1 1 0 0
## 97 1 0 1 0
## 98 1 0 1 0
## 99 1 0 1 0
## 100 0 1 0 0
## 101 1 1 0 0
## 102 1 1 0 0
## 103 1 0 1 0
## 104 1 1 0 0
## 105 1 1 0 0
## 106 1 0 1 0
## 107 0 0 1 0
## 108 1 0 1 0
## 109 1 0 1 0
## 110 1 0 1 0
## 111 0 0 1 0
## 112 1 1 0 0
## 113 1 1 0 0
## 114 0 0 1 0
## 115 1 0 1 0
## 116 1 0 1 0
## 117 1 0 1 0
## 118 1 1 0 0
## 119 1 0 1 0
## 120 1 0 1 0
## 121 1 0 1 0
## 122 1 1 0 0
## 123 1 1 0 0
## 124 1 0 0 1
## 125 1 1 0 0
## 126 1 0 1 0
## 127 1 0 1 0
## 128 1 0 1 0
## 129 1 0 1 0
## 130 1 0 1 0
## 131 1 0 1 0
## 132 0 0 1 0
## 133 0 0 1 0
## 134 0 0 0 1
## 135 1 0 1 0
## 136 1 0 1 0
## 137 1 0 1 0
## 138 1 0 1 0
## 139 0 0 1 0
## 140 1 1 0 0
## 141 1 0 1 0
## 142 1 0 1 0
## 143 1 0 1 0
## 144 1 0 1 0
## 145 1 0 1 0
## 146 1 0 1 0
## 147 1 0 1 0
## 148 1 0 1 0
## 149 1 0 1 0
## 150 1 0 1 0
## 151 0 0 0 1
## 152 1 0 1 0
## 153 1 0 1 0
## 154 1 1 0 0
## 155 1 1 0 0
## 156 1 1 0 0
## 157 1 0 1 0
## 158 0 0 1 0
## 159 0 0 1 0
## 160 1 0 1 0
## 161 1 0 1 0
## 162 1 0 1 0
## 163 1 0 1 0
## 164 0 0 0 1
## 165 1 0 1 0
## 166 1 0 1 0
## 167 1 0 1 0
## 168 1 0 1 0
## 169 1 1 0 0
## 170 1 0 1 0
## 171 1 1 0 0
## 172 1 0 1 0
## 173 1 0 1 0
## 174 1 0 1 0
## 175 1 0 1 0
## 176 0 0 1 0
## 177 1 0 1 0
## 178 1 0 1 0
## 179 1 1 0 0
## 180 1 0 1 0
## 181 1 0 1 0
## 182 0 0 1 0
## 183 1 0 1 0
## 184 1 0 1 0
## 185 0 0 1 0
## 186 1 0 1 0
## 187 0 0 0 1
## 188 1 0 0 1
## 189 1 0 1 0
## 190 0 0 1 0
## 191 1 0 1 0
## 192 1 0 0 1
## 193 1 0 1 0
## 194 1 1 0 0
## 195 1 1 0 0
## 196 1 0 1 0
## 197 1 0 1 0
## 198 0 1 0 0
## 199 0 0 0 1
## 200 1 0 1 0
## 201 1 0 1 0
## 202 1 0 1 0
## 203 1 0 1 0
## 204 1 1 0 0
## 205 1 0 1 0
## 206 1 0 0 1
## 207 1 0 1 0
## 208 1 0 1 0
## 209 0 0 1 0
## 210 1 0 1 0
## 211 1 0 1 0
## 212 1 0 1 0
## 213 0 0 1 0
## 214 1 0 1 0
## 215 1 0 1 0
## 216 1 0 1 0
## 217 0 0 1 0
## 218 1 0 1 0
## 219 1 1 0 0
## 220 1 0 1 0
## 221 0 0 1 0
## 222 0 1 0 0
## 223 0 0 1 0
## 224 1 0 1 0
## 225 1 0 1 0
## 226 1 0 1 0
## 227 0 0 1 0
## 228 1 0 0 1
## 229 1 0 1 0
## 230 0 0 0 1
## 231 1 0 1 0
## 232 1 0 0 1
## 233 1 0 1 0
## 234 1 0 1 0
## 235 1 0 1 0
## 236 0 0 1 0
## 237 1 0 1 0
## 238 0 1 0 0
## 239 1 0 1 0
## 240 1 0 1 0
## 241 0 0 1 0
## 242 1 0 1 0
## 243 1 0 0 1
## 244 1 0 1 0
## 245 1 0 1 0
## 246 1 0 1 0
## 247 1 0 1 0
## 248 0 1 0 0
## 249 1 0 1 0
## 250 1 1 0 0
## 251 1 0 1 0
## 252 1 0 1 0
## 253 0 0 1 0
## 254 1 0 1 0
## 255 1 0 1 0
## 256 1 0 1 0
## 257 1 0 1 0
## 258 1 0 0 1
## 259 1 0 1 0
## 260 1 0 1 0
## 261 1 0 1 0
## 262 1 0 1 0
## 263 1 0 0 1
## 264 0 0 0 1
## 265 1 0 1 0
## 266 1 0 1 0
## 267 1 0 1 0
## 268 0 0 1 0
## 269 1 0 1 0
## 270 1 0 1 0
## 271 1 0 1 0
## 272 1 1 0 0
## 273 1 0 0 1
## 274 1 0 1 0
## 275 1 0 1 0
## 276 1 0 1 0
## 277 1 0 1 0
## 278 1 0 1 0
## 279 1 0 1 0
## 280 1 1 0 0
## 281 1 1 0 0
## 282 1 0 1 0
## 283 0 0 1 0
## 284 1 0 1 0
## 285 1 0 1 0
## 286 1 0 1 0
## 287 1 0 1 0
## 288 1 0 0 1
## 289 1 0 1 0
## 290 0 0 1 0
## 291 1 0 1 0
## 292 1 1 0 0
## 293 1 0 0 1
## 294 1 0 0 1
## 295 0 0 1 0
## 296 1 0 1 0
## 297 1 1 0 0
## 298 1 0 1 0
## 299 1 0 1 0
## 300 1 0 1 0
## 301 1 0 1 0
## 302 1 0 1 0
## 303 0 0 1 0
## 304 1 0 1 0
## 305 0 0 0 1
## 306 1 0 1 0
## 307 0 1 0 0
## 308 1 0 1 0
## 309 1 0 1 0
## 310 1 1 0 0
## 311 0 0 0 1
## 312 0 0 1 0
## 313 1 0 1 0
## 314 0 0 1 0
## 315 1 0 1 0
## 316 0 0 1 0
## 317 1 0 1 0
## 318 1 0 1 0
## 319 1 0 1 0
## 320 1 0 1 0
## 321 1 0 1 0
## 322 1 0 1 0
## 323 1 0 0 1
## 324 1 0 1 0
## 325 1 0 1 0
## 326 1 0 1 0
## 327 1 1 0 0
## 328 1 0 1 0
## 329 1 0 1 0
## 330 1 0 1 0
## 331 1 0 0 1
## 332 1 0 1 0
## 333 1 0 1 0
## 334 0 1 0 0
## 335 0 1 0 0
## 336 1 1 0 0
## 337 1 0 1 0
## 338 1 1 0 0
## 339 1 0 1 0
## 340 1 0 1 0
## 341 1 0 0 1
## 342 1 1 0 0
## 343 1 1 0 0
## 344 0 0 1 0
## 345 1 0 1 0
## 346 1 0 1 0
## 347 1 0 1 0
## 348 1 1 0 0
## 349 1 0 1 0
## 350 1 0 0 1
## 351 1 1 0 0
## 352 1 0 1 0
## 353 1 0 1 0
## 354 1 1 0 0
## 355 1 0 0 1
## 356 0 0 1 0
## 357 1 0 1 0
## 358 1 0 1 0
## 359 1 0 1 0
## 360 1 1 0 0
## 361 1 0 0 1
## 362 1 0 1 0
## 363 0 0 1 0
## 364 1 1 0 0
## 365 1 0 1 0
## 366 1 0 1 0
## 367 1 0 1 0
## 368 1 1 0 0
## 369 1 0 1 0
## 370 1 1 0 0
## 371 1 0 1 0
## 372 1 0 1 0
## 373 1 1 0 0
## 374 0 0 0 1
## 375 0 0 0 1
## 376 1 1 0 0
## 377 1 0 1 0
## 378 1 0 0 1
## 379 1 0 0 1
## 380 1 0 1 0
## 381 1 0 1 0
## 382 1 0 0 1
## 383 1 1 0 0
## 384 1 0 1 0
## 385 1 0 1 0
## 386 1 0 1 0
## 387 1 1 0 0
## 388 0 0 1 0
## 389 0 0 1 0
## 390 1 0 1 0
## 391 1 0 1 0
## 392 1 1 0 0
## 393 0 0 0 1
## 394 1 0 1 0
## 395 1 0 1 0
## 396 1 1 0 0
## 397 1 0 0 1
## 398 1 0 1 0
## 399 1 1 0 0
## 400 1 0 1 0
## 401 1 0 1 0
## 402 0 0 1 0
## 403 0 0 1 0
## 404 1 0 1 0
## 405 1 0 1 0
## 406 1 0 1 0
## 407 1 0 1 0
## 408 1 0 1 0
## 409 1 0 1 0
## 410 1 0 1 0
## 411 1 0 1 0
## 412 1 0 1 0
## 413 0 0 1 0
## 414 1 1 0 0
## 415 1 0 1 0
## 416 1 0 1 0
## 417 1 0 1 0
## 418 1 1 0 0
## 419 0 0 1 0
## 420 1 0 1 0
## 421 1 1 0 0
## 422 1 0 1 0
## 423 1 0 1 0
## 424 1 0 1 0
## 425 0 0 1 0
## 426 1 1 0 0
## 427 1 0 1 0
## 428 1 0 1 0
## 429 1 0 1 0
## 430 1 0 0 1
## 431 1 0 1 0
## 432 0 0 1 0
## 433 1 0 0 1
## 434 1 0 1 0
## 435 1 0 1 0
## 436 1 0 1 0
## 437 1 1 0 0
## 438 1 0 1 0
## 439 1 0 1 0
## 440 1 0 1 0
## 441 1 0 1 0
## 442 1 0 1 0
## 443 0 0 1 0
## 444 0 0 1 0
## 445 1 0 1 0
## 446 1 1 0 0
## 447 1 0 1 0
## 448 1 0 1 0
## 449 1 0 1 0
## 450 0 0 1 0
## 451 1 0 1 0
## 452 1 0 1 0
## 453 1 0 1 0
## 454 1 0 1 0
## 455 1 0 1 0
## 456 1 0 1 0
## 457 1 1 0 0
## 458 1 0 0 1
## 459 1 0 1 0
## 460 1 0 1 0
## 461 1 0 1 0
## 462 1 0 1 0
## 463 1 1 0 0
## 464 1 0 1 0
## 465 0 0 1 0
## 466 0 0 1 0
## 467 1 1 0 0
## 468 0 0 1 0
## 469 1 0 1 0
## 470 1 0 1 0
## 471 1 1 0 0
## 472 1 0 1 0
## 473 1 0 1 0
## 474 1 0 1 0
## 475 1 0 1 0
## 476 1 1 0 0
## 477 1 0 1 0
## 478 0 0 1 0
## 479 1 0 1 0
## 480 1 0 1 0
## 481 1 0 1 0
## 482 1 0 1 0
## 483 1 1 0 0
## 484 1 0 1 0
## 485 1 0 1 0
## 486 1 0 1 0
## 487 1 0 1 0
## 488 1 0 0 1
## 489 1 1 0 0
## 490 1 1 0 0
## 491 1 0 1 0
## 492 1 0 0 1
## 493 1 0 1 0
## 494 1 0 1 0
## 495 1 1 0 0
## 496 1 0 1 0
## 497 1 1 0 0
## 498 1 0 1 0
## 499 1 0 1 0
## 500 1 0 1 0
## 501 1 0 1 0
## 502 1 0 0 1
## 503 1 0 1 0
## 504 0 0 1 0
## 505 1 1 0 0
## 506 1 0 1 0
## 507 1 0 1 0
## 508 1 0 1 0
## 509 1 0 1 0
## 510 1 0 1 0
## 511 1 0 1 0
## 512 1 0 0 1
## 513 1 1 0 0
## 514 1 1 0 0
## 515 1 0 1 0
## 516 1 0 1 0
## 517 1 0 1 0
## 518 1 1 0 0
## 519 1 0 1 0
## 520 1 0 0 1
## 521 1 0 0 1
## 522 1 0 1 0
## 523 1 0 0 1
## 524 1 0 1 0
## 525 1 0 1 0
## 526 1 0 1 0
## 527 1 0 1 0
## 528 1 0 1 0
## 529 1 1 0 0
## 530 1 0 1 0
## 531 1 0 1 0
## 532 1 1 0 0
## 533 1 1 0 0
## 534 1 0 1 0
## 535 1 0 1 0
## 536 1 1 0 0
## 537 1 0 1 0
## 538 1 0 1 0
## 539 0 0 0 1
## 540 0 0 1 0
## 541 1 1 0 0
## 542 1 0 0 1
## 543 1 0 1 0
## 544 1 0 1 0
## 545 1 0 1 0
## 546 1 0 0 1
## 547 1 0 1 0
## 548 0 0 1 0
## 549 0 0 1 0
## 550 1 0 0 1
## 551 1 0 1 0
## 552 0 0 1 0
## 553 1 0 1 0
## 554 1 0 1 0
## 555 1 0 1 0
## 556 0 0 1 0
## 557 1 0 1 0
## 558 0 0 1 0
## 559 0 0 1 0
## 560 1 0 1 0
## 561 0 0 0 1
## 562 0 1 0 0
## 563 0 0 1 0
## 564 1 0 0 1
## 565 0 0 1 0
## 566 1 1 0 0
## 567 1 0 1 0
## 568 1 0 1 0
## 569 1 0 1 0
## 570 1 0 1 0
## 571 1 1 0 0
## 572 1 0 1 0
## 573 1 1 0 0
## 574 1 0 1 0
## 575 1 0 1 0
## 576 0 0 1 0
## 577 1 0 1 0
## 578 1 0 1 0
## 579 1 0 1 0
## 580 1 0 1 0
## 581 0 0 1 0
## 582 0 0 1 0
## 583 1 1 0 0
## 584 1 1 0 0
## 585 1 0 0 1
## 586 0 1 0 0
## 587 1 1 0 0
## 588 1 0 1 0
## 589 1 0 1 0
## 590 1 0 1 0
## 591 1 0 1 0
## 592 1 1 0 0
## 593 0 0 1 0
## 594 1 1 0 0
## 595 0 0 1 0
## 596 0 0 1 0
## 597 1 1 0 0
## 598 1 0 1 0
## 599 0 0 1 0
## 600 1 0 0 1
## 601 1 0 1 0
## 602 1 0 1 0
## 603 0 0 0 1
## 604 1 0 1 0
## 605 1 0 1 0
## 606 0 0 1 0
## 607 1 0 1 0
## 608 1 0 0 1
## 609 1 0 1 0
## 610 0 0 0 1
## 611 1 0 1 0
## 612 1 0 0 1
## 613 0 0 1 0
## 614 0 1 0 0
## 615 1 0 1 0
## 616 0 0 1 0
## 617 1 0 0 1
## 618 1 1 0 0
## 619 1 1 0 0
## 620 1 0 1 0
## 621 1 0 1 0
## 622 0 0 1 0
## 623 0 0 1 0
## 624 1 1 0 0
## 625 1 0 0 1
## 626 1 0 1 0
## 627 1 0 1 0
## 628 1 0 1 0
## 629 1 0 1 0
## 630 1 0 1 0
## 631 1 0 1 0
## 632 0 0 1 0
## 633 1 0 1 0
## 634 1 1 0 0
## 635 1 0 1 0
## 636 0 0 1 0
## 637 1 0 1 0
## 638 1 0 1 0
## 639 1 0 1 0
## 640 0 0 1 0
## 641 1 0 1 0
## 642 1 0 1 0
## 643 1 0 1 0
## 644 1 0 1 0
## 645 1 0 1 0
## 646 1 1 0 0
## 647 1 0 1 0
## 648 1 0 1 0
## 649 0 0 0 1
## 650 1 1 0 0
## 651 1 0 0 1
## 652 1 0 1 0
## 653 1 0 1 0
## 654 1 0 1 0
## 655 1 0 1 0
## 656 1 0 0 1
## 657 0 0 1 0
## 658 0 0 1 0
## 659 1 0 1 0
## 660 1 0 1 0
## 661 1 1 0 0
## 662 1 0 1 0
## 663 1 0 1 0
## 664 0 0 1 0
## 665 1 0 1 0
## 666 0 0 1 0
## 667 0 0 1 0
## 668 0 0 1 0
## 669 1 1 0 0
## 670 1 0 1 0
## 671 1 0 1 0
## 672 1 0 1 0
## 673 1 0 1 0
## 674 1 0 1 0
## 675 0 0 1 0
## 676 1 1 0 0
## 677 1 0 1 0
## 678 1 0 1 0
## 679 0 1 0 0
## 680 1 0 1 0
## 681 1 0 1 0
## 682 1 0 0 1
## 683 0 0 1 0
## 684 1 0 0 1
## 685 1 0 1 0
## 686 1 0 0 1
## 687 1 0 1 0
## 688 1 0 0 1
## 689 1 0 1 0
## 690 1 0 1 0
## 691 1 0 1 0
## 692 1 0 1 0
## 693 1 0 1 0
## 694 1 0 1 0
## 695 1 0 1 0
## 696 1 1 0 0
## 697 1 0 1 0
## 698 1 0 1 0
## 699 1 0 1 0
## 700 1 1 0 0
## 701 1 1 0 0
## 702 1 0 0 1
## 703 1 0 0 1
## 704 0 0 1 0
## 705 1 0 1 0
## 706 1 0 0 1
## 707 1 0 1 0
## 708 1 1 0 0
## 709 1 0 1 0
## 710 1 0 1 0
## 711 0 0 1 0
## 712 1 0 0 1
## 713 1 0 1 0
## 714 1 0 1 0
## 715 1 0 1 0
## 716 1 0 1 0
## 717 1 0 1 0
## 718 1 0 0 1
## 719 1 0 1 0
## 720 0 0 1 0
## 721 1 0 1 0
## 722 0 1 0 0
## 723 1 0 1 0
## 724 1 0 1 0
## 725 1 1 0 0
## 726 0 0 1 0
## 727 1 0 1 0
## 728 0 1 0 0
## 729 1 1 0 0
## 730 1 0 1 0
## 731 1 0 1 0
## 732 1 1 0 0
## 733 1 0 1 0
## 734 1 1 0 0
## 735 1 0 1 0
## 736 0 0 1 0
## 737 1 1 0 0
## 738 1 0 1 0
## 739 1 0 1 0
## 740 1 1 0 0
## 741 0 0 1 0
## 742 0 0 1 0
## 743 1 0 1 0
## 744 0 0 1 0
## 745 1 0 1 0
## 746 0 0 1 0
## 747 1 1 0 0
## 748 1 0 1 0
## 749 1 0 1 0
## 750 1 0 1 0
## 751 0 0 1 0
## 752 1 0 1 0
## 753 1 1 0 0
## 754 1 0 1 0
## 755 1 0 0 1
## 756 1 1 0 0
## 757 1 0 1 0
## 758 1 0 0 1
## 759 1 0 1 0
## 760 1 0 1 0
## 761 1 0 1 0
## 762 1 1 0 0
## 763 1 0 1 0
## 764 1 0 0 1
## 765 1 0 1 0
## 766 0 0 1 0
## 767 1 0 1 0
## 768 1 1 0 0
## 769 1 1 0 0
## 770 1 0 1 0
## 771 1 1 0 0
## 772 1 0 1 0
## 773 1 0 1 0
## 774 0 0 1 0
## 775 0 0 0 1
## 776 1 1 0 0
## 777 1 0 1 0
## 778 1 0 1 0
## 779 1 0 1 0
## 780 1 0 1 0
## 781 1 0 1 0
## 782 1 0 1 0
## 783 1 0 1 0
## 784 0 0 1 0
## 785 1 0 1 0
## 786 1 0 1 0
## 787 1 0 1 0
## 788 1 0 1 0
## 789 1 0 0 1
## 790 0 0 1 0
## 791 1 0 1 0
## 792 1 0 1 0
## 793 1 0 1 0
## 794 1 0 0 1
## 795 1 1 0 0
## 796 1 1 0 0
## 797 1 0 0 1
## 798 1 1 0 0
## 799 1 0 1 0
## 800 1 0 1 0
## 801 1 0 0 1
## 802 0 1 0 0
## 803 1 0 1 0
## 804 1 0 1 0
## 805 1 1 0 0
## 806 1 0 1 0
## 807 1 0 1 0
## 808 1 0 1 0
## 809 0 0 0 1
## 810 1 1 0 0
## 811 1 0 1 0
## 812 0 0 1 0
## 813 1 0 1 0
## 814 1 0 1 0
## 815 1 0 0 1
## 816 1 1 0 0
## 817 1 0 1 0
## 818 1 1 0 0
## 819 1 0 1 0
## 820 0 0 1 0
## 821 1 0 1 0
## 822 1 0 1 0
## 823 0 0 1 0
## 824 1 0 1 0
## 825 1 0 1 0
## 826 1 0 1 0
## 827 0 1 0 0
## 828 0 0 1 0
## 829 1 0 0 1
## 830 1 0 0 1
## 831 1 0 1 0
## 832 1 1 0 0
## 833 1 1 0 0
## 834 1 0 1 0
## 835 1 0 1 0
## 836 0 0 1 0
## 837 1 0 1 0
## 838 1 1 0 0
## 839 1 0 1 0
## 840 1 0 1 0
## 841 1 0 1 0
## 842 0 0 1 0
## 843 1 0 1 0
## 844 0 0 1 0
## 845 0 0 1 0
## 846 1 0 1 0
## 847 1 1 0 0
## 848 1 0 1 0
## 849 1 0 1 0
## 850 0 0 1 0
## 851 0 1 0 0
## 852 1 0 1 0
## 853 1 0 0 1
## 854 1 0 0 1
## 855 1 0 1 0
## 856 1 0 1 0
## 857 1 0 1 0
## 858 1 0 0 1
## 859 1 0 1 0
## 860 1 1 0 0
## 861 1 0 1 0
## 862 1 0 1 0
## 863 1 0 1 0
## 864 0 0 1 0
## 865 0 1 0 0
## 866 1 1 0 0
## 867 0 0 1 0
## 868 0 0 1 0
## 869 1 0 1 0
## 870 1 1 0 0
## 871 1 0 1 0
## 872 1 0 1 0
## 873 1 0 1 0
## 874 1 0 1 0
## 875 1 0 1 0
## 876 1 0 1 0
## 877 0 0 0 1
## 878 1 0 1 0
## 879 1 0 0 1
## 880 1 0 1 0
## 881 1 0 1 0
## 882 1 0 0 1
## 883 1 0 1 0
## 884 1 0 1 0
## 885 1 0 1 0
## 886 1 0 1 0
## 887 1 0 1 0
## 888 1 0 1 0
## 889 1 0 1 0
## 890 0 1 0 0
## 891 0 0 1 0
## 892 1 0 1 0
## 893 0 0 1 0
## 894 1 0 1 0
## 895 1 0 1 0
## 896 0 0 1 0
## 897 1 1 0 0
## 898 1 0 1 0
## 899 0 1 0 0
## 900 1 0 1 0
## 901 0 1 0 0
## 902 1 0 1 0
## 903 1 0 0 1
## 904 1 1 0 0
## 905 1 0 1 0
## 906 1 1 0 0
## 907 1 0 1 0
## 908 1 0 1 0
## 909 1 0 1 0
## 910 1 0 1 0
## 911 1 0 1 0
## 912 0 0 1 0
## 913 1 0 1 0
## 914 1 0 1 0
## 915 1 1 0 0
## 916 0 0 1 0
## 917 1 0 1 0
## 918 0 0 1 0
## 919 1 0 1 0
## 920 1 1 0 0
## 921 1 0 1 0
## 922 1 0 1 0
## 923 1 1 0 0
## 924 1 1 0 0
## 925 0 0 1 0
## 926 0 0 1 0
## 927 1 1 0 0
## 928 0 0 0 1
## 929 1 0 1 0
## 930 1 0 1 0
## 931 1 0 1 0
## 932 1 0 1 0
## 933 1 0 1 0
## 934 1 0 1 0
## 935 0 0 1 0
## 936 0 0 1 0
## 937 1 0 1 0
## 938 1 1 0 0
## 939 1 0 0 1
## 940 1 0 1 0
## 941 1 0 1 0
## 942 1 0 1 0
## 943 0 0 1 0
## 944 1 0 1 0
## 945 1 1 0 0
## 946 1 0 1 0
## 947 1 0 0 1
## 948 1 0 1 0
## 949 1 0 1 0
## 950 1 0 1 0
## 951 1 0 1 0
## 952 1 0 1 0
## 953 1 1 0 0
## 954 1 0 1 0
## 955 1 0 1 0
## 956 1 1 0 0
## 957 0 0 1 0
## 958 1 0 1 0
## 959 1 0 1 0
## 960 1 0 0 1
## 961 1 1 0 0
## 962 1 0 1 0
## 963 1 0 1 0
## 964 0 0 1 0
## 965 1 0 1 0
## 966 1 0 1 0
## 967 1 0 1 0
## 968 0 1 0 0
## 969 1 1 0 0
## 970 1 0 1 0
## 971 1 0 1 0
## 972 1 0 1 0
## 973 1 1 0 0
## 974 1 1 0 0
## 975 1 0 1 0
## 976 1 0 1 0
## 977 1 0 1 0
## 978 1 0 1 0
## 979 1 0 1 0
## 980 1 1 0 0
## 981 1 0 1 0
## 982 0 1 0 0
## 983 0 0 1 0
## 984 1 0 1 0
## 985 1 0 1 0
## 986 1 1 0 0
## 987 1 0 1 0
## 988 1 0 1 0
## 989 1 0 0 1
## 990 1 0 1 0
## 991 1 0 1 0
## 992 0 0 1 0
## 993 1 1 0 0
## 994 1 0 1 0
## 995 1 0 1 0
## 996 1 0 1 0
## 997 1 0 1 0
## 998 1 0 1 0
## 999 1 0 0 1
## 1000 1 0 1 0
## existingcredits jobA171 jobA172 jobA173 jobA174 peopleliableno
## 1 1 0 0 1 0 1
## 2 0 0 0 1 0 1
## 3 0 0 1 0 0 2
## 4 0 0 0 1 0 2
## 5 1 0 0 1 0 2
## 6 0 0 1 0 0 2
## 7 0 0 0 1 0 1
## 8 0 0 0 0 1 1
## 9 0 0 1 0 0 1
## 10 1 0 0 0 1 1
## 11 0 0 0 1 0 1
## 12 0 0 0 1 0 1
## 13 0 0 0 1 0 1
## 14 1 0 1 0 0 1
## 15 0 0 0 1 0 1
## 16 0 0 1 0 0 1
## 17 1 0 0 1 0 1
## 18 1 0 0 1 0 1
## 19 0 0 0 0 1 1
## 20 0 0 0 1 0 2
## 21 1 0 0 1 0 1
## 22 0 0 0 1 0 2
## 23 1 0 1 0 0 2
## 24 0 0 0 1 0 1
## 25 1 0 0 1 0 1
## 26 0 0 1 0 0 1
## 27 0 0 1 0 0 1
## 28 1 0 0 1 0 1
## 29 0 0 0 1 0 1
## 30 1 0 0 1 0 1
## 31 0 0 0 1 0 1
## 32 0 0 0 1 0 1
## 33 1 0 0 1 0 1
## 34 0 0 1 0 0 1
## 35 0 0 0 0 1 1
## 36 1 0 1 0 0 1
## 37 0 0 0 1 0 1
## 38 0 0 0 1 0 1
## 39 0 0 0 1 0 1
## 40 0 0 0 1 0 1
## 41 0 0 0 0 1 1
## 42 0 0 0 1 0 1
## 43 0 0 1 0 0 2
## 44 1 0 0 1 0 1
## 45 1 0 1 0 0 1
## 46 1 0 0 0 1 1
## 47 0 0 0 1 0 1
## 48 0 1 0 0 0 1
## 49 1 0 1 0 0 1
## 50 0 0 0 1 0 1
## 51 0 0 1 0 0 1
## 52 1 0 0 0 1 1
## 53 0 0 0 1 0 1
## 54 0 0 0 1 0 1
## 55 1 0 0 1 0 1
## 56 0 0 1 0 0 2
## 57 0 0 0 0 1 1
## 58 1 0 0 1 0 1
## 59 0 0 0 0 1 1
## 60 1 0 1 0 0 1
## 61 0 0 0 1 0 1
## 62 1 0 0 1 0 1
## 63 0 0 0 0 1 1
## 64 0 0 0 1 0 1
## 65 0 0 0 1 0 1
## 66 1 0 0 1 0 2
## 67 0 0 0 1 0 1
## 68 0 0 0 1 0 1
## 69 0 0 0 1 0 1
## 70 0 0 0 1 0 1
## 71 0 0 0 1 0 1
## 72 1 0 1 0 0 1
## 73 1 0 0 0 1 2
## 74 1 0 1 0 0 1
## 75 0 0 0 0 1 1
## 76 1 0 0 0 1 1
## 77 0 0 0 1 0 1
## 78 0 0 0 1 0 1
## 79 0 0 1 0 0 2
## 80 0 0 0 1 0 1
## 81 1 0 0 1 0 1
## 82 0 0 0 1 0 1
## 83 0 0 1 0 0 1
## 84 0 0 1 0 0 1
## 85 0 0 1 0 0 1
## 86 1 0 0 0 1 1
## 87 1 0 0 1 0 1
## 88 0 0 0 1 0 2
## 89 0 0 0 0 1 2
## 90 1 0 0 1 0 1
## 91 0 0 0 1 0 1
## 92 0 0 0 1 0 1
## 93 0 0 1 0 0 2
## 94 1 0 0 1 0 1
## 95 0 0 0 1 0 1
## 96 0 0 0 1 0 1
## 97 0 0 0 1 0 1
## 98 0 0 0 1 0 1
## 99 0 0 0 1 0 1
## 100 1 0 0 0 1 2
## 101 0 0 1 0 0 1
## 102 0 0 0 1 0 1
## 103 0 0 0 1 0 1
## 104 0 0 0 1 0 1
## 105 0 0 0 1 0 1
## 106 1 0 0 0 1 2
## 107 1 0 0 0 1 2
## 108 0 0 0 1 0 1
## 109 0 0 0 1 0 1
## 110 0 0 0 1 0 1
## 111 1 0 0 1 0 2
## 112 0 0 0 1 0 1
## 113 0 0 1 0 0 1
## 114 1 0 0 1 0 1
## 115 0 0 0 1 0 1
## 116 0 0 0 1 0 1
## 117 0 0 0 0 1 1
## 118 1 0 0 1 0 1
## 119 1 0 0 1 0 1
## 120 0 0 0 0 1 1
## 121 1 0 0 1 0 1
## 122 1 0 0 0 1 1
## 123 0 0 1 0 0 1
## 124 1 0 0 1 0 1
## 125 0 0 0 1 0 1
## 126 1 0 0 1 0 1
## 127 0 0 1 0 0 1
## 128 0 0 0 1 0 1
## 129 1 0 0 0 1 1
## 130 1 0 0 1 0 1
## 131 0 0 0 1 0 1
## 132 0 0 0 1 0 1
## 133 1 0 1 0 0 1
## 134 1 0 0 1 0 1
## 135 0 0 0 1 0 1
## 136 1 0 0 1 0 1
## 137 1 0 0 1 0 1
## 138 0 0 1 0 0 1
## 139 1 0 0 1 0 1
## 140 0 0 1 0 0 1
## 141 0 1 0 0 0 1
## 142 0 0 0 0 1 1
## 143 0 0 0 0 1 1
## 144 0 0 0 1 0 1
## 145 0 0 0 1 0 1
## 146 0 0 0 1 0 1
## 147 1 0 0 1 0 1
## 148 1 0 0 1 0 1
## 149 1 0 0 1 0 1
## 150 1 0 0 1 0 1
## 151 0 0 0 1 0 2
## 152 0 0 0 1 0 1
## 153 0 0 0 1 0 1
## 154 0 0 0 1 0 1
## 155 0 0 0 0 1 1
## 156 0 0 0 1 0 1
## 157 1 0 0 1 0 2
## 158 0 0 1 0 0 1
## 159 1 0 0 1 0 1
## 160 1 0 1 0 0 2
## 161 0 0 0 1 0 2
## 162 1 0 0 1 0 1
## 163 1 0 0 1 0 1
## 164 0 0 0 0 1 1
## 165 0 0 0 1 0 1
## 166 0 0 0 1 0 1
## 167 0 0 0 1 0 1
## 168 0 0 0 1 0 1
## 169 0 0 0 1 0 1
## 170 1 0 0 1 0 1
## 171 1 0 0 1 0 2
## 172 0 0 0 1 0 1
## 173 0 0 0 0 1 1
## 174 0 0 0 1 0 1
## 175 1 0 0 1 0 1
## 176 0 0 0 0 1 1
## 177 0 0 0 1 0 1
## 178 1 0 0 1 0 1
## 179 1 0 0 0 1 2
## 180 1 0 0 1 0 1
## 181 1 0 0 1 0 1
## 182 1 0 0 0 1 1
## 183 1 0 1 0 0 2
## 184 0 0 0 1 0 1
## 185 0 0 0 1 0 2
## 186 1 0 0 1 0 1
## 187 0 0 0 0 1 2
## 188 1 1 0 0 0 1
## 189 0 0 0 1 0 1
## 190 1 0 0 1 0 1
## 191 1 0 0 0 1 1
## 192 0 0 1 0 0 2
## 193 0 0 0 1 0 2
## 194 0 0 0 1 0 1
## 195 0 0 0 1 0 1
## 196 1 0 0 0 1 1
## 197 1 0 0 1 0 1
## 198 1 0 0 1 0 1
## 199 0 0 0 1 0 1
## 200 0 0 0 0 1 1
## 201 1 0 0 1 0 1
## 202 0 0 1 0 0 1
## 203 1 0 0 1 0 1
## 204 0 0 0 1 0 1
## 205 1 0 1 0 0 2
## 206 1 0 0 0 1 2
## 207 1 0 0 1 0 1
## 208 0 0 0 1 0 1
## 209 0 0 1 0 0 1
## 210 0 0 0 1 0 1
## 211 1 0 0 1 0 2
## 212 0 0 1 0 0 1
## 213 1 0 0 1 0 1
## 214 0 0 0 0 1 1
## 215 0 0 0 1 0 1
## 216 1 0 1 0 0 1
## 217 0 0 0 1 0 1
## 218 0 0 0 1 0 1
## 219 0 0 1 0 0 1
## 220 0 0 0 1 0 1
## 221 0 0 1 0 0 1
## 222 0 0 0 1 0 1
## 223 1 0 0 1 0 1
## 224 1 0 0 1 0 2
## 225 0 0 0 1 0 1
## 226 1 0 0 1 0 1
## 227 1 0 0 1 0 1
## 228 0 0 0 0 1 1
## 229 0 0 0 1 0 1
## 230 0 0 0 1 0 1
## 231 0 0 0 1 0 1
## 232 0 0 1 0 0 1
## 233 0 0 0 1 0 1
## 234 0 0 1 0 0 1
## 235 1 0 1 0 0 2
## 236 0 0 0 0 1 2
## 237 0 1 0 0 0 1
## 238 1 0 1 0 0 1
## 239 1 0 0 1 0 1
## 240 0 0 0 1 0 2
## 241 0 0 0 1 0 1
## 242 0 0 0 1 0 2
## 243 1 0 0 1 0 2
## 244 1 0 0 1 0 1
## 245 0 0 1 0 0 2
## 246 0 0 0 1 0 1
## 247 1 0 0 1 0 1
## 248 0 0 0 1 0 1
## 249 0 0 0 1 0 1
## 250 0 0 0 1 0 1
## 251 1 0 1 0 0 1
## 252 0 0 1 0 0 1
## 253 0 0 0 1 0 1
## 254 1 0 0 1 0 1
## 255 0 0 0 1 0 1
## 256 0 0 1 0 0 1
## 257 1 0 1 0 0 1
## 258 0 0 0 1 0 1
## 259 0 0 0 1 0 1
## 260 1 0 1 0 0 1
## 261 0 0 0 1 0 1
## 262 0 0 0 1 0 1
## 263 1 0 0 0 1 1
## 264 1 0 1 0 0 1
## 265 1 0 1 0 0 2
## 266 0 0 0 1 0 2
## 267 1 0 0 1 0 1
## 268 0 0 0 1 0 1
## 269 0 0 0 0 1 1
## 270 1 0 0 1 0 1
## 271 0 0 0 1 0 1
## 272 0 0 0 1 0 1
## 273 0 0 0 0 1 1
## 274 1 0 0 1 0 1
## 275 0 0 1 0 0 1
## 276 0 0 0 1 0 2
## 277 1 0 0 1 0 1
## 278 0 0 1 0 0 1
## 279 0 0 0 1 0 1
## 280 0 0 0 0 1 1
## 281 1 0 0 1 0 1
## 282 0 0 0 1 0 1
## 283 0 0 1 0 0 1
## 284 0 0 0 1 0 1
## 285 0 0 0 1 0 1
## 286 0 0 1 0 0 1
## 287 0 0 0 1 0 2
## 288 0 0 0 0 1 1
## 289 1 0 0 1 0 1
## 290 0 0 0 1 0 1
## 291 0 0 0 1 0 1
## 292 0 0 0 0 1 1
## 293 1 0 0 0 1 2
## 294 0 0 0 1 0 1
## 295 1 0 0 0 1 2
## 296 0 0 0 1 0 1
## 297 0 0 0 1 0 1
## 298 0 0 1 0 0 1
## 299 0 0 0 1 0 1
## 300 1 0 0 1 0 1
## 301 0 1 0 0 0 1
## 302 0 0 0 1 0 1
## 303 1 0 1 0 0 2
## 304 1 0 0 1 0 1
## 305 0 0 0 1 0 1
## 306 0 0 0 1 0 1
## 307 0 0 1 0 0 1
## 308 0 0 1 0 0 1
## 309 0 0 0 1 0 1
## 310 0 0 1 0 0 1
## 311 0 1 0 0 0 1
## 312 0 0 0 1 0 1
## 313 0 0 0 1 0 1
## 314 0 0 1 0 0 1
## 315 0 0 1 0 0 2
## 316 0 0 0 1 0 1
## 317 0 0 1 0 0 2
## 318 0 0 1 0 0 1
## 319 1 0 0 1 0 1
## 320 1 0 1 0 0 1
## 321 1 0 0 0 1 1
## 322 0 0 0 1 0 1
## 323 0 0 0 0 1 1
## 324 0 0 0 1 0 1
## 325 1 0 0 1 0 1
## 326 1 0 1 0 0 1
## 327 0 0 0 1 0 1
## 328 0 0 0 1 0 2
## 329 0 0 0 1 0 1
## 330 0 0 0 1 0 2
## 331 1 0 0 0 1 1
## 332 1 0 0 1 0 1
## 333 0 0 0 0 1 1
## 334 1 0 1 0 0 1
## 335 1 0 0 1 0 2
## 336 0 0 0 0 1 1
## 337 0 0 1 0 0 1
## 338 0 0 0 1 0 1
## 339 0 0 0 1 0 1
## 340 0 0 1 0 0 1
## 341 1 0 0 1 0 1
## 342 0 0 1 0 0 1
## 343 0 0 0 1 0 1
## 344 0 0 0 0 1 1
## 345 0 0 1 0 0 2
## 346 0 0 1 0 0 1
## 347 1 0 0 1 0 1
## 348 0 1 0 0 0 1
## 349 1 0 1 0 0 1
## 350 1 0 0 1 0 2
## 351 0 0 0 1 0 1
## 352 0 0 0 1 0 1
## 353 0 0 0 0 1 1
## 354 1 0 0 1 0 1
## 355 0 0 0 1 0 1
## 356 0 0 1 0 0 1
## 357 0 0 0 1 0 1
## 358 1 0 0 0 1 1
## 359 0 0 0 1 0 1
## 360 0 0 0 1 0 1
## 361 0 0 0 1 0 1
## 362 0 0 0 0 1 1
## 363 1 0 0 1 0 1
## 364 0 0 0 1 0 1
## 365 0 1 0 0 0 1
## 366 0 0 0 1 0 1
## 367 1 0 0 1 0 1
## 368 0 0 0 1 0 1
## 369 0 0 0 1 0 2
## 370 0 0 0 1 0 1
## 371 0 0 0 1 0 1
## 372 1 0 0 1 0 1
## 373 1 0 0 1 0 1
## 374 0 0 0 0 1 1
## 375 1 0 0 0 1 1
## 376 0 0 0 1 0 1
## 377 1 0 0 1 0 1
## 378 0 0 0 1 0 1
## 379 0 0 0 0 1 1
## 380 1 0 1 0 0 1
## 381 0 0 0 1 0 1
## 382 0 0 0 0 1 1
## 383 0 0 0 1 0 1
## 384 0 0 0 1 0 1
## 385 1 0 1 0 0 1
## 386 1 0 0 1 0 1
## 387 0 0 0 1 0 1
## 388 1 0 0 0 1 1
## 389 0 0 0 1 0 1
## 390 1 0 0 1 0 1
## 391 0 0 0 0 1 1
## 392 0 0 1 0 0 1
## 393 0 0 0 0 1 2
## 394 0 0 0 1 0 1
## 395 0 0 0 0 1 1
## 396 0 0 0 1 0 1
## 397 0 0 0 0 1 1
## 398 1 0 0 1 0 1
## 399 1 0 0 1 0 1
## 400 1 0 1 0 0 1
## 401 0 0 0 1 0 1
## 402 1 0 0 1 0 1
## 403 1 0 0 1 0 1
## 404 1 0 1 0 0 1
## 405 0 0 0 1 0 2
## 406 0 0 0 1 0 1
## 407 1 0 0 1 0 2
## 408 0 0 0 1 0 1
## 409 0 0 0 0 1 1
## 410 1 0 0 1 0 1
## 411 0 0 0 1 0 1
## 412 1 0 0 0 1 1
## 413 1 0 0 0 1 1
## 414 0 0 1 0 0 2
## 415 0 0 0 1 0 1
## 416 1 0 0 1 0 2
## 417 0 0 1 0 0 2
## 418 1 0 0 1 0 1
## 419 0 0 0 0 1 1
## 420 0 0 0 1 0 1
## 421 0 0 0 1 0 1
## 422 0 0 0 1 0 1
## 423 1 0 1 0 0 2
## 424 1 0 0 0 1 1
## 425 0 0 0 1 0 1
## 426 0 0 0 1 0 1
## 427 1 0 0 1 0 1
## 428 1 0 0 1 0 1
## 429 0 0 0 1 0 1
## 430 1 1 0 0 0 2
## 431 0 0 1 0 0 1
## 432 1 0 0 0 1 1
## 433 1 0 0 0 1 1
## 434 1 0 0 1 0 1
## 435 0 0 0 1 0 1
## 436 0 0 0 1 0 1
## 437 0 0 1 0 0 1
## 438 1 0 0 1 0 1
## 439 1 1 0 0 0 1
## 440 0 1 0 0 0 1
## 441 0 0 0 0 1 1
## 442 0 0 0 1 0 1
## 443 1 0 0 1 0 1
## 444 0 0 1 0 0 2
## 445 0 0 0 0 1 1
## 446 1 0 1 0 0 1
## 447 0 0 0 1 0 1
## 448 0 0 0 1 0 1
## 449 0 0 0 0 1 1
## 450 1 0 0 1 0 1
## 451 0 0 0 0 1 1
## 452 0 0 0 1 0 1
## 453 1 0 0 1 0 1
## 454 0 0 0 0 1 1
## 455 0 0 0 1 0 1
## 456 0 0 0 0 1 1
## 457 1 0 0 1 0 2
## 458 0 0 0 1 0 1
## 459 0 0 0 1 0 1
## 460 0 0 0 1 0 1
## 461 0 0 0 1 0 2
## 462 0 0 0 1 0 1
## 463 0 0 0 0 1 1
## 464 1 0 0 1 0 1
## 465 1 0 0 1 0 1
## 466 0 0 0 1 0 2
## 467 0 0 1 0 0 1
## 468 1 0 0 1 0 2
## 469 1 0 0 1 0 1
## 470 1 0 1 0 0 1
## 471 0 0 0 1 0 1
## 472 0 0 0 1 0 1
## 473 0 0 1 0 0 1
## 474 0 0 0 0 1 2
## 475 0 0 0 1 0 1
## 476 0 0 0 1 0 1
## 477 0 0 0 1 0 1
## 478 0 0 0 1 0 1
## 479 0 0 1 0 0 1
## 480 1 0 0 1 0 2
## 481 0 0 1 0 0 1
## 482 0 0 0 1 0 1
## 483 1 0 0 1 0 1
## 484 1 0 0 1 0 1
## 485 0 0 0 1 0 1
## 486 0 0 0 0 1 1
## 487 0 0 0 1 0 1
## 488 0 0 0 1 0 1
## 489 0 0 1 0 0 1
## 490 0 0 0 1 0 1
## 491 1 0 0 1 0 1
## 492 1 0 0 0 1 1
## 493 1 0 0 1 0 1
## 494 0 0 0 1 0 1
## 495 1 0 1 0 0 2
## 496 0 0 0 1 0 1
## 497 0 0 0 0 1 1
## 498 1 0 0 1 0 1
## 499 0 0 1 0 0 1
## 500 1 0 0 1 0 2
## 501 0 0 0 1 0 1
## 502 0 0 0 1 0 2
## 503 0 0 0 1 0 1
## 504 1 0 0 1 0 2
## 505 0 0 0 1 0 1
## 506 0 0 1 0 0 1
## 507 0 0 0 1 0 1
## 508 0 0 0 0 1 2
## 509 0 0 0 1 0 1
## 510 0 0 0 0 1 1
## 511 0 0 0 1 0 1
## 512 0 0 0 0 1 1
## 513 0 0 0 1 0 1
## 514 1 0 0 1 0 1
## 515 0 0 0 1 0 1
## 516 1 0 0 1 0 1
## 517 0 0 1 0 0 2
## 518 1 0 0 1 0 1
## 519 0 0 0 1 0 1
## 520 1 0 0 1 0 1
## 521 1 0 0 1 0 1
## 522 0 0 0 1 0 1
## 523 1 0 0 1 0 2
## 524 0 0 0 1 0 1
## 525 0 0 1 0 0 2
## 526 1 0 0 1 0 1
## 527 0 0 0 1 0 1
## 528 1 0 1 0 0 2
## 529 0 0 0 1 0 1
## 530 0 0 1 0 0 2
## 531 1 0 0 1 0 2
## 532 1 0 0 1 0 1
## 533 0 0 0 1 0 1
## 534 0 0 0 1 0 1
## 535 1 0 0 1 0 1
## 536 0 0 0 1 0 1
## 537 0 0 0 0 1 1
## 538 0 0 0 1 0 1
## 539 0 0 0 0 1 1
## 540 0 0 1 0 0 1
## 541 0 0 0 1 0 1
## 542 1 0 0 1 0 1
## 543 0 0 0 1 0 1
## 544 0 0 1 0 0 2
## 545 1 0 1 0 0 1
## 546 1 0 0 1 0 2
## 547 0 0 0 1 0 1
## 548 0 0 0 1 0 2
## 549 0 0 1 0 0 1
## 550 1 0 0 1 0 1
## 551 1 0 0 1 0 1
## 552 0 0 1 0 0 2
## 553 1 0 0 1 0 1
## 554 0 0 0 1 0 1
## 555 1 0 0 0 1 1
## 556 0 0 0 1 0 1
## 557 1 0 0 1 0 1
## 558 1 0 0 1 0 1
## 559 0 0 0 1 0 1
## 560 1 0 1 0 0 1
## 561 0 0 0 1 0 2
## 562 0 0 1 0 0 1
## 563 0 0 0 1 0 1
## 564 0 0 0 1 0 1
## 565 1 0 0 0 1 1
## 566 1 0 0 1 0 1
## 567 0 0 0 1 0 1
## 568 0 0 0 1 0 1
## 569 1 0 0 1 0 2
## 570 0 0 0 1 0 1
## 571 0 0 1 0 0 1
## 572 0 0 0 1 0 1
## 573 0 0 0 0 1 1
## 574 0 0 1 0 0 1
## 575 1 0 1 0 0 1
## 576 1 0 0 1 0 1
## 577 0 0 0 1 0 1
## 578 1 0 0 1 0 1
## 579 1 0 0 1 0 1
## 580 1 0 1 0 0 1
## 581 1 0 0 1 0 1
## 582 1 0 1 0 0 2
## 583 0 0 0 1 0 1
## 584 0 0 1 0 0 1
## 585 0 0 0 0 1 1
## 586 0 0 0 1 0 1
## 587 1 0 0 1 0 2
## 588 0 0 1 0 0 1
## 589 0 0 1 0 0 1
## 590 1 0 0 1 0 1
## 591 1 0 1 0 0 1
## 592 1 0 0 1 0 1
## 593 0 0 1 0 0 1
## 594 0 0 1 0 0 1
## 595 0 0 0 0 1 1
## 596 0 0 1 0 0 1
## 597 1 0 0 1 0 1
## 598 1 0 1 0 0 1
## 599 1 0 0 1 0 1
## 600 0 0 0 1 0 1
## 601 0 0 0 1 0 1
## 602 0 0 0 1 0 1
## 603 0 0 1 0 0 1
## 604 0 0 0 0 1 1
## 605 0 0 0 1 0 1
## 606 0 0 0 1 0 1
## 607 0 0 0 0 1 1
## 608 0 0 0 1 0 1
## 609 0 0 0 1 0 1
## 610 0 0 0 1 0 2
## 611 0 0 0 1 0 1
## 612 0 0 1 0 0 2
## 613 0 0 0 1 0 1
## 614 0 0 0 1 0 1
## 615 0 0 0 1 0 1
## 616 0 0 0 0 1 1
## 617 0 0 0 0 1 1
## 618 1 0 0 1 0 2
## 619 0 0 0 1 0 1
## 620 0 0 1 0 0 1
## 621 1 0 0 1 0 1
## 622 1 0 0 1 0 1
## 623 0 0 0 1 0 1
## 624 0 0 0 1 0 1
## 625 1 0 0 1 0 1
## 626 0 0 0 1 0 1
## 627 0 0 0 1 0 1
## 628 0 0 0 1 0 1
## 629 1 0 0 1 0 1
## 630 0 0 1 0 0 1
## 631 0 0 0 1 0 1
## 632 0 0 0 1 0 1
## 633 0 0 0 1 0 1
## 634 1 0 0 1 0 1
## 635 0 0 1 0 0 1
## 636 1 0 0 1 0 2
## 637 0 0 0 1 0 1
## 638 1 0 0 1 0 1
## 639 0 0 0 1 0 2
## 640 1 0 0 1 0 2
## 641 0 1 0 0 0 1
## 642 1 0 1 0 0 1
## 643 0 0 0 0 1 1
## 644 1 0 0 1 0 1
## 645 1 0 0 0 1 1
## 646 1 0 0 1 0 1
## 647 1 0 0 1 0 1
## 648 0 0 0 1 0 1
## 649 0 0 0 1 0 2
## 650 0 0 1 0 0 2
## 651 0 0 0 0 1 1
## 652 0 0 1 0 0 1
## 653 0 0 0 1 0 1
## 654 1 0 0 0 1 1
## 655 1 0 0 1 0 1
## 656 0 0 0 1 0 1
## 657 0 0 1 0 0 2
## 658 0 0 0 1 0 1
## 659 1 0 0 1 0 1
## 660 0 0 0 1 0 1
## 661 0 0 0 1 0 1
## 662 0 0 0 1 0 1
## 663 1 0 0 1 0 1
## 664 1 0 0 0 1 1
## 665 0 0 1 0 0 1
## 666 1 0 0 0 1 1
## 667 0 0 0 1 0 2
## 668 0 0 0 1 0 1
## 669 1 0 0 1 0 1
## 670 0 0 0 1 0 1
## 671 1 0 1 0 0 1
## 672 1 0 0 1 0 1
## 673 0 0 0 0 1 1
## 674 0 0 0 1 0 1
## 675 0 0 1 0 0 2
## 676 0 0 0 0 1 1
## 677 0 0 0 1 0 1
## 678 0 0 0 1 0 1
## 679 0 0 1 0 0 1
## 680 0 0 0 1 0 1
## 681 0 0 0 1 0 1
## 682 0 0 0 1 0 1
## 683 1 0 0 1 0 1
## 684 1 0 0 1 0 1
## 685 1 0 1 0 0 2
## 686 0 0 0 1 0 2
## 687 1 0 0 1 0 1
## 688 0 0 0 1 0 1
## 689 0 0 0 1 0 1
## 690 0 0 0 1 0 2
## 691 1 0 0 1 0 1
## 692 0 0 1 0 0 1
## 693 0 0 0 1 0 1
## 694 1 0 1 0 0 2
## 695 0 0 0 1 0 1
## 696 0 0 0 1 0 1
## 697 1 0 0 1 0 1
## 698 0 1 0 0 0 1
## 699 1 0 0 1 0 1
## 700 0 0 0 0 1 1
## 701 0 0 1 0 0 1
## 702 1 0 0 1 0 1
## 703 0 0 0 1 0 1
## 704 1 0 0 1 0 1
## 705 0 0 0 1 0 2
## 706 0 0 0 1 0 1
## 707 0 0 0 1 0 1
## 708 1 0 0 1 0 1
## 709 0 0 0 1 0 1
## 710 0 0 1 0 0 2
## 711 1 0 0 0 1 1
## 712 0 0 0 1 0 1
## 713 0 0 0 0 1 1
## 714 1 0 1 0 0 1
## 715 0 0 0 0 1 1
## 716 1 0 0 1 0 1
## 717 1 0 0 1 0 2
## 718 0 0 0 0 1 1
## 719 1 0 0 1 0 1
## 720 1 0 0 1 0 1
## 721 1 0 0 0 1 1
## 722 0 0 0 1 0 2
## 723 0 0 1 0 0 1
## 724 0 0 1 0 0 1
## 725 0 0 0 1 0 1
## 726 1 0 1 0 0 1
## 727 1 0 1 0 0 1
## 728 1 0 0 1 0 1
## 729 0 0 0 1 0 1
## 730 1 0 0 1 0 1
## 731 0 0 0 1 0 1
## 732 0 0 1 0 0 2
## 733 0 0 1 0 0 1
## 734 0 0 0 1 0 1
## 735 0 0 0 1 0 2
## 736 0 1 0 0 0 1
## 737 1 0 0 0 1 1
## 738 0 0 1 0 0 2
## 739 1 0 0 0 1 2
## 740 1 0 1 0 0 1
## 741 0 0 0 1 0 1
## 742 0 0 1 0 0 1
## 743 0 0 0 1 0 1
## 744 0 0 0 1 0 1
## 745 1 0 0 0 1 1
## 746 1 0 1 0 0 1
## 747 0 0 0 1 0 1
## 748 0 0 1 0 0 1
## 749 0 0 0 1 0 1
## 750 0 0 0 1 0 1
## 751 0 0 0 1 0 1
## 752 0 0 1 0 0 1
## 753 0 0 1 0 0 1
## 754 1 0 0 1 0 1
## 755 1 0 0 1 0 2
## 756 0 0 0 1 0 1
## 757 1 1 0 0 0 2
## 758 1 0 0 1 0 1
## 759 0 0 0 1 0 1
## 760 1 0 0 1 0 1
## 761 0 0 0 1 0 1
## 762 1 0 0 1 0 1
## 763 0 0 1 0 0 1
## 764 0 0 0 0 1 1
## 765 1 0 0 1 0 1
## 766 1 0 1 0 0 1
## 767 0 0 1 0 0 1
## 768 0 0 0 1 0 1
## 769 1 0 0 1 0 1
## 770 1 0 1 0 0 1
## 771 0 0 0 1 0 1
## 772 1 0 0 0 1 1
## 773 0 0 0 0 1 1
## 774 1 0 0 1 0 1
## 775 1 1 0 0 0 1
## 776 0 0 0 1 0 1
## 777 1 0 0 1 0 1
## 778 0 0 0 1 0 1
## 779 1 0 0 0 1 1
## 780 0 0 0 1 0 1
## 781 1 0 0 1 0 1
## 782 0 0 0 1 0 1
## 783 0 0 1 0 0 1
## 784 0 0 1 0 0 1
## 785 0 0 0 0 1 1
## 786 0 0 1 0 0 1
## 787 0 0 0 1 0 1
## 788 1 0 0 1 0 2
## 789 0 0 0 1 0 1
## 790 0 0 0 1 0 1
## 791 0 0 0 1 0 2
## 792 0 0 0 0 1 2
## 793 1 0 0 1 0 1
## 794 0 0 0 1 0 1
## 795 0 0 0 1 0 1
## 796 0 0 0 1 0 1
## 797 0 0 0 1 0 2
## 798 1 0 1 0 0 1
## 799 1 0 0 1 0 1
## 800 0 1 0 0 0 1
## 801 1 0 0 1 0 2
## 802 1 0 1 0 0 1
## 803 1 0 0 1 0 1
## 804 1 0 0 1 0 1
## 805 0 1 0 0 0 1
## 806 0 0 0 1 0 1
## 807 0 0 1 0 0 1
## 808 1 0 0 1 0 1
## 809 0 0 0 0 1 1
## 810 1 1 0 0 0 1
## 811 0 0 0 1 0 1
## 812 0 0 1 0 0 1
## 813 1 0 0 1 0 1
## 814 0 0 0 1 0 1
## 815 0 0 0 1 0 2
## 816 0 0 0 1 0 1
## 817 0 0 0 1 0 1
## 818 1 0 0 1 0 1
## 819 0 0 0 0 1 1
## 820 0 0 0 1 0 1
## 821 1 0 0 1 0 1
## 822 0 0 0 1 0 1
## 823 0 0 0 1 0 2
## 824 1 0 1 0 0 1
## 825 1 0 0 0 1 1
## 826 1 0 0 1 0 1
## 827 1 0 0 1 0 1
## 828 1 0 0 1 0 2
## 829 0 0 0 1 0 1
## 830 0 0 0 1 0 2
## 831 1 0 0 1 0 2
## 832 0 0 0 1 0 1
## 833 1 0 0 1 0 1
## 834 0 0 0 1 0 1
## 835 0 0 1 0 0 1
## 836 1 0 0 1 0 1
## 837 0 0 0 1 0 1
## 838 0 0 1 0 0 2
## 839 1 0 0 1 0 1
## 840 1 0 0 1 0 1
## 841 0 0 0 1 0 1
## 842 1 0 1 0 0 1
## 843 0 0 0 1 0 1
## 844 0 0 0 1 0 1
## 845 1 0 0 1 0 2
## 846 0 0 0 1 0 1
## 847 1 0 0 1 0 1
## 848 0 0 0 1 0 1
## 849 0 0 0 1 0 1
## 850 0 0 1 0 0 1
## 851 1 0 0 1 0 1
## 852 1 0 0 1 0 1
## 853 1 0 0 1 0 1
## 854 1 0 1 0 0 2
## 855 1 0 0 1 0 2
## 856 0 0 0 1 0 1
## 857 0 0 0 1 0 1
## 858 0 0 0 1 0 1
## 859 0 0 0 1 0 1
## 860 0 0 0 1 0 2
## 861 1 0 0 1 0 1
## 862 0 0 0 1 0 1
## 863 0 0 0 1 0 1
## 864 1 0 1 0 0 2
## 865 0 0 1 0 0 1
## 866 0 0 0 1 0 1
## 867 0 0 0 1 0 1
## 868 0 0 0 1 0 1
## 869 1 0 0 1 0 1
## 870 0 0 0 1 0 1
## 871 1 0 0 1 0 1
## 872 1 0 0 1 0 2
## 873 1 0 0 1 0 1
## 874 0 0 0 1 0 1
## 875 0 0 1 0 0 2
## 876 1 0 0 1 0 1
## 877 0 0 0 0 1 1
## 878 0 0 0 1 0 1
## 879 0 0 0 0 1 1
## 880 1 0 0 1 0 1
## 881 0 0 0 0 1 1
## 882 0 0 0 1 0 1
## 883 1 0 0 1 0 1
## 884 1 1 0 0 0 1
## 885 0 0 0 1 0 1
## 886 0 0 0 1 0 1
## 887 1 0 0 1 0 2
## 888 0 0 0 1 0 1
## 889 1 0 0 0 1 1
## 890 1 0 0 1 0 2
## 891 1 0 0 0 1 2
## 892 1 0 0 1 0 1
## 893 1 0 1 0 0 1
## 894 1 0 0 1 0 1
## 895 1 0 0 1 0 1
## 896 0 0 0 0 1 2
## 897 0 0 0 0 1 1
## 898 0 0 0 1 0 1
## 899 0 0 1 0 0 1
## 900 0 0 0 1 0 1
## 901 0 0 0 1 0 1
## 902 1 0 0 1 0 1
## 903 1 0 0 1 0 1
## 904 0 0 0 1 0 1
## 905 0 0 0 0 1 1
## 906 0 0 0 0 1 2
## 907 0 0 1 0 0 1
## 908 0 0 0 1 0 1
## 909 1 0 1 0 0 1
## 910 0 0 1 0 0 1
## 911 1 0 0 1 0 1
## 912 0 0 1 0 0 1
## 913 0 0 0 1 0 1
## 914 0 0 0 1 0 1
## 915 0 0 0 1 0 1
## 916 0 0 0 0 1 1
## 917 0 0 0 1 0 2
## 918 0 0 0 0 1 1
## 919 0 0 0 1 0 1
## 920 0 0 0 0 1 1
## 921 1 0 0 1 0 1
## 922 0 0 0 0 1 1
## 923 0 0 0 1 0 1
## 924 0 0 0 1 0 2
## 925 0 0 0 1 0 1
## 926 1 0 0 1 0 1
## 927 0 0 0 1 0 1
## 928 1 0 0 1 0 2
## 929 0 0 0 1 0 1
## 930 1 0 1 0 0 2
## 931 0 0 1 0 0 1
## 932 0 0 0 1 0 1
## 933 1 0 0 1 0 1
## 934 1 0 0 1 0 2
## 935 0 0 0 1 0 1
## 936 1 0 0 0 1 1
## 937 0 0 1 0 0 1
## 938 0 0 0 0 1 1
## 939 0 0 0 1 0 1
## 940 1 0 0 0 1 2
## 941 0 0 0 0 1 2
## 942 0 0 1 0 0 2
## 943 0 0 0 1 0 1
## 944 1 0 1 0 0 2
## 945 0 0 0 1 0 1
## 946 1 0 0 1 0 1
## 947 0 0 0 1 0 2
## 948 0 0 0 0 1 1
## 949 0 0 1 0 0 2
## 950 1 0 0 1 0 1
## 951 1 1 0 0 0 2
## 952 1 0 0 1 0 1
## 953 0 0 0 1 0 1
## 954 1 0 0 0 1 1
## 955 0 0 0 1 0 1
## 956 1 0 0 0 1 1
## 957 1 0 1 0 0 1
## 958 1 0 1 0 0 1
## 959 0 0 1 0 0 1
## 960 0 0 0 1 0 1
## 961 1 0 0 1 0 1
## 962 1 0 0 1 0 1
## 963 0 0 0 1 0 1
## 964 1 0 0 1 0 1
## 965 0 0 1 0 0 1
## 966 0 0 0 1 0 1
## 967 1 0 1 0 0 1
## 968 0 0 0 0 1 1
## 969 0 0 0 1 0 1
## 970 1 0 1 0 0 2
## 971 0 0 0 1 0 1
## 972 0 0 1 0 0 2
## 973 1 1 0 0 0 1
## 974 0 0 0 1 0 1
## 975 0 0 0 1 0 1
## 976 0 0 1 0 0 1
## 977 0 0 0 1 0 1
## 978 1 0 0 1 0 1
## 979 1 0 1 0 0 2
## 980 0 0 0 1 0 1
## 981 0 0 0 1 0 1
## 982 0 0 0 0 1 1
## 983 0 0 0 0 1 1
## 984 0 0 0 1 0 2
## 985 1 0 1 0 0 1
## 986 1 0 0 1 0 1
## 987 1 0 0 1 0 1
## 988 0 0 0 1 0 1
## 989 0 0 0 0 1 1
## 990 1 0 1 0 0 1
## 991 1 0 1 0 0 2
## 992 0 0 1 0 0 2
## 993 1 0 1 0 0 1
## 994 0 0 0 0 1 1
## 995 0 0 0 1 0 1
## 996 0 0 1 0 0 1
## 997 0 0 0 0 1 1
## 998 0 0 0 1 0 1
## 999 0 0 0 1 0 1
## 1000 0 0 0 1 0 1
## telephone foreignworker classification
## 1 1 0 0
## 2 0 0 1
## 3 0 0 0
## 4 0 0 0
## 5 0 0 1
## 6 1 0 0
## 7 0 0 0
## 8 1 0 0
## 9 0 0 0
## 10 0 0 1
## 11 0 0 1
## 12 0 0 1
## 13 1 0 0
## 14 0 0 1
## 15 0 0 0
## 16 0 0 1
## 17 0 0 0
## 18 0 0 0
## 19 1 0 1
## 20 1 0 0
## 21 1 0 0
## 22 0 0 0
## 23 0 1 0
## 24 0 0 0
## 25 0 1 0
## 26 1 0 0
## 27 0 0 0
## 28 0 0 0
## 29 0 0 0
## 30 1 0 1
## 31 1 0 0
## 32 0 0 0
## 33 1 0 0
## 34 0 0 0
## 35 1 0 0
## 36 0 0 1
## 37 1 0 0
## 38 0 0 1
## 39 1 0 0
## 40 0 0 0
## 41 0 0 0
## 42 1 0 0
## 43 1 0 0
## 44 0 0 0
## 45 0 0 1
## 46 0 0 0
## 47 0 0 0
## 48 1 0 0
## 49 0 0 0
## 50 0 0 0
## 51 0 0 0
## 52 1 0 0
## 53 0 0 0
## 54 1 0 0
## 55 1 0 1
## 56 0 0 0
## 57 1 0 1
## 58 0 0 0
## 59 0 0 0
## 60 1 0 1
## 61 1 0 0
## 62 1 0 0
## 63 1 0 1
## 64 1 0 1
## 65 1 0 0
## 66 1 0 0
## 67 0 0 0
## 68 0 0 0
## 69 1 0 1
## 70 0 0 0
## 71 0 0 0
## 72 1 0 0
## 73 1 0 0
## 74 0 0 0
## 75 1 0 1
## 76 0 0 0
## 77 0 0 1
## 78 0 0 0
## 79 0 0 0
## 80 0 0 0
## 81 1 0 1
## 82 1 0 0
## 83 0 0 0
## 84 1 0 0
## 85 0 0 0
## 86 1 0 0
## 87 0 0 0
## 88 1 0 1
## 89 1 0 0
## 90 0 0 1
## 91 0 0 0
## 92 0 0 0
## 93 0 0 1
## 94 0 0 0
## 95 1 0 0
## 96 1 0 1
## 97 0 0 0
## 98 0 0 0
## 99 0 0 0
## 100 1 0 0
## 101 0 0 0
## 102 0 0 0
## 103 0 0 0
## 104 1 0 0
## 105 1 0 0
## 106 1 0 1
## 107 1 0 1
## 108 0 0 0
## 109 1 1 0
## 110 1 0 0
## 111 0 0 0
## 112 1 0 0
## 113 0 0 0
## 114 1 0 1
## 115 0 0 0
## 116 1 0 0
## 117 1 0 1
## 118 0 1 0
## 119 0 0 1
## 120 1 0 0
## 121 1 0 1
## 122 1 0 0
## 123 0 0 0
## 124 1 0 0
## 125 0 0 1
## 126 0 0 0
## 127 0 0 0
## 128 0 0 1
## 129 1 0 0
## 130 0 0 1
## 131 0 0 0
## 132 1 0 1
## 133 0 0 0
## 134 0 0 0
## 135 1 0 0
## 136 1 0 0
## 137 0 0 0
## 138 0 0 1
## 139 1 0 0
## 140 1 0 0
## 141 0 1 0
## 142 1 0 0
## 143 0 0 0
## 144 0 0 1
## 145 1 0 0
## 146 0 0 0
## 147 1 0 0
## 148 1 0 0
## 149 0 0 0
## 150 0 0 0
## 151 1 0 0
## 152 1 1 0
## 153 0 0 0
## 154 0 0 0
## 155 1 0 0
## 156 0 0 1
## 157 0 1 0
## 158 0 0 0
## 159 1 0 0
## 160 0 0 0
## 161 1 0 0
## 162 0 0 0
## 163 1 0 0
## 164 1 0 0
## 165 0 0 0
## 166 1 0 0
## 167 0 0 1
## 168 0 0 0
## 169 1 0 0
## 170 1 0 1
## 171 0 0 1
## 172 1 0 0
## 173 1 0 1
## 174 0 1 0
## 175 0 0 1
## 176 1 0 1
## 177 0 0 0
## 178 0 0 0
## 179 1 0 0
## 180 0 0 0
## 181 0 0 1
## 182 1 0 1
## 183 0 0 1
## 184 1 0 0
## 185 1 0 1
## 186 0 0 0
## 187 1 0 1
## 188 1 0 0
## 189 0 0 1
## 190 1 0 0
## 191 1 0 1
## 192 0 0 1
## 193 1 0 1
## 194 0 0 0
## 195 0 0 1
## 196 1 0 1
## 197 1 0 0
## 198 0 0 1
## 199 1 0 0
## 200 1 0 1
## 201 1 0 0
## 202 0 0 0
## 203 0 0 0
## 204 0 0 1
## 205 0 0 0
## 206 1 0 0
## 207 1 0 0
## 208 0 0 0
## 209 0 0 0
## 210 0 1 0
## 211 0 0 0
## 212 1 0 0
## 213 1 0 1
## 214 1 0 1
## 215 1 0 0
## 216 0 0 0
## 217 1 0 0
## 218 1 0 0
## 219 0 0 0
## 220 1 0 0
## 221 0 0 0
## 222 1 0 0
## 223 0 0 0
## 224 1 0 0
## 225 1 0 0
## 226 0 0 0
## 227 1 0 1
## 228 1 0 1
## 229 0 0 1
## 230 0 0 0
## 231 0 0 1
## 232 0 0 0
## 233 0 0 0
## 234 0 0 0
## 235 0 0 0
## 236 0 0 1
## 237 1 0 1
## 238 0 0 1
## 239 0 0 0
## 240 0 0 0
## 241 0 0 1
## 242 0 0 0
## 243 0 0 1
## 244 0 0 0
## 245 0 0 0
## 246 1 0 0
## 247 0 0 0
## 248 0 1 0
## 249 0 0 0
## 250 0 0 1
## 251 1 0 0
## 252 0 0 0
## 253 0 0 1
## 254 0 0 0
## 255 1 0 0
## 256 0 0 0
## 257 0 0 0
## 258 0 0 1
## 259 1 0 0
## 260 0 0 0
## 261 0 0 0
## 262 0 0 0
## 263 1 0 0
## 264 0 0 0
## 265 0 1 0
## 266 0 0 1
## 267 0 0 0
## 268 1 0 0
## 269 1 1 1
## 270 0 0 0
## 271 0 1 0
## 272 1 0 0
## 273 1 0 0
## 274 0 0 1
## 275 1 0 1
## 276 0 0 0
## 277 0 0 0
## 278 1 0 0
## 279 0 0 1
## 280 1 0 0
## 281 1 0 0
## 282 0 0 0
## 283 0 0 0
## 284 0 0 0
## 285 1 0 0
## 286 1 0 0
## 287 0 0 0
## 288 1 0 0
## 289 1 0 0
## 290 0 0 1
## 291 1 1 0
## 292 1 0 1
## 293 1 0 0
## 294 0 0 0
## 295 0 0 0
## 296 1 0 1
## 297 0 0 0
## 298 0 1 0
## 299 1 0 0
## 300 1 0 0
## 301 1 0 0
## 302 1 0 1
## 303 0 0 1
## 304 1 0 0
## 305 0 0 1
## 306 0 0 0
## 307 0 0 0
## 308 1 0 1
## 309 0 0 1
## 310 0 0 0
## 311 1 0 0
## 312 0 0 0
## 313 0 0 0
## 314 0 0 1
## 315 0 1 0
## 316 0 0 1
## 317 0 0 0
## 318 1 0 0
## 319 0 0 0
## 320 0 0 0
## 321 0 0 1
## 322 0 0 1
## 323 1 0 0
## 324 0 0 0
## 325 0 0 0
## 326 0 1 0
## 327 1 0 0
## 328 1 0 0
## 329 0 0 0
## 330 0 0 0
## 331 1 0 0
## 332 0 0 1
## 333 0 0 1
## 334 0 0 1
## 335 0 0 1
## 336 1 0 1
## 337 0 0 0
## 338 0 0 1
## 339 0 0 0
## 340 0 0 0
## 341 1 0 0
## 342 0 0 0
## 343 0 0 0
## 344 1 0 0
## 345 0 0 0
## 346 0 0 0
## 347 0 0 0
## 348 0 0 0
## 349 0 0 0
## 350 0 0 1
## 351 1 0 0
## 352 0 1 1
## 353 1 0 0
## 354 1 0 1
## 355 1 0 0
## 356 0 0 1
## 357 1 0 0
## 358 1 0 1
## 359 0 0 0
## 360 0 0 1
## 361 0 0 0
## 362 0 0 0
## 363 1 0 0
## 364 0 0 0
## 365 0 0 1
## 366 1 0 0
## 367 0 0 0
## 368 0 0 0
## 369 0 0 1
## 370 0 0 0
## 371 0 0 0
## 372 1 0 0
## 373 0 0 0
## 374 1 0 0
## 375 1 0 1
## 376 0 0 1
## 377 0 0 0
## 378 0 0 0
## 379 1 0 1
## 380 0 0 0
## 381 1 0 0
## 382 1 0 1
## 383 0 0 0
## 384 0 0 0
## 385 0 0 0
## 386 0 0 0
## 387 1 0 0
## 388 1 0 0
## 389 0 0 0
## 390 0 0 0
## 391 1 0 0
## 392 0 0 0
## 393 1 0 0
## 394 0 0 0
## 395 0 0 0
## 396 1 0 0
## 397 0 0 0
## 398 1 0 0
## 399 0 0 1
## 400 0 0 0
## 401 1 0 0
## 402 0 0 0
## 403 1 0 1
## 404 0 0 0
## 405 0 0 0
## 406 1 0 1
## 407 1 0 0
## 408 0 1 0
## 409 1 0 0
## 410 1 0 1
## 411 1 0 0
## 412 1 0 0
## 413 1 0 1
## 414 0 1 0
## 415 0 0 1
## 416 1 0 0
## 417 0 0 1
## 418 1 0 0
## 419 0 0 0
## 420 0 0 1
## 421 0 0 0
## 422 0 0 0
## 423 0 0 0
## 424 0 0 0
## 425 1 0 1
## 426 1 0 0
## 427 0 0 0
## 428 0 0 0
## 429 0 0 0
## 430 0 0 1
## 431 0 0 0
## 432 1 0 1
## 433 1 0 0
## 434 1 0 0
## 435 0 0 0
## 436 1 0 1
## 437 0 0 0
## 438 1 0 0
## 439 0 0 0
## 440 0 0 1
## 441 1 0 0
## 442 0 0 0
## 443 1 0 0
## 444 0 0 1
## 445 1 0 1
## 446 0 0 0
## 447 1 0 1
## 448 0 0 0
## 449 1 0 0
## 450 0 0 1
## 451 1 0 0
## 452 0 0 0
## 453 0 0 0
## 454 1 0 0
## 455 1 0 1
## 456 1 0 0
## 457 0 0 0
## 458 1 0 1
## 459 0 0 0
## 460 1 0 0
## 461 0 0 0
## 462 0 0 0
## 463 0 0 0
## 464 0 0 0
## 465 1 0 0
## 466 1 0 0
## 467 1 0 1
## 468 0 0 0
## 469 1 0 0
## 470 1 0 0
## 471 1 0 1
## 472 0 0 1
## 473 0 0 1
## 474 1 0 0
## 475 0 0 1
## 476 0 0 1
## 477 0 0 0
## 478 0 0 0
## 479 0 0 0
## 480 1 0 0
## 481 0 0 0
## 482 0 0 0
## 483 1 0 0
## 484 0 0 0
## 485 1 0 0
## 486 1 0 1
## 487 1 0 0
## 488 1 0 0
## 489 0 1 0
## 490 0 0 0
## 491 0 0 0
## 492 1 0 1
## 493 0 0 0
## 494 0 0 0
## 495 0 1 0
## 496 0 0 1
## 497 1 0 1
## 498 0 0 0
## 499 0 0 0
## 500 1 0 0
## 501 0 0 1
## 502 0 0 0
## 503 0 0 0
## 504 0 0 1
## 505 0 0 1
## 506 0 0 1
## 507 1 0 0
## 508 1 0 1
## 509 0 0 0
## 510 1 0 0
## 511 0 0 1
## 512 1 0 0
## 513 1 0 0
## 514 0 0 0
## 515 0 0 0
## 516 0 1 0
## 517 0 1 0
## 518 1 0 1
## 519 1 0 0
## 520 0 0 0
## 521 0 0 0
## 522 0 0 1
## 523 0 0 1
## 524 0 0 0
## 525 0 0 0
## 526 0 0 0
## 527 0 0 0
## 528 0 0 0
## 529 0 0 1
## 530 1 0 0
## 531 0 0 0
## 532 1 0 1
## 533 0 0 0
## 534 1 0 0
## 535 0 0 0
## 536 0 0 1
## 537 1 0 0
## 538 1 0 0
## 539 0 0 1
## 540 0 0 0
## 541 0 0 1
## 542 1 0 0
## 543 0 0 1
## 544 0 0 1
## 545 0 0 0
## 546 0 0 1
## 547 1 0 0
## 548 0 0 0
## 549 0 0 1
## 550 1 0 0
## 551 0 0 0
## 552 0 0 0
## 553 1 0 1
## 554 0 0 0
## 555 1 0 0
## 556 0 0 1
## 557 0 0 1
## 558 1 0 1
## 559 0 0 1
## 560 0 0 1
## 561 1 0 0
## 562 0 0 1
## 563 0 0 0
## 564 1 0 1
## 565 1 0 0
## 566 1 0 0
## 567 0 0 1
## 568 0 0 0
## 569 1 0 0
## 570 1 0 1
## 571 1 0 1
## 572 0 0 0
## 573 1 0 0
## 574 0 0 0
## 575 0 0 0
## 576 0 0 0
## 577 0 0 0
## 578 1 0 0
## 579 0 0 1
## 580 0 0 0
## 581 0 0 1
## 582 0 0 0
## 583 0 0 0
## 584 0 0 1
## 585 1 0 0
## 586 0 0 1
## 587 0 0 0
## 588 0 0 0
## 589 1 0 1
## 590 0 0 1
## 591 1 0 0
## 592 1 0 0
## 593 0 0 0
## 594 1 0 1
## 595 1 0 1
## 596 0 0 1
## 597 0 0 1
## 598 1 0 1
## 599 0 0 1
## 600 0 0 0
## 601 0 0 0
## 602 0 0 1
## 603 0 0 1
## 604 1 0 1
## 605 0 0 0
## 606 1 0 0
## 607 1 0 0
## 608 0 0 1
## 609 0 0 0
## 610 0 0 0
## 611 0 0 1
## 612 0 0 1
## 613 0 0 0
## 614 0 1 0
## 615 0 0 1
## 616 1 0 0
## 617 0 0 0
## 618 0 0 0
## 619 0 0 1
## 620 0 0 0
## 621 0 0 0
## 622 0 0 1
## 623 0 0 1
## 624 0 0 0
## 625 0 0 1
## 626 0 0 0
## 627 1 0 0
## 628 0 0 1
## 629 1 0 0
## 630 0 0 0
## 631 0 0 0
## 632 0 0 1
## 633 0 0 0
## 634 0 0 1
## 635 1 0 1
## 636 1 0 0
## 637 0 0 0
## 638 1 0 0
## 639 0 0 0
## 640 1 0 1
## 641 0 0 1
## 642 0 0 0
## 643 1 0 1
## 644 1 0 0
## 645 1 0 0
## 646 1 0 1
## 647 0 0 0
## 648 0 0 1
## 649 0 0 1
## 650 0 0 1
## 651 1 0 0
## 652 0 0 1
## 653 0 0 1
## 654 1 0 1
## 655 1 0 0
## 656 0 0 0
## 657 0 0 1
## 658 1 0 0
## 659 0 0 0
## 660 1 0 0
## 661 0 0 0
## 662 0 0 1
## 663 0 0 0
## 664 1 0 0
## 665 0 0 0
## 666 1 0 0
## 667 1 0 0
## 668 0 0 0
## 669 1 0 1
## 670 0 0 0
## 671 1 0 0
## 672 1 0 0
## 673 1 0 0
## 674 0 0 0
## 675 0 0 1
## 676 1 0 0
## 677 1 0 0
## 678 0 0 1
## 679 0 0 0
## 680 0 0 0
## 681 0 0 0
## 682 1 0 0
## 683 0 0 0
## 684 1 0 0
## 685 1 0 0
## 686 1 0 0
## 687 1 0 0
## 688 0 0 0
## 689 1 0 0
## 690 0 0 0
## 691 0 0 0
## 692 0 0 0
## 693 0 0 0
## 694 0 0 0
## 695 1 0 0
## 696 0 0 0
## 697 0 1 0
## 698 0 0 0
## 699 0 0 0
## 700 1 0 0
## 701 0 0 1
## 702 1 0 1
## 703 1 0 0
## 704 0 0 0
## 705 1 0 0
## 706 0 0 0
## 707 0 0 1
## 708 0 0 1
## 709 0 0 0
## 710 0 0 0
## 711 1 0 0
## 712 0 0 1
## 713 1 0 0
## 714 0 0 0
## 715 1 0 1
## 716 0 0 0
## 717 1 0 0
## 718 1 0 0
## 719 1 0 0
## 720 1 0 0
## 721 1 0 1
## 722 0 0 1
## 723 0 0 1
## 724 0 0 0
## 725 0 0 1
## 726 0 0 0
## 727 0 0 0
## 728 0 0 1
## 729 0 0 1
## 730 1 0 0
## 731 0 0 0
## 732 0 0 1
## 733 0 0 0
## 734 1 0 0
## 735 0 0 0
## 736 0 0 0
## 737 0 0 1
## 738 1 0 0
## 739 1 0 0
## 740 0 0 1
## 741 0 0 0
## 742 0 0 0
## 743 1 0 0
## 744 1 0 0
## 745 1 0 0
## 746 0 0 0
## 747 0 0 0
## 748 0 0 1
## 749 0 0 0
## 750 0 0 0
## 751 1 0 0
## 752 0 0 1
## 753 0 0 0
## 754 0 0 0
## 755 0 0 1
## 756 0 0 1
## 757 0 1 0
## 758 1 0 1
## 759 1 0 0
## 760 0 0 1
## 761 1 0 0
## 762 0 0 1
## 763 0 0 0
## 764 1 0 1
## 765 1 0 0
## 766 0 0 0
## 767 0 0 1
## 768 0 0 0
## 769 1 0 0
## 770 1 0 0
## 771 0 0 0
## 772 1 0 1
## 773 1 0 0
## 774 0 0 0
## 775 0 0 0
## 776 0 0 1
## 777 1 0 0
## 778 0 0 0
## 779 1 0 0
## 780 1 0 0
## 781 0 0 1
## 782 1 0 0
## 783 1 0 0
## 784 0 0 1
## 785 1 0 0
## 786 1 0 0
## 787 0 0 0
## 788 1 0 0
## 789 0 0 1
## 790 1 0 1
## 791 0 0 1
## 792 1 0 0
## 793 0 0 0
## 794 0 0 0
## 795 1 0 0
## 796 0 0 0
## 797 1 0 1
## 798 0 0 0
## 799 1 0 0
## 800 0 0 0
## 801 0 0 0
## 802 1 0 0
## 803 0 0 0
## 804 0 0 0
## 805 0 0 0
## 806 1 0 1
## 807 0 1 0
## 808 0 0 0
## 809 1 0 0
## 810 0 0 1
## 811 1 0 0
## 812 0 0 0
## 813 1 0 1
## 814 0 0 1
## 815 0 0 1
## 816 0 0 0
## 817 0 0 0
## 818 1 0 0
## 819 0 0 0
## 820 0 0 1
## 821 1 0 0
## 822 0 0 0
## 823 0 0 1
## 824 0 0 0
## 825 1 0 0
## 826 1 0 0
## 827 1 0 1
## 828 0 0 1
## 829 0 0 1
## 830 1 0 0
## 831 1 0 0
## 832 1 0 1
## 833 0 0 1
## 834 1 0 0
## 835 0 0 1
## 836 0 0 1
## 837 0 0 0
## 838 0 0 0
## 839 1 0 0
## 840 0 0 0
## 841 0 0 1
## 842 0 0 0
## 843 0 0 1
## 844 1 0 0
## 845 1 0 0
## 846 1 0 0
## 847 0 0 1
## 848 0 0 0
## 849 0 0 0
## 850 0 0 1
## 851 0 1 1
## 852 1 0 0
## 853 1 0 0
## 854 0 0 1
## 855 1 0 0
## 856 1 0 0
## 857 1 0 0
## 858 1 0 0
## 859 1 0 1
## 860 0 1 0
## 861 0 0 0
## 862 1 0 1
## 863 1 0 1
## 864 1 0 0
## 865 0 0 1
## 866 0 0 0
## 867 0 0 0
## 868 0 0 0
## 869 0 0 0
## 870 0 0 0
## 871 1 0 0
## 872 0 1 0
## 873 1 0 0
## 874 0 0 0
## 875 0 0 0
## 876 0 0 0
## 877 1 0 0
## 878 0 0 0
## 879 1 0 1
## 880 0 0 0
## 881 1 0 0
## 882 1 0 0
## 883 0 0 0
## 884 0 0 0
## 885 1 0 1
## 886 0 0 1
## 887 1 0 0
## 888 1 0 1
## 889 1 0 0
## 890 1 0 0
## 891 1 0 0
## 892 1 0 0
## 893 0 1 0
## 894 1 0 0
## 895 1 0 0
## 896 1 0 0
## 897 1 0 0
## 898 0 1 0
## 899 0 0 0
## 900 0 0 1
## 901 1 0 1
## 902 1 0 0
## 903 0 0 0
## 904 1 0 0
## 905 1 0 0
## 906 1 0 0
## 907 0 1 0
## 908 0 0 0
## 909 0 0 0
## 910 0 0 0
## 911 0 0 0
## 912 0 0 1
## 913 0 0 0
## 914 1 0 0
## 915 1 0 1
## 916 1 1 1
## 917 0 0 0
## 918 1 0 1
## 919 0 0 1
## 920 1 0 1
## 921 0 0 0
## 922 1 0 0
## 923 0 0 1
## 924 1 0 0
## 925 1 0 1
## 926 1 0 1
## 927 0 0 0
## 928 1 0 1
## 929 1 0 0
## 930 0 0 0
## 931 0 1 0
## 932 1 0 1
## 933 0 0 0
## 934 1 0 0
## 935 0 0 0
## 936 0 0 1
## 937 0 0 1
## 938 1 0 0
## 939 0 0 1
## 940 1 0 0
## 941 1 0 0
## 942 0 1 0
## 943 1 0 0
## 944 0 0 0
## 945 0 0 0
## 946 0 0 0
## 947 1 0 1
## 948 1 0 0
## 949 0 0 1
## 950 0 0 1
## 951 1 0 0
## 952 1 0 1
## 953 0 0 1
## 954 1 0 1
## 955 1 0 0
## 956 1 0 0
## 957 0 0 0
## 958 0 0 0
## 959 0 0 1
## 960 0 0 0
## 961 0 0 0
## 962 0 0 0
## 963 0 0 0
## 964 1 0 1
## 965 0 0 0
## 966 0 0 0
## 967 0 0 1
## 968 1 0 0
## 969 1 0 0
## 970 0 0 0
## 971 0 0 0
## 972 0 0 0
## 973 0 0 1
## 974 0 0 1
## 975 1 0 0
## 976 0 0 0
## 977 0 0 0
## 978 0 0 0
## 979 0 0 1
## 980 0 0 1
## 981 0 0 1
## 982 1 0 1
## 983 1 0 0
## 984 0 0 1
## 985 0 0 0
## 986 0 0 0
## 987 0 0 0
## 988 0 0 0
## 989 1 0 0
## 990 0 0 0
## 991 0 0 0
## 992 0 0 0
## 993 0 0 0
## 994 1 0 0
## 995 1 0 0
## 996 0 0 0
## 997 1 0 0
## 998 0 0 0
## 999 1 0 1
## 1000 0 0 0
### model creation
## test train split
set.seed(100)
indices = sample(1:nrow(creditDataNumeric), 0.7*nrow(creditDataNumeric))
train = creditDataNumeric[indices,]
test = creditDataNumeric[-indices,]
## penalty matrix
penaltyMatrix <- matrix(c(0,1,5,0), byrow = T, nrow = 2)
## glm model
model1 <- glm(classification~., data = creditDataNumeric)
summary(model1)
##
## Call:
## glm(formula = classification ~ ., data = creditDataNumeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.91222 -0.28361 -0.09102 0.31827 1.02409
##
## Coefficients: (11 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.417e-01 1.620e-01 -2.727 0.006510 **
## existingcheckingstatusA11 2.689e-01 3.455e-02 7.784 1.84e-14 ***
## existingcheckingstatusA12 1.949e-01 3.375e-02 5.775 1.04e-08 ***
## existingcheckingstatusA13 8.106e-02 5.588e-02 1.450 0.147267
## existingcheckingstatusA14 NA NA NA NA
## duration 5.611e-03 1.630e-03 3.443 0.000601 ***
## credithistoryA30 2.645e-01 7.167e-02 3.690 0.000237 ***
## credithistoryA31 2.715e-01 6.976e-02 3.892 0.000106 ***
## credithistoryA32 1.227e-01 3.803e-02 3.227 0.001293 **
## credithistoryA33 6.900e-02 5.106e-02 1.351 0.176916
## credithistoryA34 NA NA NA NA
## purposeA40 1.218e-01 5.167e-02 2.357 0.018603 *
## purposeA41 -1.161e-01 6.106e-02 -1.901 0.057571 .
## purposeA410 -1.048e-01 1.285e-01 -0.816 0.414723
## purposeA42 -7.880e-03 5.424e-02 -0.145 0.884525
## purposeA43 -1.371e-02 5.066e-02 -0.271 0.786684
## purposeA44 4.186e-02 1.256e-01 0.333 0.738909
## purposeA45 8.203e-02 9.668e-02 0.848 0.396394
## purposeA46 1.418e-01 7.348e-02 1.930 0.053908 .
## purposeA48 -1.343e-01 1.436e-01 -0.935 0.350184
## purposeA49 NA NA NA NA
## creditamount 1.573e-05 8.930e-06 1.761 0.078534 .
## savingsA61 1.246e-01 3.579e-02 3.482 0.000520 ***
## savingsA62 7.424e-02 5.086e-02 1.460 0.144740
## savingsA63 4.252e-02 5.960e-02 0.713 0.475805
## savingsA64 -2.511e-02 6.626e-02 -0.379 0.704824
## savingsA65 NA NA NA NA
## employmentlengthA71 5.143e-02 6.625e-02 0.776 0.437697
## employmentlengthA72 4.675e-02 4.594e-02 1.018 0.309059
## employmentlengthA73 2.255e-02 3.757e-02 0.600 0.548461
## employmentlengthA74 -6.703e-02 4.231e-02 -1.584 0.113493
## employmentlengthA75 NA NA NA NA
## installmentrate 4.138e-02 1.364e-02 3.033 0.002484 **
## marriagesexA91 8.131e-02 7.328e-02 1.110 0.267447
## marriagesexA92 2.907e-02 4.904e-02 0.593 0.553464
## marriagesexA93 -4.337e-02 4.881e-02 -0.889 0.374475
## marriagesexA94 NA NA NA NA
## otherdebtorsA101 1.703e-01 6.067e-02 2.807 0.005101 **
## otherdebtorsA102 2.457e-01 8.669e-02 2.834 0.004688 **
## otherdebtorsA103 NA NA NA NA
## presentresidencelength 2.258e-04 1.325e-02 0.017 0.986411
## propertyA121 -1.260e-01 6.344e-02 -1.986 0.047326 *
## propertyA122 -8.278e-02 6.252e-02 -1.324 0.185821
## propertyA123 -9.555e-02 6.075e-02 -1.573 0.116096
## propertyA124 NA NA NA NA
## age -1.634e-03 1.366e-03 -1.196 0.231822
## otherinstallmentplansA141 8.155e-02 3.902e-02 2.090 0.036899 *
## otherinstallmentplansA142 7.851e-02 6.235e-02 1.259 0.208249
## otherinstallmentplansA143 NA NA NA NA
## housingA151 1.210e-01 7.221e-02 1.676 0.094052 .
## housingA152 5.001e-02 6.889e-02 0.726 0.468046
## housingA153 NA NA NA NA
## existingcredits 5.091e-02 3.504e-02 1.453 0.146572
## jobA171 -7.311e-02 1.024e-01 -0.714 0.475190
## jobA172 -4.067e-03 5.401e-02 -0.075 0.939997
## jobA173 5.963e-03 4.407e-02 0.135 0.892399
## jobA174 NA NA NA NA
## peopleliableno 3.170e-02 3.800e-02 0.834 0.404421
## telephone -4.083e-02 2.963e-02 -1.378 0.168532
## foreignworker -1.403e-01 7.059e-02 -1.988 0.047136 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.159032)
##
## Null deviance: 210.00 on 999 degrees of freedom
## Residual deviance: 151.24 on 951 degrees of freedom
## AIC: 1049
##
## Number of Fisher Scoring iterations: 2
## uset stepAIC to reduce colinearity
step <- stepAIC(model1)
## Start: AIC=1048.99
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + existingcheckingstatusA14 + duration +
## credithistoryA30 + credithistoryA31 + credithistoryA32 +
## credithistoryA33 + credithistoryA34 + purposeA40 + purposeA41 +
## purposeA410 + purposeA42 + purposeA43 + purposeA44 + purposeA45 +
## purposeA46 + purposeA48 + purposeA49 + creditamount + savingsA61 +
## savingsA62 + savingsA63 + savingsA64 + savingsA65 + employmentlengthA71 +
## employmentlengthA72 + employmentlengthA73 + employmentlengthA74 +
## employmentlengthA75 + installmentrate + marriagesexA91 +
## marriagesexA92 + marriagesexA93 + marriagesexA94 + otherdebtorsA101 +
## otherdebtorsA102 + otherdebtorsA103 + presentresidencelength +
## propertyA121 + propertyA122 + propertyA123 + propertyA124 +
## age + otherinstallmentplansA141 + otherinstallmentplansA142 +
## otherinstallmentplansA143 + housingA151 + housingA152 + housingA153 +
## existingcredits + jobA171 + jobA172 + jobA173 + jobA174 +
## peopleliableno + telephone + foreignworker
##
##
## Step: AIC=1048.99
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + existingcheckingstatusA14 + duration +
## credithistoryA30 + credithistoryA31 + credithistoryA32 +
## credithistoryA33 + credithistoryA34 + purposeA40 + purposeA41 +
## purposeA410 + purposeA42 + purposeA43 + purposeA44 + purposeA45 +
## purposeA46 + purposeA48 + purposeA49 + creditamount + savingsA61 +
## savingsA62 + savingsA63 + savingsA64 + savingsA65 + employmentlengthA71 +
## employmentlengthA72 + employmentlengthA73 + employmentlengthA74 +
## employmentlengthA75 + installmentrate + marriagesexA91 +
## marriagesexA92 + marriagesexA93 + marriagesexA94 + otherdebtorsA101 +
## otherdebtorsA102 + otherdebtorsA103 + presentresidencelength +
## propertyA121 + propertyA122 + propertyA123 + propertyA124 +
## age + otherinstallmentplansA141 + otherinstallmentplansA142 +
## otherinstallmentplansA143 + housingA151 + housingA152 + housingA153 +
## existingcredits + jobA171 + jobA172 + jobA173 + peopleliableno +
## telephone + foreignworker
##
##
## Step: AIC=1048.99
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + existingcheckingstatusA14 + duration +
## credithistoryA30 + credithistoryA31 + credithistoryA32 +
## credithistoryA33 + credithistoryA34 + purposeA40 + purposeA41 +
## purposeA410 + purposeA42 + purposeA43 + purposeA44 + purposeA45 +
## purposeA46 + purposeA48 + purposeA49 + creditamount + savingsA61 +
## savingsA62 + savingsA63 + savingsA64 + savingsA65 + employmentlengthA71 +
## employmentlengthA72 + employmentlengthA73 + employmentlengthA74 +
## employmentlengthA75 + installmentrate + marriagesexA91 +
## marriagesexA92 + marriagesexA93 + marriagesexA94 + otherdebtorsA101 +
## otherdebtorsA102 + otherdebtorsA103 + presentresidencelength +
## propertyA121 + propertyA122 + propertyA123 + propertyA124 +
## age + otherinstallmentplansA141 + otherinstallmentplansA142 +
## otherinstallmentplansA143 + housingA151 + housingA152 + existingcredits +
## jobA171 + jobA172 + jobA173 + peopleliableno + telephone +
## foreignworker
##
##
## Step: AIC=1048.99
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + existingcheckingstatusA14 + duration +
## credithistoryA30 + credithistoryA31 + credithistoryA32 +
## credithistoryA33 + credithistoryA34 + purposeA40 + purposeA41 +
## purposeA410 + purposeA42 + purposeA43 + purposeA44 + purposeA45 +
## purposeA46 + purposeA48 + purposeA49 + creditamount + savingsA61 +
## savingsA62 + savingsA63 + savingsA64 + savingsA65 + employmentlengthA71 +
## employmentlengthA72 + employmentlengthA73 + employmentlengthA74 +
## employmentlengthA75 + installmentrate + marriagesexA91 +
## marriagesexA92 + marriagesexA93 + marriagesexA94 + otherdebtorsA101 +
## otherdebtorsA102 + otherdebtorsA103 + presentresidencelength +
## propertyA121 + propertyA122 + propertyA123 + propertyA124 +
## age + otherinstallmentplansA141 + otherinstallmentplansA142 +
## housingA151 + housingA152 + existingcredits + jobA171 + jobA172 +
## jobA173 + peopleliableno + telephone + foreignworker
##
##
## Step: AIC=1048.99
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + existingcheckingstatusA14 + duration +
## credithistoryA30 + credithistoryA31 + credithistoryA32 +
## credithistoryA33 + credithistoryA34 + purposeA40 + purposeA41 +
## purposeA410 + purposeA42 + purposeA43 + purposeA44 + purposeA45 +
## purposeA46 + purposeA48 + purposeA49 + creditamount + savingsA61 +
## savingsA62 + savingsA63 + savingsA64 + savingsA65 + employmentlengthA71 +
## employmentlengthA72 + employmentlengthA73 + employmentlengthA74 +
## employmentlengthA75 + installmentrate + marriagesexA91 +
## marriagesexA92 + marriagesexA93 + marriagesexA94 + otherdebtorsA101 +
## otherdebtorsA102 + otherdebtorsA103 + presentresidencelength +
## propertyA121 + propertyA122 + propertyA123 + age + otherinstallmentplansA141 +
## otherinstallmentplansA142 + housingA151 + housingA152 + existingcredits +
## jobA171 + jobA172 + jobA173 + peopleliableno + telephone +
## foreignworker
##
##
## Step: AIC=1048.99
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + existingcheckingstatusA14 + duration +
## credithistoryA30 + credithistoryA31 + credithistoryA32 +
## credithistoryA33 + credithistoryA34 + purposeA40 + purposeA41 +
## purposeA410 + purposeA42 + purposeA43 + purposeA44 + purposeA45 +
## purposeA46 + purposeA48 + purposeA49 + creditamount + savingsA61 +
## savingsA62 + savingsA63 + savingsA64 + savingsA65 + employmentlengthA71 +
## employmentlengthA72 + employmentlengthA73 + employmentlengthA74 +
## employmentlengthA75 + installmentrate + marriagesexA91 +
## marriagesexA92 + marriagesexA93 + marriagesexA94 + otherdebtorsA101 +
## otherdebtorsA102 + presentresidencelength + propertyA121 +
## propertyA122 + propertyA123 + age + otherinstallmentplansA141 +
## otherinstallmentplansA142 + housingA151 + housingA152 + existingcredits +
## jobA171 + jobA172 + jobA173 + peopleliableno + telephone +
## foreignworker
##
##
## Step: AIC=1048.99
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + existingcheckingstatusA14 + duration +
## credithistoryA30 + credithistoryA31 + credithistoryA32 +
## credithistoryA33 + credithistoryA34 + purposeA40 + purposeA41 +
## purposeA410 + purposeA42 + purposeA43 + purposeA44 + purposeA45 +
## purposeA46 + purposeA48 + purposeA49 + creditamount + savingsA61 +
## savingsA62 + savingsA63 + savingsA64 + savingsA65 + employmentlengthA71 +
## employmentlengthA72 + employmentlengthA73 + employmentlengthA74 +
## employmentlengthA75 + installmentrate + marriagesexA91 +
## marriagesexA92 + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
## presentresidencelength + propertyA121 + propertyA122 + propertyA123 +
## age + otherinstallmentplansA141 + otherinstallmentplansA142 +
## housingA151 + housingA152 + existingcredits + jobA171 + jobA172 +
## jobA173 + peopleliableno + telephone + foreignworker
##
##
## Step: AIC=1048.99
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + existingcheckingstatusA14 + duration +
## credithistoryA30 + credithistoryA31 + credithistoryA32 +
## credithistoryA33 + credithistoryA34 + purposeA40 + purposeA41 +
## purposeA410 + purposeA42 + purposeA43 + purposeA44 + purposeA45 +
## purposeA46 + purposeA48 + purposeA49 + creditamount + savingsA61 +
## savingsA62 + savingsA63 + savingsA64 + savingsA65 + employmentlengthA71 +
## employmentlengthA72 + employmentlengthA73 + employmentlengthA74 +
## installmentrate + marriagesexA91 + marriagesexA92 + marriagesexA93 +
## otherdebtorsA101 + otherdebtorsA102 + presentresidencelength +
## propertyA121 + propertyA122 + propertyA123 + age + otherinstallmentplansA141 +
## otherinstallmentplansA142 + housingA151 + housingA152 + existingcredits +
## jobA171 + jobA172 + jobA173 + peopleliableno + telephone +
## foreignworker
##
##
## Step: AIC=1048.99
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + existingcheckingstatusA14 + duration +
## credithistoryA30 + credithistoryA31 + credithistoryA32 +
## credithistoryA33 + credithistoryA34 + purposeA40 + purposeA41 +
## purposeA410 + purposeA42 + purposeA43 + purposeA44 + purposeA45 +
## purposeA46 + purposeA48 + purposeA49 + creditamount + savingsA61 +
## savingsA62 + savingsA63 + savingsA64 + employmentlengthA71 +
## employmentlengthA72 + employmentlengthA73 + employmentlengthA74 +
## installmentrate + marriagesexA91 + marriagesexA92 + marriagesexA93 +
## otherdebtorsA101 + otherdebtorsA102 + presentresidencelength +
## propertyA121 + propertyA122 + propertyA123 + age + otherinstallmentplansA141 +
## otherinstallmentplansA142 + housingA151 + housingA152 + existingcredits +
## jobA171 + jobA172 + jobA173 + peopleliableno + telephone +
## foreignworker
##
##
## Step: AIC=1048.99
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + existingcheckingstatusA14 + duration +
## credithistoryA30 + credithistoryA31 + credithistoryA32 +
## credithistoryA33 + credithistoryA34 + purposeA40 + purposeA41 +
## purposeA410 + purposeA42 + purposeA43 + purposeA44 + purposeA45 +
## purposeA46 + purposeA48 + creditamount + savingsA61 + savingsA62 +
## savingsA63 + savingsA64 + employmentlengthA71 + employmentlengthA72 +
## employmentlengthA73 + employmentlengthA74 + installmentrate +
## marriagesexA91 + marriagesexA92 + marriagesexA93 + otherdebtorsA101 +
## otherdebtorsA102 + presentresidencelength + propertyA121 +
## propertyA122 + propertyA123 + age + otherinstallmentplansA141 +
## otherinstallmentplansA142 + housingA151 + housingA152 + existingcredits +
## jobA171 + jobA172 + jobA173 + peopleliableno + telephone +
## foreignworker
##
##
## Step: AIC=1048.99
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + existingcheckingstatusA14 + duration +
## credithistoryA30 + credithistoryA31 + credithistoryA32 +
## credithistoryA33 + purposeA40 + purposeA41 + purposeA410 +
## purposeA42 + purposeA43 + purposeA44 + purposeA45 + purposeA46 +
## purposeA48 + creditamount + savingsA61 + savingsA62 + savingsA63 +
## savingsA64 + employmentlengthA71 + employmentlengthA72 +
## employmentlengthA73 + employmentlengthA74 + installmentrate +
## marriagesexA91 + marriagesexA92 + marriagesexA93 + otherdebtorsA101 +
## otherdebtorsA102 + presentresidencelength + propertyA121 +
## propertyA122 + propertyA123 + age + otherinstallmentplansA141 +
## otherinstallmentplansA142 + housingA151 + housingA152 + existingcredits +
## jobA171 + jobA172 + jobA173 + peopleliableno + telephone +
## foreignworker
##
##
## Step: AIC=1048.99
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA410 + purposeA42 + purposeA43 +
## purposeA44 + purposeA45 + purposeA46 + purposeA48 + creditamount +
## savingsA61 + savingsA62 + savingsA63 + savingsA64 + employmentlengthA71 +
## employmentlengthA72 + employmentlengthA73 + employmentlengthA74 +
## installmentrate + marriagesexA91 + marriagesexA92 + marriagesexA93 +
## otherdebtorsA101 + otherdebtorsA102 + presentresidencelength +
## propertyA121 + propertyA122 + propertyA123 + age + otherinstallmentplansA141 +
## otherinstallmentplansA142 + housingA151 + housingA152 + existingcredits +
## jobA171 + jobA172 + jobA173 + peopleliableno + telephone +
## foreignworker
##
## Df Deviance AIC
## - presentresidencelength 1 151.24 1047.0
## - jobA172 1 151.24 1047.0
## - jobA173 1 151.24 1047.0
## - purposeA42 1 151.24 1047.0
## - purposeA43 1 151.25 1047.1
## - purposeA44 1 151.26 1047.1
## - savingsA64 1 151.26 1047.1
## - marriagesexA92 1 151.29 1047.4
## - employmentlengthA73 1 151.30 1047.4
## - savingsA63 1 151.32 1047.5
## - jobA171 1 151.32 1047.5
## - housingA152 1 151.32 1047.5
## - employmentlengthA71 1 151.34 1047.6
## - purposeA410 1 151.34 1047.7
## - peopleliableno 1 151.35 1047.7
## - purposeA45 1 151.35 1047.7
## - marriagesexA93 1 151.37 1047.8
## - purposeA48 1 151.38 1047.9
## - employmentlengthA72 1 151.40 1048.1
## - marriagesexA91 1 151.44 1048.3
## - age 1 151.47 1048.5
## - otherinstallmentplansA142 1 151.49 1048.7
## - propertyA122 1 151.52 1048.8
## - credithistoryA33 1 151.53 1048.9
## - telephone 1 151.54 1049.0
## <none> 151.24 1049.0
## - existingcheckingstatusA13 1 151.57 1049.2
## - existingcredits 1 151.57 1049.2
## - savingsA62 1 151.58 1049.2
## - propertyA123 1 151.63 1049.6
## - employmentlengthA74 1 151.64 1049.6
## - housingA151 1 151.69 1049.9
## - creditamount 1 151.73 1050.2
## - purposeA41 1 151.81 1050.8
## - purposeA46 1 151.83 1050.9
## - propertyA121 1 151.87 1051.1
## - foreignworker 1 151.87 1051.1
## - otherinstallmentplansA141 1 151.93 1051.6
## - purposeA40 1 152.12 1052.8
## - otherdebtorsA101 1 152.49 1055.2
## - otherdebtorsA102 1 152.52 1055.4
## - installmentrate 1 152.70 1056.6
## - credithistoryA32 1 152.90 1057.9
## - duration 1 153.12 1059.4
## - savingsA61 1 153.17 1059.7
## - credithistoryA30 1 153.41 1061.2
## - credithistoryA31 1 153.65 1062.8
## - existingcheckingstatusA12 1 156.54 1081.5
## - existingcheckingstatusA11 1 160.87 1108.7
##
## Step: AIC=1046.99
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA410 + purposeA42 + purposeA43 +
## purposeA44 + purposeA45 + purposeA46 + purposeA48 + creditamount +
## savingsA61 + savingsA62 + savingsA63 + savingsA64 + employmentlengthA71 +
## employmentlengthA72 + employmentlengthA73 + employmentlengthA74 +
## installmentrate + marriagesexA91 + marriagesexA92 + marriagesexA93 +
## otherdebtorsA101 + otherdebtorsA102 + propertyA121 + propertyA122 +
## propertyA123 + age + otherinstallmentplansA141 + otherinstallmentplansA142 +
## housingA151 + housingA152 + existingcredits + jobA171 + jobA172 +
## jobA173 + peopleliableno + telephone + foreignworker
##
## Df Deviance AIC
## - jobA172 1 151.24 1045.0
## - jobA173 1 151.24 1045.0
## - purposeA42 1 151.24 1045.0
## - purposeA43 1 151.25 1045.1
## - purposeA44 1 151.26 1045.1
## - savingsA64 1 151.26 1045.1
## - marriagesexA92 1 151.30 1045.4
## - employmentlengthA73 1 151.30 1045.4
## - savingsA63 1 151.32 1045.5
## - jobA171 1 151.32 1045.5
## - housingA152 1 151.32 1045.5
## - employmentlengthA71 1 151.34 1045.6
## - purposeA410 1 151.34 1045.7
## - peopleliableno 1 151.35 1045.7
## - purposeA45 1 151.35 1045.8
## - marriagesexA93 1 151.37 1045.8
## - purposeA48 1 151.38 1045.9
## - employmentlengthA72 1 151.41 1046.1
## - marriagesexA91 1 151.44 1046.3
## - age 1 151.47 1046.5
## - otherinstallmentplansA142 1 151.49 1046.7
## - propertyA122 1 151.52 1046.8
## - credithistoryA33 1 151.53 1046.9
## <none> 151.24 1047.0
## - telephone 1 151.54 1047.0
## - existingcheckingstatusA13 1 151.57 1047.2
## - existingcredits 1 151.57 1047.2
## - savingsA62 1 151.58 1047.2
## - propertyA123 1 151.63 1047.6
## - employmentlengthA74 1 151.65 1047.7
## - housingA151 1 151.69 1047.9
## - creditamount 1 151.73 1048.2
## - purposeA41 1 151.82 1048.8
## - purposeA46 1 151.83 1048.9
## - propertyA121 1 151.87 1049.1
## - foreignworker 1 151.87 1049.1
## - otherinstallmentplansA141 1 151.93 1049.6
## - purposeA40 1 152.12 1050.8
## - otherdebtorsA101 1 152.49 1053.2
## - otherdebtorsA102 1 152.52 1053.4
## - installmentrate 1 152.70 1054.6
## - credithistoryA32 1 152.90 1055.9
## - duration 1 153.13 1057.4
## - savingsA61 1 153.17 1057.7
## - credithistoryA30 1 153.41 1059.2
## - credithistoryA31 1 153.65 1060.8
## - existingcheckingstatusA12 1 156.54 1079.5
## - existingcheckingstatusA11 1 160.91 1107.0
##
## Step: AIC=1044.99
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA410 + purposeA42 + purposeA43 +
## purposeA44 + purposeA45 + purposeA46 + purposeA48 + creditamount +
## savingsA61 + savingsA62 + savingsA63 + savingsA64 + employmentlengthA71 +
## employmentlengthA72 + employmentlengthA73 + employmentlengthA74 +
## installmentrate + marriagesexA91 + marriagesexA92 + marriagesexA93 +
## otherdebtorsA101 + otherdebtorsA102 + propertyA121 + propertyA122 +
## propertyA123 + age + otherinstallmentplansA141 + otherinstallmentplansA142 +
## housingA151 + housingA152 + existingcredits + jobA171 + jobA173 +
## peopleliableno + telephone + foreignworker
##
## Df Deviance AIC
## - purposeA42 1 151.24 1043.0
## - purposeA43 1 151.25 1043.1
## - jobA173 1 151.25 1043.1
## - purposeA44 1 151.26 1043.1
## - savingsA64 1 151.26 1043.1
## - marriagesexA92 1 151.30 1043.4
## - employmentlengthA73 1 151.30 1043.4
## - savingsA63 1 151.32 1043.5
## - jobA171 1 151.32 1043.5
## - housingA152 1 151.32 1043.5
## - employmentlengthA71 1 151.34 1043.7
## - purposeA410 1 151.34 1043.7
## - peopleliableno 1 151.35 1043.7
## - purposeA45 1 151.35 1043.8
## - marriagesexA93 1 151.37 1043.8
## - purposeA48 1 151.38 1043.9
## - employmentlengthA72 1 151.41 1044.1
## - marriagesexA91 1 151.44 1044.3
## - age 1 151.48 1044.5
## - otherinstallmentplansA142 1 151.49 1044.7
## - propertyA122 1 151.52 1044.8
## - credithistoryA33 1 151.53 1044.9
## <none> 151.24 1045.0
## - telephone 1 151.57 1045.2
## - existingcredits 1 151.57 1045.2
## - existingcheckingstatusA13 1 151.58 1045.2
## - savingsA62 1 151.58 1045.2
## - propertyA123 1 151.63 1045.6
## - employmentlengthA74 1 151.65 1045.7
## - housingA151 1 151.69 1045.9
## - creditamount 1 151.76 1046.4
## - purposeA41 1 151.82 1046.8
## - purposeA46 1 151.83 1046.9
## - foreignworker 1 151.87 1047.1
## - propertyA121 1 151.88 1047.2
## - otherinstallmentplansA141 1 151.94 1047.6
## - purposeA40 1 152.13 1048.8
## - otherdebtorsA101 1 152.50 1051.3
## - otherdebtorsA102 1 152.52 1051.4
## - installmentrate 1 152.75 1052.9
## - credithistoryA32 1 152.90 1053.9
## - duration 1 153.13 1055.4
## - savingsA61 1 153.19 1055.8
## - credithistoryA30 1 153.41 1057.2
## - credithistoryA31 1 153.65 1058.8
## - existingcheckingstatusA12 1 156.54 1077.5
## - existingcheckingstatusA11 1 160.92 1105.0
##
## Step: AIC=1043.01
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA410 + purposeA43 + purposeA44 +
## purposeA45 + purposeA46 + purposeA48 + creditamount + savingsA61 +
## savingsA62 + savingsA63 + savingsA64 + employmentlengthA71 +
## employmentlengthA72 + employmentlengthA73 + employmentlengthA74 +
## installmentrate + marriagesexA91 + marriagesexA92 + marriagesexA93 +
## otherdebtorsA101 + otherdebtorsA102 + propertyA121 + propertyA122 +
## propertyA123 + age + otherinstallmentplansA141 + otherinstallmentplansA142 +
## housingA151 + housingA152 + existingcredits + jobA171 + jobA173 +
## peopleliableno + telephone + foreignworker
##
## Df Deviance AIC
## - purposeA43 1 151.25 1041.1
## - jobA173 1 151.26 1041.1
## - savingsA64 1 151.27 1041.2
## - purposeA44 1 151.27 1041.2
## - marriagesexA92 1 151.30 1041.4
## - employmentlengthA73 1 151.30 1041.4
## - savingsA63 1 151.32 1041.5
## - jobA171 1 151.32 1041.5
## - housingA152 1 151.33 1041.6
## - purposeA410 1 151.35 1041.7
## - employmentlengthA71 1 151.35 1041.7
## - peopleliableno 1 151.35 1041.8
## - marriagesexA93 1 151.37 1041.9
## - purposeA48 1 151.38 1041.9
## - purposeA45 1 151.39 1042.0
## - employmentlengthA72 1 151.41 1042.1
## - marriagesexA91 1 151.44 1042.3
## - age 1 151.48 1042.5
## - otherinstallmentplansA142 1 151.50 1042.7
## - propertyA122 1 151.53 1042.9
## <none> 151.24 1043.0
## - credithistoryA33 1 151.55 1043.0
## - telephone 1 151.57 1043.2
## - existingcheckingstatusA13 1 151.58 1043.2
## - existingcredits 1 151.58 1043.3
## - savingsA62 1 151.59 1043.3
## - propertyA123 1 151.64 1043.6
## - employmentlengthA74 1 151.66 1043.7
## - housingA151 1 151.69 1044.0
## - creditamount 1 151.76 1044.4
## - foreignworker 1 151.87 1045.2
## - propertyA121 1 151.88 1045.2
## - otherinstallmentplansA141 1 151.94 1045.6
## - purposeA41 1 152.04 1046.2
## - purposeA46 1 152.09 1046.6
## - otherdebtorsA101 1 152.50 1049.3
## - otherdebtorsA102 1 152.52 1049.4
## - installmentrate 1 152.75 1050.9
## - credithistoryA32 1 152.91 1052.0
## - purposeA40 1 153.10 1053.2
## - duration 1 153.18 1053.7
## - savingsA61 1 153.19 1053.8
## - credithistoryA30 1 153.49 1055.7
## - credithistoryA31 1 153.67 1056.9
## - existingcheckingstatusA12 1 156.56 1075.6
## - existingcheckingstatusA11 1 160.96 1103.3
##
## Step: AIC=1041.07
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA410 + purposeA44 + purposeA45 +
## purposeA46 + purposeA48 + creditamount + savingsA61 + savingsA62 +
## savingsA63 + savingsA64 + employmentlengthA71 + employmentlengthA72 +
## employmentlengthA73 + employmentlengthA74 + installmentrate +
## marriagesexA91 + marriagesexA92 + marriagesexA93 + otherdebtorsA101 +
## otherdebtorsA102 + propertyA121 + propertyA122 + propertyA123 +
## age + otherinstallmentplansA141 + otherinstallmentplansA142 +
## housingA151 + housingA152 + existingcredits + jobA171 + jobA173 +
## peopleliableno + telephone + foreignworker
##
## Df Deviance AIC
## - jobA173 1 151.27 1039.2
## - savingsA64 1 151.27 1039.2
## - purposeA44 1 151.28 1039.3
## - marriagesexA92 1 151.31 1039.5
## - employmentlengthA73 1 151.31 1039.5
## - savingsA63 1 151.33 1039.6
## - jobA171 1 151.33 1039.6
## - housingA152 1 151.34 1039.6
## - purposeA410 1 151.35 1039.7
## - employmentlengthA71 1 151.36 1039.8
## - peopleliableno 1 151.36 1039.8
## - marriagesexA93 1 151.38 1039.9
## - purposeA48 1 151.38 1039.9
## - purposeA45 1 151.42 1040.2
## - employmentlengthA72 1 151.42 1040.2
## - marriagesexA91 1 151.47 1040.5
## - age 1 151.49 1040.6
## - otherinstallmentplansA142 1 151.51 1040.8
## - propertyA122 1 151.53 1040.9
## <none> 151.25 1041.1
## - credithistoryA33 1 151.56 1041.1
## - telephone 1 151.57 1041.2
## - existingcheckingstatusA13 1 151.59 1041.3
## - existingcredits 1 151.59 1041.3
## - savingsA62 1 151.60 1041.4
## - propertyA123 1 151.65 1041.7
## - employmentlengthA74 1 151.66 1041.8
## - housingA151 1 151.71 1042.1
## - creditamount 1 151.77 1042.5
## - foreignworker 1 151.88 1043.2
## - propertyA121 1 151.89 1043.3
## - otherinstallmentplansA141 1 151.96 1043.7
## - purposeA41 1 152.08 1044.5
## - purposeA46 1 152.22 1045.5
## - otherdebtorsA101 1 152.55 1047.6
## - otherdebtorsA102 1 152.56 1047.6
## - installmentrate 1 152.75 1048.9
## - credithistoryA32 1 152.91 1050.0
## - duration 1 153.19 1051.8
## - savingsA61 1 153.22 1052.0
## - credithistoryA30 1 153.54 1054.0
## - credithistoryA31 1 153.69 1055.0
## - purposeA40 1 153.83 1056.0
## - existingcheckingstatusA12 1 156.59 1073.7
## - existingcheckingstatusA11 1 161.07 1102.0
##
## Step: AIC=1039.16
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA410 + purposeA44 + purposeA45 +
## purposeA46 + purposeA48 + creditamount + savingsA61 + savingsA62 +
## savingsA63 + savingsA64 + employmentlengthA71 + employmentlengthA72 +
## employmentlengthA73 + employmentlengthA74 + installmentrate +
## marriagesexA91 + marriagesexA92 + marriagesexA93 + otherdebtorsA101 +
## otherdebtorsA102 + propertyA121 + propertyA122 + propertyA123 +
## age + otherinstallmentplansA141 + otherinstallmentplansA142 +
## housingA151 + housingA152 + existingcredits + jobA171 + peopleliableno +
## telephone + foreignworker
##
## Df Deviance AIC
## - savingsA64 1 151.29 1037.3
## - purposeA44 1 151.30 1037.4
## - marriagesexA92 1 151.32 1037.5
## - employmentlengthA73 1 151.33 1037.6
## - savingsA63 1 151.34 1037.7
## - housingA152 1 151.35 1037.7
## - jobA171 1 151.36 1037.8
## - employmentlengthA71 1 151.36 1037.8
## - peopleliableno 1 151.37 1037.8
## - purposeA410 1 151.37 1037.8
## - marriagesexA93 1 151.39 1038.0
## - purposeA48 1 151.40 1038.1
## - purposeA45 1 151.43 1038.3
## - employmentlengthA72 1 151.44 1038.3
## - marriagesexA91 1 151.48 1038.6
## - age 1 151.52 1038.8
## - otherinstallmentplansA142 1 151.52 1038.8
## - propertyA122 1 151.54 1039.0
## <none> 151.27 1039.2
## - credithistoryA33 1 151.57 1039.2
## - telephone 1 151.59 1039.3
## - existingcheckingstatusA13 1 151.59 1039.3
## - savingsA62 1 151.61 1039.4
## - existingcredits 1 151.61 1039.4
## - propertyA123 1 151.66 1039.7
## - employmentlengthA74 1 151.68 1039.9
## - housingA151 1 151.71 1040.1
## - creditamount 1 151.78 1040.5
## - foreignworker 1 151.90 1041.3
## - propertyA121 1 151.91 1041.4
## - otherinstallmentplansA141 1 151.96 1041.8
## - purposeA41 1 152.11 1042.7
## - purposeA46 1 152.24 1043.5
## - otherdebtorsA101 1 152.55 1045.6
## - otherdebtorsA102 1 152.57 1045.7
## - installmentrate 1 152.75 1046.9
## - credithistoryA32 1 152.93 1048.1
## - savingsA61 1 153.22 1050.0
## - duration 1 153.26 1050.3
## - credithistoryA30 1 153.56 1052.2
## - credithistoryA31 1 153.69 1053.1
## - purposeA40 1 153.84 1054.0
## - existingcheckingstatusA12 1 156.59 1071.7
## - existingcheckingstatusA11 1 161.07 1100.0
##
## Step: AIC=1037.29
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA410 + purposeA44 + purposeA45 +
## purposeA46 + purposeA48 + creditamount + savingsA61 + savingsA62 +
## savingsA63 + employmentlengthA71 + employmentlengthA72 +
## employmentlengthA73 + employmentlengthA74 + installmentrate +
## marriagesexA91 + marriagesexA92 + marriagesexA93 + otherdebtorsA101 +
## otherdebtorsA102 + propertyA121 + propertyA122 + propertyA123 +
## age + otherinstallmentplansA141 + otherinstallmentplansA142 +
## housingA151 + housingA152 + existingcredits + jobA171 + peopleliableno +
## telephone + foreignworker
##
## Df Deviance AIC
## - purposeA44 1 151.32 1035.5
## - marriagesexA92 1 151.34 1035.7
## - employmentlengthA73 1 151.34 1035.7
## - housingA152 1 151.37 1035.8
## - jobA171 1 151.38 1035.9
## - employmentlengthA71 1 151.38 1036.0
## - savingsA63 1 151.39 1036.0
## - purposeA410 1 151.39 1036.0
## - peopleliableno 1 151.39 1036.0
## - marriagesexA93 1 151.41 1036.1
## - purposeA48 1 151.42 1036.2
## - purposeA45 1 151.45 1036.4
## - employmentlengthA72 1 151.45 1036.4
## - marriagesexA91 1 151.49 1036.7
## - otherinstallmentplansA142 1 151.53 1036.9
## - age 1 151.54 1037.0
## - propertyA122 1 151.56 1037.1
## <none> 151.29 1037.3
## - credithistoryA33 1 151.60 1037.3
## - telephone 1 151.61 1037.4
## - existingcheckingstatusA13 1 151.61 1037.5
## - existingcredits 1 151.62 1037.5
## - propertyA123 1 151.67 1037.8
## - employmentlengthA74 1 151.70 1038.0
## - savingsA62 1 151.71 1038.1
## - housingA151 1 151.73 1038.2
## - creditamount 1 151.81 1038.7
## - foreignworker 1 151.92 1039.5
## - propertyA121 1 151.93 1039.5
## - otherinstallmentplansA141 1 151.98 1039.9
## - purposeA41 1 152.13 1040.9
## - purposeA46 1 152.26 1041.7
## - otherdebtorsA101 1 152.56 1043.7
## - otherdebtorsA102 1 152.58 1043.8
## - installmentrate 1 152.77 1045.0
## - credithistoryA32 1 152.96 1046.3
## - duration 1 153.28 1048.4
## - credithistoryA30 1 153.60 1050.5
## - credithistoryA31 1 153.71 1051.2
## - savingsA61 1 153.78 1051.6
## - purposeA40 1 153.86 1052.2
## - existingcheckingstatusA12 1 156.59 1069.8
## - existingcheckingstatusA11 1 161.09 1098.1
##
## Step: AIC=1035.52
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA410 + purposeA45 + purposeA46 +
## purposeA48 + creditamount + savingsA61 + savingsA62 + savingsA63 +
## employmentlengthA71 + employmentlengthA72 + employmentlengthA73 +
## employmentlengthA74 + installmentrate + marriagesexA91 +
## marriagesexA92 + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
## propertyA121 + propertyA122 + propertyA123 + age + otherinstallmentplansA141 +
## otherinstallmentplansA142 + housingA151 + housingA152 + existingcredits +
## jobA171 + peopleliableno + telephone + foreignworker
##
## Df Deviance AIC
## - marriagesexA92 1 151.38 1033.9
## - employmentlengthA73 1 151.38 1033.9
## - housingA152 1 151.40 1034.1
## - jobA171 1 151.41 1034.1
## - peopleliableno 1 151.42 1034.2
## - employmentlengthA71 1 151.42 1034.2
## - purposeA410 1 151.43 1034.2
## - savingsA63 1 151.43 1034.2
## - marriagesexA93 1 151.44 1034.3
## - purposeA48 1 151.46 1034.4
## - purposeA45 1 151.48 1034.6
## - employmentlengthA72 1 151.50 1034.7
## - marriagesexA91 1 151.53 1034.9
## - otherinstallmentplansA142 1 151.56 1035.1
## - age 1 151.57 1035.2
## - propertyA122 1 151.60 1035.3
## <none> 151.32 1035.5
## - credithistoryA33 1 151.63 1035.6
## - telephone 1 151.64 1035.7
## - existingcheckingstatusA13 1 151.65 1035.7
## - existingcredits 1 151.66 1035.7
## - propertyA123 1 151.71 1036.1
## - employmentlengthA74 1 151.72 1036.2
## - savingsA62 1 151.74 1036.3
## - housingA151 1 151.77 1036.5
## - creditamount 1 151.83 1036.9
## - foreignworker 1 151.96 1037.8
## - propertyA121 1 151.97 1037.8
## - otherinstallmentplansA141 1 152.01 1038.1
## - purposeA41 1 152.18 1039.2
## - purposeA46 1 152.28 1039.8
## - otherdebtorsA101 1 152.61 1042.0
## - otherdebtorsA102 1 152.61 1042.0
## - installmentrate 1 152.80 1043.3
## - credithistoryA32 1 153.01 1044.6
## - duration 1 153.32 1046.7
## - credithistoryA30 1 153.63 1048.7
## - credithistoryA31 1 153.76 1049.5
## - savingsA61 1 153.80 1049.8
## - purposeA40 1 153.86 1050.2
## - existingcheckingstatusA12 1 156.62 1067.9
## - existingcheckingstatusA11 1 161.19 1096.7
##
## Step: AIC=1033.91
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA410 + purposeA45 + purposeA46 +
## purposeA48 + creditamount + savingsA61 + savingsA62 + savingsA63 +
## employmentlengthA71 + employmentlengthA72 + employmentlengthA73 +
## employmentlengthA74 + installmentrate + marriagesexA91 +
## marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 + propertyA121 +
## propertyA122 + propertyA123 + age + otherinstallmentplansA141 +
## otherinstallmentplansA142 + housingA151 + housingA152 + existingcredits +
## jobA171 + peopleliableno + telephone + foreignworker
##
## Df Deviance AIC
## - employmentlengthA73 1 151.44 1032.3
## - jobA171 1 151.46 1032.5
## - housingA152 1 151.47 1032.5
## - purposeA410 1 151.48 1032.6
## - savingsA63 1 151.48 1032.6
## - peopleliableno 1 151.48 1032.6
## - employmentlengthA71 1 151.48 1032.6
## - purposeA48 1 151.53 1032.9
## - marriagesexA91 1 151.53 1032.9
## - purposeA45 1 151.54 1032.9
## - employmentlengthA72 1 151.56 1033.1
## - age 1 151.61 1033.5
## - otherinstallmentplansA142 1 151.62 1033.5
## - propertyA122 1 151.66 1033.8
## - credithistoryA33 1 151.68 1033.9
## <none> 151.38 1033.9
## - existingcredits 1 151.71 1034.1
## - existingcheckingstatusA13 1 151.71 1034.1
## - telephone 1 151.72 1034.1
## - propertyA123 1 151.78 1034.5
## - employmentlengthA74 1 151.78 1034.6
## - savingsA62 1 151.79 1034.6
## - housingA151 1 151.84 1034.9
## - creditamount 1 151.91 1035.4
## - propertyA121 1 152.05 1036.3
## - foreignworker 1 152.05 1036.3
## - otherinstallmentplansA141 1 152.06 1036.4
## - marriagesexA93 1 152.12 1036.8
## - purposeA41 1 152.25 1037.6
## - purposeA46 1 152.37 1038.4
## - otherdebtorsA101 1 152.68 1040.4
## - otherdebtorsA102 1 152.68 1040.5
## - installmentrate 1 152.85 1041.6
## - credithistoryA32 1 153.05 1042.9
## - duration 1 153.38 1045.0
## - credithistoryA30 1 153.70 1047.1
## - credithistoryA31 1 153.84 1048.0
## - savingsA61 1 153.84 1048.0
## - purposeA40 1 153.93 1048.6
## - existingcheckingstatusA12 1 156.63 1066.0
## - existingcheckingstatusA11 1 161.25 1095.0
##
## Step: AIC=1032.33
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA410 + purposeA45 + purposeA46 +
## purposeA48 + creditamount + savingsA61 + savingsA62 + savingsA63 +
## employmentlengthA71 + employmentlengthA72 + employmentlengthA74 +
## installmentrate + marriagesexA91 + marriagesexA93 + otherdebtorsA101 +
## otherdebtorsA102 + propertyA121 + propertyA122 + propertyA123 +
## age + otherinstallmentplansA141 + otherinstallmentplansA142 +
## housingA151 + housingA152 + existingcredits + jobA171 + peopleliableno +
## telephone + foreignworker
##
## Df Deviance AIC
## - employmentlengthA71 1 151.51 1030.8
## - jobA171 1 151.53 1030.9
## - housingA152 1 151.53 1030.9
## - peopleliableno 1 151.54 1031.0
## - purposeA410 1 151.54 1031.0
## - savingsA63 1 151.55 1031.0
## - employmentlengthA72 1 151.56 1031.1
## - purposeA48 1 151.59 1031.3
## - marriagesexA91 1 151.59 1031.3
## - purposeA45 1 151.60 1031.4
## - otherinstallmentplansA142 1 151.69 1032.0
## - propertyA122 1 151.71 1032.1
## <none> 151.44 1032.3
## - existingcredits 1 151.76 1032.4
## - credithistoryA33 1 151.76 1032.5
## - existingcheckingstatusA13 1 151.77 1032.5
## - age 1 151.78 1032.5
## - telephone 1 151.79 1032.6
## - propertyA123 1 151.83 1032.9
## - savingsA62 1 151.86 1033.1
## - housingA151 1 151.89 1033.3
## - creditamount 1 151.98 1033.9
## - propertyA121 1 152.08 1034.5
## - foreignworker 1 152.10 1034.6
## - otherinstallmentplansA141 1 152.10 1034.7
## - marriagesexA93 1 152.21 1035.4
## - employmentlengthA74 1 152.27 1035.8
## - purposeA41 1 152.32 1036.1
## - purposeA46 1 152.46 1037.0
## - otherdebtorsA101 1 152.72 1038.7
## - otherdebtorsA102 1 152.72 1038.7
## - installmentrate 1 152.88 1039.8
## - credithistoryA32 1 153.15 1041.5
## - duration 1 153.43 1043.4
## - credithistoryA30 1 153.82 1045.9
## - credithistoryA31 1 153.95 1046.8
## - savingsA61 1 153.96 1046.8
## - purposeA40 1 154.01 1047.2
## - existingcheckingstatusA12 1 156.68 1064.3
## - existingcheckingstatusA11 1 161.29 1093.3
##
## Step: AIC=1030.77
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA410 + purposeA45 + purposeA46 +
## purposeA48 + creditamount + savingsA61 + savingsA62 + savingsA63 +
## employmentlengthA72 + employmentlengthA74 + installmentrate +
## marriagesexA91 + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
## propertyA121 + propertyA122 + propertyA123 + age + otherinstallmentplansA141 +
## otherinstallmentplansA142 + housingA151 + housingA152 + existingcredits +
## jobA171 + peopleliableno + telephone + foreignworker
##
## Df Deviance AIC
## - jobA171 1 151.55 1029.0
## - housingA152 1 151.59 1029.3
## - purposeA410 1 151.60 1029.4
## - peopleliableno 1 151.60 1029.4
## - employmentlengthA72 1 151.61 1029.4
## - savingsA63 1 151.61 1029.5
## - purposeA48 1 151.65 1029.7
## - marriagesexA91 1 151.66 1029.8
## - purposeA45 1 151.67 1029.9
## - propertyA122 1 151.77 1030.5
## - otherinstallmentplansA142 1 151.78 1030.5
## <none> 151.51 1030.8
## - existingcredits 1 151.82 1030.8
## - existingcheckingstatusA13 1 151.82 1030.8
## - age 1 151.83 1030.9
## - credithistoryA33 1 151.83 1030.9
## - telephone 1 151.84 1030.9
## - propertyA123 1 151.90 1031.3
## - savingsA62 1 151.95 1031.7
## - housingA151 1 151.95 1031.7
## - creditamount 1 152.08 1032.5
## - propertyA121 1 152.16 1033.1
## - otherinstallmentplansA141 1 152.16 1033.1
## - foreignworker 1 152.19 1033.2
## - marriagesexA93 1 152.30 1034.0
## - purposeA41 1 152.37 1034.4
## - employmentlengthA74 1 152.41 1034.7
## - purposeA46 1 152.50 1035.3
## - otherdebtorsA101 1 152.81 1037.3
## - otherdebtorsA102 1 152.83 1037.5
## - installmentrate 1 152.95 1038.2
## - credithistoryA32 1 153.21 1039.9
## - duration 1 153.45 1041.5
## - credithistoryA30 1 153.85 1044.1
## - credithistoryA31 1 154.02 1045.2
## - savingsA61 1 154.09 1045.6
## - purposeA40 1 154.09 1045.7
## - existingcheckingstatusA12 1 156.82 1063.2
## - existingcheckingstatusA11 1 161.45 1092.3
##
## Step: AIC=1029.02
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA410 + purposeA45 + purposeA46 +
## purposeA48 + creditamount + savingsA61 + savingsA62 + savingsA63 +
## employmentlengthA72 + employmentlengthA74 + installmentrate +
## marriagesexA91 + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
## propertyA121 + propertyA122 + propertyA123 + age + otherinstallmentplansA141 +
## otherinstallmentplansA142 + housingA151 + housingA152 + existingcredits +
## peopleliableno + telephone + foreignworker
##
## Df Deviance AIC
## - housingA152 1 151.63 1027.6
## - purposeA410 1 151.64 1027.7
## - employmentlengthA72 1 151.64 1027.7
## - peopleliableno 1 151.64 1027.7
## - savingsA63 1 151.65 1027.7
## - purposeA48 1 151.69 1028.0
## - purposeA45 1 151.70 1028.0
## - marriagesexA91 1 151.71 1028.1
## - propertyA122 1 151.81 1028.7
## - otherinstallmentplansA142 1 151.82 1028.8
## - existingcheckingstatusA13 1 151.85 1029.0
## <none> 151.55 1029.0
## - existingcredits 1 151.85 1029.0
## - telephone 1 151.87 1029.2
## - credithistoryA33 1 151.88 1029.2
## - age 1 151.88 1029.2
## - propertyA123 1 151.93 1029.5
## - housingA151 1 151.99 1029.9
## - savingsA62 1 152.01 1030.0
## - creditamount 1 152.14 1030.9
## - propertyA121 1 152.19 1031.3
## - otherinstallmentplansA141 1 152.21 1031.4
## - foreignworker 1 152.23 1031.5
## - marriagesexA93 1 152.32 1032.1
## - purposeA41 1 152.41 1032.7
## - employmentlengthA74 1 152.43 1032.8
## - purposeA46 1 152.54 1033.6
## - otherdebtorsA101 1 152.83 1035.5
## - otherdebtorsA102 1 152.85 1035.6
## - installmentrate 1 153.05 1036.9
## - credithistoryA32 1 153.25 1038.2
## - duration 1 153.47 1039.7
## - credithistoryA30 1 153.90 1042.4
## - credithistoryA31 1 154.03 1043.2
## - purposeA40 1 154.10 1043.7
## - savingsA61 1 154.14 1044.0
## - existingcheckingstatusA12 1 156.82 1061.2
## - existingcheckingstatusA11 1 161.46 1090.4
##
## Step: AIC=1027.56
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA410 + purposeA45 + purposeA46 +
## purposeA48 + creditamount + savingsA61 + savingsA62 + savingsA63 +
## employmentlengthA72 + employmentlengthA74 + installmentrate +
## marriagesexA91 + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
## propertyA121 + propertyA122 + propertyA123 + age + otherinstallmentplansA141 +
## otherinstallmentplansA142 + housingA151 + existingcredits +
## peopleliableno + telephone + foreignworker
##
## Df Deviance AIC
## - peopleliableno 1 151.71 1026.1
## - savingsA63 1 151.73 1026.2
## - purposeA410 1 151.73 1026.2
## - employmentlengthA72 1 151.74 1026.3
## - purposeA48 1 151.77 1026.5
## - purposeA45 1 151.78 1026.6
## - marriagesexA91 1 151.80 1026.7
## - propertyA122 1 151.81 1026.8
## - otherinstallmentplansA142 1 151.91 1027.4
## - existingcheckingstatusA13 1 151.92 1027.5
## - existingcredits 1 151.93 1027.5
## <none> 151.63 1027.6
## - telephone 1 151.95 1027.6
## - credithistoryA33 1 151.95 1027.7
## - propertyA123 1 151.98 1027.9
## - age 1 152.00 1028.0
## - savingsA62 1 152.09 1028.6
## - creditamount 1 152.23 1029.5
## - foreignworker 1 152.30 1030.0
## - otherinstallmentplansA141 1 152.30 1030.0
## - propertyA121 1 152.32 1030.1
## - housingA151 1 152.34 1030.2
## - marriagesexA93 1 152.39 1030.6
## - employmentlengthA74 1 152.49 1031.2
## - purposeA41 1 152.55 1031.6
## - purposeA46 1 152.60 1032.0
## - otherdebtorsA101 1 152.90 1033.9
## - otherdebtorsA102 1 152.96 1034.3
## - installmentrate 1 153.14 1035.5
## - credithistoryA32 1 153.30 1036.5
## - duration 1 153.53 1038.0
## - credithistoryA30 1 153.97 1040.9
## - credithistoryA31 1 154.09 1041.7
## - purposeA40 1 154.15 1042.1
## - savingsA61 1 154.19 1042.3
## - existingcheckingstatusA12 1 156.89 1059.7
## - existingcheckingstatusA11 1 161.47 1088.4
##
## Step: AIC=1026.12
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA410 + purposeA45 + purposeA46 +
## purposeA48 + creditamount + savingsA61 + savingsA62 + savingsA63 +
## employmentlengthA72 + employmentlengthA74 + installmentrate +
## marriagesexA91 + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
## propertyA121 + propertyA122 + propertyA123 + age + otherinstallmentplansA141 +
## otherinstallmentplansA142 + housingA151 + existingcredits +
## telephone + foreignworker
##
## Df Deviance AIC
## - savingsA63 1 151.81 1024.8
## - purposeA410 1 151.81 1024.8
## - employmentlengthA72 1 151.83 1024.9
## - purposeA48 1 151.85 1025.0
## - purposeA45 1 151.88 1025.2
## - marriagesexA91 1 151.89 1025.2
## - propertyA122 1 151.91 1025.4
## - otherinstallmentplansA142 1 152.00 1026.0
## - existingcheckingstatusA13 1 152.00 1026.0
## <none> 151.71 1026.1
## - existingcredits 1 152.03 1026.2
## - telephone 1 152.04 1026.3
## - credithistoryA33 1 152.05 1026.3
## - age 1 152.08 1026.5
## - propertyA123 1 152.08 1026.5
## - savingsA62 1 152.18 1027.2
## - creditamount 1 152.30 1028.0
## - foreignworker 1 152.37 1028.4
## - marriagesexA93 1 152.40 1028.6
## - propertyA121 1 152.41 1028.7
## - otherinstallmentplansA141 1 152.41 1028.7
## - housingA151 1 152.42 1028.8
## - employmentlengthA74 1 152.57 1029.7
## - purposeA41 1 152.61 1030.0
## - purposeA46 1 152.73 1030.8
## - otherdebtorsA101 1 152.97 1032.3
## - otherdebtorsA102 1 153.02 1032.7
## - installmentrate 1 153.16 1033.6
## - credithistoryA32 1 153.41 1035.2
## - duration 1 153.60 1036.5
## - credithistoryA30 1 154.07 1039.5
## - credithistoryA31 1 154.25 1040.7
## - savingsA61 1 154.26 1040.7
## - purposeA40 1 154.35 1041.3
## - existingcheckingstatusA12 1 156.93 1057.9
## - existingcheckingstatusA11 1 161.64 1087.5
##
## Step: AIC=1024.75
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA410 + purposeA45 + purposeA46 +
## purposeA48 + creditamount + savingsA61 + savingsA62 + employmentlengthA72 +
## employmentlengthA74 + installmentrate + marriagesexA91 +
## marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 + propertyA121 +
## propertyA122 + propertyA123 + age + otherinstallmentplansA141 +
## otherinstallmentplansA142 + housingA151 + existingcredits +
## telephone + foreignworker
##
## Df Deviance AIC
## - purposeA410 1 151.91 1023.4
## - employmentlengthA72 1 151.92 1023.5
## - purposeA48 1 151.94 1023.6
## - purposeA45 1 151.98 1023.9
## - marriagesexA91 1 151.99 1023.9
## - propertyA122 1 152.01 1024.1
## - existingcheckingstatusA13 1 152.08 1024.5
## - otherinstallmentplansA142 1 152.09 1024.6
## - existingcredits 1 152.11 1024.7
## <none> 151.81 1024.8
## - telephone 1 152.14 1024.9
## - credithistoryA33 1 152.15 1025.0
## - age 1 152.17 1025.1
## - propertyA123 1 152.17 1025.2
## - savingsA62 1 152.19 1025.3
## - creditamount 1 152.36 1026.4
## - foreignworker 1 152.48 1027.2
## - marriagesexA93 1 152.48 1027.2
## - otherinstallmentplansA141 1 152.51 1027.3
## - propertyA121 1 152.53 1027.5
## - housingA151 1 152.53 1027.5
## - employmentlengthA74 1 152.68 1028.5
## - purposeA41 1 152.75 1028.9
## - purposeA46 1 152.80 1029.3
## - otherdebtorsA101 1 153.07 1031.0
## - otherdebtorsA102 1 153.10 1031.2
## - installmentrate 1 153.21 1031.9
## - credithistoryA32 1 153.50 1033.8
## - duration 1 153.72 1035.3
## - credithistoryA30 1 154.18 1038.2
## - savingsA61 1 154.35 1039.4
## - credithistoryA31 1 154.37 1039.5
## - purposeA40 1 154.42 1039.8
## - existingcheckingstatusA12 1 156.97 1056.2
## - existingcheckingstatusA11 1 161.69 1085.8
##
## Step: AIC=1023.43
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA45 + purposeA46 + purposeA48 +
## creditamount + savingsA61 + savingsA62 + employmentlengthA72 +
## employmentlengthA74 + installmentrate + marriagesexA91 +
## marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 + propertyA121 +
## propertyA122 + propertyA123 + age + otherinstallmentplansA141 +
## otherinstallmentplansA142 + housingA151 + existingcredits +
## telephone + foreignworker
##
## Df Deviance AIC
## - employmentlengthA72 1 152.03 1022.2
## - purposeA48 1 152.05 1022.3
## - purposeA45 1 152.09 1022.6
## - marriagesexA91 1 152.09 1022.6
## - propertyA122 1 152.11 1022.7
## - existingcheckingstatusA13 1 152.19 1023.2
## - otherinstallmentplansA142 1 152.19 1023.2
## - existingcredits 1 152.21 1023.4
## <none> 151.91 1023.4
## - credithistoryA33 1 152.24 1023.6
## - propertyA123 1 152.27 1023.8
## - telephone 1 152.28 1023.8
## - age 1 152.28 1023.9
## - savingsA62 1 152.29 1023.9
## - creditamount 1 152.44 1024.9
## - otherinstallmentplansA141 1 152.56 1025.7
## - marriagesexA93 1 152.57 1025.8
## - foreignworker 1 152.61 1026.0
## - propertyA121 1 152.62 1026.0
## - housingA151 1 152.66 1026.3
## - employmentlengthA74 1 152.75 1026.9
## - purposeA41 1 152.80 1027.3
## - purposeA46 1 152.94 1028.1
## - otherdebtorsA102 1 153.15 1029.5
## - otherdebtorsA101 1 153.18 1029.8
## - installmentrate 1 153.32 1030.7
## - credithistoryA32 1 153.60 1032.5
## - duration 1 153.82 1033.9
## - credithistoryA30 1 154.29 1036.9
## - savingsA61 1 154.44 1037.9
## - credithistoryA31 1 154.45 1038.0
## - purposeA40 1 154.64 1039.2
## - existingcheckingstatusA12 1 157.00 1054.3
## - existingcheckingstatusA11 1 161.72 1084.0
##
## Step: AIC=1022.22
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA45 + purposeA46 + purposeA48 +
## creditamount + savingsA61 + savingsA62 + employmentlengthA74 +
## installmentrate + marriagesexA91 + marriagesexA93 + otherdebtorsA101 +
## otherdebtorsA102 + propertyA121 + propertyA122 + propertyA123 +
## age + otherinstallmentplansA141 + otherinstallmentplansA142 +
## housingA151 + existingcredits + telephone + foreignworker
##
## Df Deviance AIC
## - purposeA48 1 152.17 1021.1
## - marriagesexA91 1 152.21 1021.4
## - propertyA122 1 152.21 1021.4
## - purposeA45 1 152.21 1021.4
## - otherinstallmentplansA142 1 152.32 1022.1
## - existingcredits 1 152.32 1022.1
## - existingcheckingstatusA13 1 152.33 1022.1
## <none> 152.03 1022.2
## - credithistoryA33 1 152.37 1022.4
## - propertyA123 1 152.40 1022.6
## - telephone 1 152.40 1022.7
## - savingsA62 1 152.41 1022.7
## - age 1 152.49 1023.2
## - creditamount 1 152.57 1023.8
## - otherinstallmentplansA141 1 152.69 1024.5
## - foreignworker 1 152.71 1024.7
## - propertyA121 1 152.73 1024.8
## - marriagesexA93 1 152.80 1025.2
## - housingA151 1 152.80 1025.3
## - purposeA41 1 152.93 1026.1
## - employmentlengthA74 1 153.05 1026.9
## - purposeA46 1 153.06 1027.0
## - otherdebtorsA102 1 153.29 1028.5
## - otherdebtorsA101 1 153.35 1028.9
## - installmentrate 1 153.47 1029.6
## - credithistoryA32 1 153.76 1031.5
## - duration 1 153.91 1032.5
## - credithistoryA30 1 154.43 1035.9
## - credithistoryA31 1 154.60 1037.0
## - savingsA61 1 154.66 1037.4
## - purposeA40 1 154.78 1038.1
## - existingcheckingstatusA12 1 157.25 1054.0
## - existingcheckingstatusA11 1 161.85 1082.8
##
## Step: AIC=1021.14
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA45 + purposeA46 + creditamount +
## savingsA61 + savingsA62 + employmentlengthA74 + installmentrate +
## marriagesexA91 + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
## propertyA121 + propertyA122 + propertyA123 + age + otherinstallmentplansA141 +
## otherinstallmentplansA142 + housingA151 + existingcredits +
## telephone + foreignworker
##
## Df Deviance AIC
## - marriagesexA91 1 152.35 1020.3
## - purposeA45 1 152.36 1020.4
## - propertyA122 1 152.36 1020.4
## - existingcredits 1 152.45 1021.0
## - otherinstallmentplansA142 1 152.47 1021.1
## <none> 152.17 1021.1
## - existingcheckingstatusA13 1 152.48 1021.1
## - credithistoryA33 1 152.50 1021.3
## - propertyA123 1 152.54 1021.5
## - telephone 1 152.54 1021.6
## - savingsA62 1 152.58 1021.8
## - age 1 152.63 1022.2
## - creditamount 1 152.72 1022.7
## - foreignworker 1 152.84 1023.5
## - otherinstallmentplansA141 1 152.85 1023.6
## - propertyA121 1 152.87 1023.7
## - marriagesexA93 1 152.91 1024.0
## - housingA151 1 152.97 1024.3
## - purposeA41 1 153.06 1024.9
## - employmentlengthA74 1 153.23 1026.1
## - purposeA46 1 153.23 1026.1
## - otherdebtorsA102 1 153.42 1027.3
## - otherdebtorsA101 1 153.47 1027.6
## - installmentrate 1 153.58 1028.3
## - credithistoryA32 1 153.87 1030.2
## - duration 1 154.11 1031.8
## - credithistoryA30 1 154.51 1034.4
## - credithistoryA31 1 154.65 1035.3
## - savingsA61 1 154.86 1036.7
## - purposeA40 1 155.01 1037.6
## - existingcheckingstatusA12 1 157.37 1052.7
## - existingcheckingstatusA11 1 162.01 1081.8
##
## Step: AIC=1020.34
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA45 + purposeA46 + creditamount +
## savingsA61 + savingsA62 + employmentlengthA74 + installmentrate +
## marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 + propertyA121 +
## propertyA122 + propertyA123 + age + otherinstallmentplansA141 +
## otherinstallmentplansA142 + housingA151 + existingcredits +
## telephone + foreignworker
##
## Df Deviance AIC
## - propertyA122 1 152.54 1019.6
## - purposeA45 1 152.55 1019.6
## - existingcredits 1 152.64 1020.2
## - otherinstallmentplansA142 1 152.64 1020.2
## <none> 152.35 1020.3
## - existingcheckingstatusA13 1 152.69 1020.5
## - credithistoryA33 1 152.69 1020.6
## - propertyA123 1 152.70 1020.6
## - telephone 1 152.72 1020.7
## - age 1 152.76 1021.0
## - savingsA62 1 152.77 1021.1
## - creditamount 1 152.94 1022.1
## - otherinstallmentplansA141 1 153.01 1022.6
## - propertyA121 1 153.03 1022.7
## - foreignworker 1 153.03 1022.8
## - housingA151 1 153.09 1023.2
## - purposeA41 1 153.27 1024.3
## - purposeA46 1 153.38 1025.0
## - marriagesexA93 1 153.38 1025.0
## - employmentlengthA74 1 153.45 1025.5
## - otherdebtorsA102 1 153.60 1026.5
## - otherdebtorsA101 1 153.68 1027.0
## - installmentrate 1 153.71 1027.2
## - credithistoryA32 1 154.05 1029.4
## - duration 1 154.31 1031.1
## - credithistoryA30 1 154.68 1033.5
## - credithistoryA31 1 154.84 1034.5
## - savingsA61 1 155.02 1035.7
## - purposeA40 1 155.15 1036.5
## - existingcheckingstatusA12 1 157.59 1052.1
## - existingcheckingstatusA11 1 162.44 1082.4
##
## Step: AIC=1019.56
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA45 + purposeA46 + creditamount +
## savingsA61 + savingsA62 + employmentlengthA74 + installmentrate +
## marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 + propertyA121 +
## propertyA123 + age + otherinstallmentplansA141 + otherinstallmentplansA142 +
## housingA151 + existingcredits + telephone + foreignworker
##
## Df Deviance AIC
## - propertyA123 1 152.71 1018.6
## - purposeA45 1 152.76 1019.0
## - otherinstallmentplansA142 1 152.80 1019.3
## - existingcredits 1 152.81 1019.3
## <none> 152.54 1019.6
## - credithistoryA33 1 152.87 1019.7
## - telephone 1 152.88 1019.8
## - age 1 152.89 1019.8
## - existingcheckingstatusA13 1 152.90 1019.9
## - savingsA62 1 152.98 1020.4
## - propertyA121 1 153.05 1020.9
## - creditamount 1 153.18 1021.8
## - otherinstallmentplansA141 1 153.24 1022.1
## - foreignworker 1 153.25 1022.2
## - housingA151 1 153.27 1022.3
## - purposeA41 1 153.39 1023.1
## - marriagesexA93 1 153.51 1023.9
## - purposeA46 1 153.69 1025.1
## - employmentlengthA74 1 153.69 1025.1
## - otherdebtorsA102 1 153.89 1026.4
## - otherdebtorsA101 1 153.95 1026.7
## - installmentrate 1 153.96 1026.8
## - credithistoryA32 1 154.24 1028.6
## - duration 1 154.59 1030.9
## - credithistoryA30 1 154.87 1032.7
## - credithistoryA31 1 155.13 1034.4
## - savingsA61 1 155.29 1035.4
## - purposeA40 1 155.45 1036.5
## - existingcheckingstatusA12 1 157.88 1051.9
## - existingcheckingstatusA11 1 162.63 1081.6
##
## Step: AIC=1018.63
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA45 + purposeA46 + creditamount +
## savingsA61 + savingsA62 + employmentlengthA74 + installmentrate +
## marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 + propertyA121 +
## age + otherinstallmentplansA141 + otherinstallmentplansA142 +
## housingA151 + existingcredits + telephone + foreignworker
##
## Df Deviance AIC
## - purposeA45 1 152.93 1018.1
## - existingcredits 1 152.95 1018.2
## - otherinstallmentplansA142 1 152.96 1018.3
## - age 1 153.00 1018.6
## <none> 152.71 1018.6
## - credithistoryA33 1 153.04 1018.8
## - telephone 1 153.05 1018.9
## - existingcheckingstatusA13 1 153.06 1019.0
## - propertyA121 1 153.07 1019.0
## - savingsA62 1 153.14 1019.5
## - creditamount 1 153.38 1021.1
## - foreignworker 1 153.38 1021.1
## - otherinstallmentplansA141 1 153.42 1021.3
## - housingA151 1 153.43 1021.4
## - purposeA41 1 153.56 1022.2
## - marriagesexA93 1 153.64 1022.8
## - employmentlengthA74 1 153.91 1024.5
## - purposeA46 1 153.94 1024.7
## - otherdebtorsA102 1 154.04 1025.3
## - otherdebtorsA101 1 154.06 1025.5
## - installmentrate 1 154.14 1026.0
## - credithistoryA32 1 154.36 1027.4
## - duration 1 154.70 1029.6
## - credithistoryA30 1 155.01 1031.7
## - credithistoryA31 1 155.29 1033.4
## - savingsA61 1 155.40 1034.1
## - purposeA40 1 155.65 1035.7
## - existingcheckingstatusA12 1 158.12 1051.5
## - existingcheckingstatusA11 1 163.23 1083.3
##
## Step: AIC=1018.11
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA46 + creditamount + savingsA61 +
## savingsA62 + employmentlengthA74 + installmentrate + marriagesexA93 +
## otherdebtorsA101 + otherdebtorsA102 + propertyA121 + age +
## otherinstallmentplansA141 + otherinstallmentplansA142 + housingA151 +
## existingcredits + telephone + foreignworker
##
## Df Deviance AIC
## - otherinstallmentplansA142 1 153.18 1017.7
## - age 1 153.19 1017.8
## - existingcredits 1 153.21 1017.9
## <none> 152.93 1018.1
## - existingcheckingstatusA13 1 153.27 1018.3
## - propertyA121 1 153.28 1018.4
## - credithistoryA33 1 153.28 1018.4
## - telephone 1 153.31 1018.6
## - savingsA62 1 153.38 1019.0
## - otherinstallmentplansA141 1 153.59 1020.4
## - foreignworker 1 153.60 1020.5
## - creditamount 1 153.62 1020.6
## - housingA151 1 153.64 1020.7
## - purposeA41 1 153.83 1022.0
## - marriagesexA93 1 153.88 1022.3
## - purposeA46 1 154.12 1023.9
## - employmentlengthA74 1 154.14 1024.0
## - otherdebtorsA102 1 154.26 1024.7
## - otherdebtorsA101 1 154.27 1024.8
## - installmentrate 1 154.40 1025.7
## - credithistoryA32 1 154.64 1027.2
## - duration 1 154.90 1028.9
## - credithistoryA30 1 155.30 1031.5
## - credithistoryA31 1 155.52 1032.9
## - savingsA61 1 155.64 1033.7
## - purposeA40 1 155.73 1034.3
## - existingcheckingstatusA12 1 158.44 1051.5
## - existingcheckingstatusA11 1 163.46 1082.7
##
## Step: AIC=1017.71
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA46 + creditamount + savingsA61 +
## savingsA62 + employmentlengthA74 + installmentrate + marriagesexA93 +
## otherdebtorsA101 + otherdebtorsA102 + propertyA121 + age +
## otherinstallmentplansA141 + housingA151 + existingcredits +
## telephone + foreignworker
##
## Df Deviance AIC
## - age 1 153.46 1017.6
## - existingcredits 1 153.47 1017.6
## <none> 153.18 1017.7
## - propertyA121 1 153.51 1017.9
## - existingcheckingstatusA13 1 153.53 1018.0
## - telephone 1 153.54 1018.1
## - credithistoryA33 1 153.59 1018.4
## - savingsA62 1 153.61 1018.6
## - otherinstallmentplansA141 1 153.75 1019.5
## - housingA151 1 153.82 1019.9
## - foreignworker 1 153.85 1020.1
## - creditamount 1 153.87 1020.2
## - marriagesexA93 1 154.08 1021.6
## - purposeA41 1 154.09 1021.7
## - purposeA46 1 154.35 1023.3
## - employmentlengthA74 1 154.43 1023.9
## - otherdebtorsA102 1 154.50 1024.3
## - otherdebtorsA101 1 154.54 1024.6
## - installmentrate 1 154.69 1025.5
## - credithistoryA32 1 154.91 1027.0
## - duration 1 155.18 1028.7
## - credithistoryA30 1 155.58 1031.3
## - purposeA40 1 155.89 1033.3
## - savingsA61 1 155.91 1033.4
## - credithistoryA31 1 156.09 1034.6
## - existingcheckingstatusA12 1 158.64 1050.8
## - existingcheckingstatusA11 1 163.74 1082.4
##
## Step: AIC=1017.56
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA46 + creditamount + savingsA61 +
## savingsA62 + employmentlengthA74 + installmentrate + marriagesexA93 +
## otherdebtorsA101 + otherdebtorsA102 + propertyA121 + otherinstallmentplansA141 +
## housingA151 + existingcredits + telephone + foreignworker
##
## Df Deviance AIC
## - existingcredits 1 153.75 1017.4
## <none> 153.46 1017.6
## - existingcheckingstatusA13 1 153.79 1017.7
## - propertyA121 1 153.83 1018.0
## - credithistoryA33 1 153.90 1018.4
## - telephone 1 153.91 1018.5
## - savingsA62 1 153.95 1018.8
## - otherinstallmentplansA141 1 154.00 1019.1
## - foreignworker 1 154.12 1019.9
## - creditamount 1 154.12 1019.9
## - housingA151 1 154.28 1020.9
## - purposeA41 1 154.43 1021.8
## - marriagesexA93 1 154.53 1022.5
## - purposeA46 1 154.55 1022.6
## - employmentlengthA74 1 154.61 1023.0
## - otherdebtorsA102 1 154.79 1024.2
## - otherdebtorsA101 1 154.83 1024.5
## - installmentrate 1 154.91 1025.0
## - credithistoryA32 1 155.36 1027.9
## - duration 1 155.59 1029.4
## - credithistoryA30 1 155.92 1031.5
## - purposeA40 1 156.05 1032.3
## - savingsA61 1 156.34 1034.1
## - credithistoryA31 1 156.43 1034.7
## - existingcheckingstatusA12 1 159.02 1051.2
## - existingcheckingstatusA11 1 163.96 1081.8
##
## Step: AIC=1017.43
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## existingcheckingstatusA13 + duration + credithistoryA30 +
## credithistoryA31 + credithistoryA32 + credithistoryA33 +
## purposeA40 + purposeA41 + purposeA46 + creditamount + savingsA61 +
## savingsA62 + employmentlengthA74 + installmentrate + marriagesexA93 +
## otherdebtorsA101 + otherdebtorsA102 + propertyA121 + otherinstallmentplansA141 +
## housingA151 + telephone + foreignworker
##
## Df Deviance AIC
## - existingcheckingstatusA13 1 154.05 1017.4
## <none> 153.75 1017.4
## - propertyA121 1 154.12 1017.8
## - credithistoryA33 1 154.14 1018.0
## - telephone 1 154.20 1018.4
## - savingsA62 1 154.25 1018.7
## - otherinstallmentplansA141 1 154.33 1019.2
## - creditamount 1 154.41 1019.7
## - foreignworker 1 154.43 1019.9
## - housingA151 1 154.57 1020.8
## - purposeA41 1 154.72 1021.8
## - marriagesexA93 1 154.79 1022.2
## - purposeA46 1 154.79 1022.2
## - employmentlengthA74 1 154.85 1022.6
## - otherdebtorsA101 1 155.08 1024.0
## - otherdebtorsA102 1 155.08 1024.0
## - installmentrate 1 155.23 1025.0
## - credithistoryA32 1 155.50 1026.8
## - duration 1 155.85 1029.0
## - credithistoryA30 1 156.15 1031.0
## - purposeA40 1 156.37 1032.4
## - credithistoryA31 1 156.43 1032.7
## - savingsA61 1 156.67 1034.2
## - existingcheckingstatusA12 1 159.19 1050.2
## - existingcheckingstatusA11 1 164.23 1081.4
##
## Step: AIC=1017.41
## classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
## credithistoryA33 + purposeA40 + purposeA41 + purposeA46 +
## creditamount + savingsA61 + savingsA62 + employmentlengthA74 +
## installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
## propertyA121 + otherinstallmentplansA141 + housingA151 +
## telephone + foreignworker
##
## Df Deviance AIC
## <none> 154.05 1017.4
## - propertyA121 1 154.43 1017.9
## - credithistoryA33 1 154.44 1017.9
## - telephone 1 154.50 1018.4
## - savingsA62 1 154.57 1018.8
## - otherinstallmentplansA141 1 154.64 1019.2
## - creditamount 1 154.65 1019.3
## - foreignworker 1 154.71 1019.7
## - housingA151 1 154.86 1020.6
## - purposeA41 1 155.08 1022.1
## - marriagesexA93 1 155.09 1022.1
## - purposeA46 1 155.12 1022.3
## - employmentlengthA74 1 155.21 1022.9
## - otherdebtorsA102 1 155.40 1024.1
## - otherdebtorsA101 1 155.41 1024.2
## - installmentrate 1 155.44 1024.4
## - credithistoryA32 1 155.89 1027.3
## - duration 1 156.22 1029.4
## - credithistoryA30 1 156.51 1031.2
## - purposeA40 1 156.71 1032.5
## - credithistoryA31 1 156.83 1033.3
## - savingsA61 1 157.14 1035.2
## - existingcheckingstatusA12 1 159.19 1048.2
## - existingcheckingstatusA11 1 164.31 1079.8
step
##
## Call: glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
## credithistoryA33 + purposeA40 + purposeA41 + purposeA46 +
## creditamount + savingsA61 + savingsA62 + employmentlengthA74 +
## installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
## propertyA121 + otherinstallmentplansA141 + housingA151 +
## telephone + foreignworker, data = creditDataNumeric)
##
## Coefficients:
## (Intercept) existingcheckingstatusA11
## -4.072e-01 2.618e-01
## existingcheckingstatusA12 duration
## 1.824e-01 5.840e-03
## credithistoryA30 credithistoryA31
## 2.748e-01 2.682e-01
## credithistoryA32 credithistoryA33
## 1.014e-01 7.750e-02
## purposeA40 purposeA41
## 1.286e-01 -1.157e-01
## purposeA46 creditamount
## 1.540e-01 1.648e-05
## savingsA61 savingsA62
## 1.310e-01 8.410e-02
## employmentlengthA74 installmentrate
## -9.076e-02 3.866e-02
## marriagesexA93 otherdebtorsA101
## -6.951e-02 1.738e-01
## otherdebtorsA102 propertyA121
## 2.474e-01 -4.673e-02
## otherinstallmentplansA141 housingA151
## 7.261e-02 7.745e-02
## telephone foreignworker
## -4.609e-02 -1.418e-01
##
## Degrees of Freedom: 999 Total (i.e. Null); 976 Residual
## Null Deviance: 210
## Residual Deviance: 154.1 AIC: 1017
model2 <- glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
credithistoryA33 + purposeA40 + purposeA41 + purposeA46 +
creditamount + savingsA61 + savingsA62 + employmentlengthA74 +
installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
propertyA121 + otherinstallmentplansA141 + housingA151 +
telephone + foreignworker, data = creditDataNumeric)
summary(model2)
##
## Call:
## glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
## credithistoryA33 + purposeA40 + purposeA41 + purposeA46 +
## creditamount + savingsA61 + savingsA62 + employmentlengthA74 +
## installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
## propertyA121 + otherinstallmentplansA141 + housingA151 +
## telephone + foreignworker, data = creditDataNumeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.88971 -0.28321 -0.09468 0.31168 1.12452
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.072e-01 8.644e-02 -4.711 2.82e-06 ***
## existingcheckingstatusA11 2.618e-01 3.248e-02 8.060 2.22e-15 ***
## existingcheckingstatusA12 1.824e-01 3.196e-02 5.705 1.54e-08 ***
## duration 5.840e-03 1.575e-03 3.709 0.00022 ***
## credithistoryA30 2.748e-01 6.966e-02 3.945 8.57e-05 ***
## credithistoryA31 2.682e-01 6.396e-02 4.194 2.99e-05 ***
## credithistoryA32 1.014e-01 2.967e-02 3.417 0.00066 ***
## credithistoryA33 7.750e-02 4.963e-02 1.562 0.11868
## purposeA40 1.286e-01 3.135e-02 4.102 4.44e-05 ***
## purposeA41 -1.157e-01 4.532e-02 -2.553 0.01082 *
## purposeA46 1.540e-01 5.925e-02 2.599 0.00948 **
## creditamount 1.648e-05 8.453e-06 1.949 0.05156 .
## savingsA61 1.310e-01 2.962e-02 4.422 1.09e-05 ***
## savingsA62 8.410e-02 4.649e-02 1.809 0.07076 .
## employmentlengthA74 -9.076e-02 3.352e-02 -2.708 0.00689 **
## installmentrate 3.866e-02 1.303e-02 2.966 0.00309 **
## marriagesexA93 -6.951e-02 2.709e-02 -2.566 0.01043 *
## otherdebtorsA101 1.738e-01 5.918e-02 2.937 0.00339 **
## otherdebtorsA102 2.474e-01 8.458e-02 2.925 0.00352 **
## propertyA121 -4.673e-02 3.018e-02 -1.548 0.12192
## otherinstallmentplansA141 7.261e-02 3.769e-02 1.927 0.05433 .
## housingA151 7.745e-02 3.423e-02 2.262 0.02389 *
## telephone -4.609e-02 2.720e-02 -1.695 0.09047 .
## foreignworker -1.418e-01 6.936e-02 -2.045 0.04113 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1578397)
##
## Null deviance: 210.00 on 999 degrees of freedom
## Residual deviance: 154.05 on 976 degrees of freedom
## AIC: 1017.4
##
## Number of Fisher Scoring iterations: 2
vif(model2)
## existingcheckingstatusA11 existingcheckingstatusA12
## 1.329751 1.272792
## duration credithistoryA30
## 2.078904 1.180558
## credithistoryA31 credithistoryA32
## 1.207869 1.389213
## credithistoryA33 purposeA40
## 1.252176 1.116129
## purposeA41 purposeA46
## 1.202239 1.056385
## creditamount savingsA61
## 2.541479 1.330572
## savingsA62 employmentlengthA74
## 1.264991 1.022835
## installmentrate marriagesexA93
## 1.345320 1.151333
## otherdebtorsA101 otherdebtorsA102
## 1.871454 1.781867
## propertyA121 otherinstallmentplansA141
## 1.168594 1.077118
## housingA151 telephone
## 1.091093 1.128469
## foreignworker
## 1.086032
## remove creditamount for having highest vif
model3 <- glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
credithistoryA33 + purposeA40 + purposeA41 + purposeA46 +
savingsA61 + savingsA62 + employmentlengthA74 +
installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
propertyA121 + otherinstallmentplansA141 + housingA151 +
telephone + foreignworker, data = creditDataNumeric)
summary(model3)
##
## Call:
## glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
## credithistoryA33 + purposeA40 + purposeA41 + purposeA46 +
## savingsA61 + savingsA62 + employmentlengthA74 + installmentrate +
## marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 + propertyA121 +
## otherinstallmentplansA141 + housingA151 + telephone + foreignworker,
## data = creditDataNumeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.85929 -0.28975 -0.09282 0.31562 1.09762
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.375079 0.084971 -4.414 1.13e-05 ***
## existingcheckingstatusA11 0.262585 0.032527 8.073 2.01e-15 ***
## existingcheckingstatusA12 0.186812 0.031927 5.851 6.65e-09 ***
## duration 0.007834 0.001199 6.533 1.03e-10 ***
## credithistoryA30 0.281376 0.069678 4.038 5.81e-05 ***
## credithistoryA31 0.266893 0.064051 4.167 3.36e-05 ***
## credithistoryA32 0.099879 0.029702 3.363 0.000802 ***
## credithistoryA33 0.081466 0.049654 1.641 0.101192
## purposeA40 0.131798 0.031352 4.204 2.87e-05 ***
## purposeA41 -0.096892 0.044342 -2.185 0.029119 *
## purposeA46 0.156835 0.059315 2.644 0.008322 **
## savingsA61 0.130331 0.029660 4.394 1.23e-05 ***
## savingsA62 0.080519 0.046518 1.731 0.083782 .
## employmentlengthA74 -0.090873 0.033563 -2.707 0.006898 **
## installmentrate 0.027037 0.011605 2.330 0.020020 *
## marriagesexA93 -0.061980 0.026847 -2.309 0.021174 *
## otherdebtorsA101 0.176024 0.059251 2.971 0.003043 **
## otherdebtorsA102 0.261861 0.084370 3.104 0.001966 **
## propertyA121 -0.052926 0.030057 -1.761 0.078576 .
## otherinstallmentplansA141 0.071280 0.037738 1.889 0.059213 .
## housingA151 0.078528 0.034277 2.291 0.022177 *
## telephone -0.035211 0.026657 -1.321 0.186853
## foreignworker -0.140778 0.069458 -2.027 0.042954 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1582919)
##
## Null deviance: 210.00 on 999 degrees of freedom
## Residual deviance: 154.65 on 977 degrees of freedom
## AIC: 1019.3
##
## Number of Fisher Scoring iterations: 2
vif(model3)
## existingcheckingstatusA11 existingcheckingstatusA12
## 1.329546 1.266283
## duration credithistoryA30
## 1.201808 1.177771
## credithistoryA31 credithistoryA32
## 1.207727 1.388282
## credithistoryA33 purposeA40
## 1.250072 1.113074
## purposeA41 purposeA46
## 1.147637 1.055751
## savingsA61 savingsA62
## 1.330400 1.263020
## employmentlengthA74 installmentrate
## 1.022831 1.063719
## marriagesexA93 otherdebtorsA101
## 1.127891 1.870753
## otherdebtorsA102 propertyA121
## 1.768133 1.155612
## otherinstallmentplansA141 housingA151
## 1.076763 1.090807
## telephone foreignworker
## 1.080946 1.085966
## all have low vif, so we can don't need to check vif anymore
## remove telephone as it has highest p-value
model4 <- glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
credithistoryA33 + purposeA40 + purposeA41 + purposeA46 +
savingsA61 + savingsA62 + employmentlengthA74 +
installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
propertyA121 + otherinstallmentplansA141 + housingA151 +
foreignworker, data = creditDataNumeric)
summary(model4)
##
## Call:
## glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
## credithistoryA33 + purposeA40 + purposeA41 + purposeA46 +
## savingsA61 + savingsA62 + employmentlengthA74 + installmentrate +
## marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 + propertyA121 +
## otherinstallmentplansA141 + housingA151 + foreignworker,
## data = creditDataNumeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.87356 -0.29191 -0.09868 0.31975 1.08000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.386562 0.084557 -4.572 5.46e-06 ***
## existingcheckingstatusA11 0.264692 0.032500 8.144 1.16e-15 ***
## existingcheckingstatusA12 0.186791 0.031939 5.848 6.77e-09 ***
## duration 0.007664 0.001193 6.426 2.04e-10 ***
## credithistoryA30 0.283684 0.069682 4.071 5.06e-05 ***
## credithistoryA31 0.269502 0.064045 4.208 2.81e-05 ***
## credithistoryA32 0.101397 0.029691 3.415 0.000664 ***
## credithistoryA33 0.081725 0.049673 1.645 0.100238
## purposeA40 0.131224 0.031361 4.184 3.12e-05 ***
## purposeA41 -0.102257 0.044172 -2.315 0.020822 *
## purposeA46 0.156267 0.059336 2.634 0.008582 **
## savingsA61 0.132046 0.029643 4.455 9.37e-06 ***
## savingsA62 0.083917 0.046464 1.806 0.071216 .
## employmentlengthA74 -0.091795 0.033569 -2.735 0.006360 **
## installmentrate 0.027070 0.011609 2.332 0.019914 *
## marriagesexA93 -0.063194 0.026842 -2.354 0.018755 *
## otherdebtorsA101 0.173575 0.059244 2.930 0.003470 **
## otherdebtorsA102 0.259629 0.084385 3.077 0.002151 **
## propertyA121 -0.048784 0.029904 -1.631 0.103147
## otherinstallmentplansA141 0.070905 0.037751 1.878 0.060652 .
## housingA151 0.079464 0.034283 2.318 0.020662 *
## foreignworker -0.134124 0.069302 -1.935 0.053234 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1584124)
##
## Null deviance: 210.00 on 999 degrees of freedom
## Residual deviance: 154.93 on 978 degrees of freedom
## AIC: 1019.1
##
## Number of Fisher Scoring iterations: 2
## remove propertyA121 as it has highest p-value
model5 <- glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
credithistoryA33 + purposeA40 + purposeA41 + purposeA46 +
savingsA61 + savingsA62 + employmentlengthA74 +
installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
otherinstallmentplansA141 + housingA151 +
foreignworker, data = creditDataNumeric)
summary(model5)
##
## Call:
## glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
## credithistoryA33 + purposeA40 + purposeA41 + purposeA46 +
## savingsA61 + savingsA62 + employmentlengthA74 + installmentrate +
## marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 + otherinstallmentplansA141 +
## housingA151 + foreignworker, data = creditDataNumeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.87044 -0.28648 -0.09755 0.32841 1.09752
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.427395 0.080836 -5.287 1.53e-07 ***
## existingcheckingstatusA11 0.267445 0.032483 8.233 5.78e-16 ***
## existingcheckingstatusA12 0.187409 0.031964 5.863 6.21e-09 ***
## duration 0.008032 0.001172 6.853 1.28e-11 ***
## credithistoryA30 0.289589 0.069647 4.158 3.49e-05 ***
## credithistoryA31 0.270699 0.064095 4.223 2.63e-05 ***
## credithistoryA32 0.102249 0.029711 3.441 0.000603 ***
## credithistoryA33 0.082659 0.049712 1.663 0.096681 .
## purposeA40 0.132055 0.031384 4.208 2.82e-05 ***
## purposeA41 -0.094686 0.043965 -2.154 0.031511 *
## purposeA46 0.166761 0.059036 2.825 0.004828 **
## savingsA61 0.131306 0.029664 4.426 1.07e-05 ***
## savingsA62 0.087683 0.046446 1.888 0.059342 .
## employmentlengthA74 -0.090252 0.033584 -2.687 0.007324 **
## installmentrate 0.027324 0.011618 2.352 0.018877 *
## marriagesexA93 -0.060569 0.026816 -2.259 0.024125 *
## otherdebtorsA101 0.187991 0.058631 3.206 0.001388 **
## otherdebtorsA102 0.273405 0.084032 3.254 0.001179 **
## otherinstallmentplansA141 0.074739 0.037710 1.982 0.047767 *
## housingA151 0.079065 0.034311 2.304 0.021411 *
## foreignworker -0.142060 0.069189 -2.053 0.040318 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1586812)
##
## Null deviance: 210.00 on 999 degrees of freedom
## Residual deviance: 155.35 on 979 degrees of freedom
## AIC: 1019.8
##
## Number of Fisher Scoring iterations: 2
## remove credithistoryA33 as it has highest p-value
model6 <- glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
purposeA40 + purposeA41 + purposeA46 +
savingsA61 + savingsA62 + employmentlengthA74 +
installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
otherinstallmentplansA141 + housingA151 +
foreignworker, data = creditDataNumeric)
summary(model6)
##
## Call:
## glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
## purposeA40 + purposeA41 + purposeA46 + savingsA61 + savingsA62 +
## employmentlengthA74 + installmentrate + marriagesexA93 +
## otherdebtorsA101 + otherdebtorsA102 + otherinstallmentplansA141 +
## housingA151 + foreignworker, data = creditDataNumeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.87240 -0.29227 -0.09837 0.32457 1.07965
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.418050 0.080713 -5.179 2.70e-07 ***
## existingcheckingstatusA11 0.267247 0.032512 8.220 6.41e-16 ***
## existingcheckingstatusA12 0.192382 0.031853 6.040 2.19e-09 ***
## duration 0.008287 0.001163 7.126 2.01e-12 ***
## credithistoryA30 0.266075 0.068258 3.898 0.000104 ***
## credithistoryA31 0.250844 0.063029 3.980 7.41e-05 ***
## credithistoryA32 0.083290 0.027461 3.033 0.002485 **
## purposeA40 0.129758 0.031381 4.135 3.86e-05 ***
## purposeA41 -0.099421 0.043912 -2.264 0.023788 *
## purposeA46 0.164031 0.059066 2.777 0.005590 **
## savingsA61 0.132215 0.029686 4.454 9.41e-06 ***
## savingsA62 0.092469 0.046399 1.993 0.046548 *
## employmentlengthA74 -0.091028 0.033611 -2.708 0.006881 **
## installmentrate 0.026378 0.011615 2.271 0.023356 *
## marriagesexA93 -0.058852 0.026821 -2.194 0.028449 *
## otherdebtorsA101 0.193805 0.058579 3.308 0.000972 ***
## otherdebtorsA102 0.273010 0.084108 3.246 0.001210 **
## otherinstallmentplansA141 0.075663 0.037740 2.005 0.045255 *
## housingA151 0.080179 0.034335 2.335 0.019735 *
## foreignworker -0.145796 0.069215 -2.106 0.035422 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.158967)
##
## Null deviance: 210.00 on 999 degrees of freedom
## Residual deviance: 155.79 on 980 degrees of freedom
## AIC: 1020.6
##
## Number of Fisher Scoring iterations: 2
## remove savingsA62
model7 <- glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
purposeA40 + purposeA41 + purposeA46 +
savingsA61 + employmentlengthA74 +
installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
otherinstallmentplansA141 + housingA151 +
foreignworker, data = creditDataNumeric)
summary(model7)
##
## Call:
## glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
## purposeA40 + purposeA41 + purposeA46 + savingsA61 + employmentlengthA74 +
## installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
## otherinstallmentplansA141 + housingA151 + foreignworker,
## data = creditDataNumeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.91266 -0.29074 -0.09822 0.32644 1.06082
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.396204 0.080086 -4.947 8.85e-07 ***
## existingcheckingstatusA11 0.268345 0.032557 8.242 5.38e-16 ***
## existingcheckingstatusA12 0.200092 0.031665 6.319 3.99e-10 ***
## duration 0.008337 0.001165 7.159 1.59e-12 ***
## credithistoryA30 0.271370 0.068309 3.973 7.63e-05 ***
## credithistoryA31 0.254393 0.063100 4.032 5.97e-05 ***
## credithistoryA32 0.084015 0.027500 3.055 0.00231 **
## purposeA40 0.132254 0.031404 4.211 2.77e-05 ***
## purposeA41 -0.102875 0.043945 -2.341 0.01943 *
## purposeA46 0.164758 0.059155 2.785 0.00545 **
## savingsA61 0.108008 0.027128 3.981 7.36e-05 ***
## employmentlengthA74 -0.087738 0.033621 -2.610 0.00920 **
## installmentrate 0.026099 0.011631 2.244 0.02506 *
## marriagesexA93 -0.060190 0.026853 -2.241 0.02522 *
## otherdebtorsA101 0.192226 0.058663 3.277 0.00109 **
## otherdebtorsA102 0.277756 0.084201 3.299 0.00101 **
## otherinstallmentplansA141 0.074747 0.037794 1.978 0.04824 *
## housingA151 0.081336 0.034383 2.366 0.01819 *
## foreignworker -0.145977 0.069320 -2.106 0.03547 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1594485)
##
## Null deviance: 210.00 on 999 degrees of freedom
## Residual deviance: 156.42 on 981 degrees of freedom
## AIC: 1022.7
##
## Number of Fisher Scoring iterations: 2
## remove otherinstallmentplansA141
model8 <- glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
purposeA40 + purposeA41 + purposeA46 +
savingsA61 + employmentlengthA74 +
installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
housingA151 +
foreignworker, data = creditDataNumeric)
summary(model8)
##
## Call:
## glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
## purposeA40 + purposeA41 + purposeA46 + savingsA61 + employmentlengthA74 +
## installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
## housingA151 + foreignworker, data = creditDataNumeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.9528 -0.2895 -0.1014 0.3169 1.0522
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.380278 0.079798 -4.765 2.17e-06 ***
## existingcheckingstatusA11 0.268497 0.032605 8.235 5.69e-16 ***
## existingcheckingstatusA12 0.201927 0.031698 6.370 2.89e-10 ***
## duration 0.008384 0.001166 7.190 1.28e-12 ***
## credithistoryA30 0.280788 0.068244 4.114 4.21e-05 ***
## credithistoryA31 0.281612 0.061672 4.566 5.59e-06 ***
## credithistoryA32 0.083689 0.027541 3.039 0.00244 **
## purposeA40 0.133062 0.031448 4.231 2.54e-05 ***
## purposeA41 -0.103782 0.044007 -2.358 0.01855 *
## purposeA46 0.167140 0.059230 2.822 0.00487 **
## savingsA61 0.107732 0.027168 3.965 7.86e-05 ***
## employmentlengthA74 -0.088162 0.033670 -2.618 0.00897 **
## installmentrate 0.025496 0.011645 2.190 0.02879 *
## marriagesexA93 -0.058776 0.026883 -2.186 0.02902 *
## otherdebtorsA101 0.184556 0.058621 3.148 0.00169 **
## otherdebtorsA102 0.270895 0.084254 3.215 0.00135 **
## housingA151 0.079765 0.034424 2.317 0.02070 *
## foreignworker -0.146605 0.069422 -2.112 0.03495 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1599213)
##
## Null deviance: 210.00 on 999 degrees of freedom
## Residual deviance: 157.04 on 982 degrees of freedom
## AIC: 1024.6
##
## Number of Fisher Scoring iterations: 2
## remove foreignworker
model9 <- glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
purposeA40 + purposeA41 + purposeA46 +
savingsA61 + employmentlengthA74 +
installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
housingA151, data = creditDataNumeric)
summary(model9)
##
## Call:
## glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
## purposeA40 + purposeA41 + purposeA46 + savingsA61 + employmentlengthA74 +
## installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102 +
## housingA151, data = creditDataNumeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.9463 -0.2903 -0.1038 0.3177 1.0637
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.407342 0.078901 -5.163 2.95e-07 ***
## existingcheckingstatusA11 0.266196 0.032644 8.154 1.06e-15 ***
## existingcheckingstatusA12 0.204848 0.031723 6.457 1.67e-10 ***
## duration 0.008688 0.001159 7.495 1.48e-13 ***
## credithistoryA30 0.275824 0.068324 4.037 5.83e-05 ***
## credithistoryA31 0.284961 0.061760 4.614 4.47e-06 ***
## credithistoryA32 0.084134 0.027588 3.050 0.00235 **
## purposeA40 0.124456 0.031237 3.984 7.27e-05 ***
## purposeA41 -0.104042 0.044084 -2.360 0.01847 *
## purposeA46 0.168823 0.059329 2.846 0.00453 **
## savingsA61 0.109610 0.027201 4.030 6.02e-05 ***
## employmentlengthA74 -0.089166 0.033726 -2.644 0.00833 **
## installmentrate 0.027397 0.011630 2.356 0.01869 *
## marriagesexA93 -0.061381 0.026902 -2.282 0.02272 *
## otherdebtorsA101 0.197665 0.058394 3.385 0.00074 ***
## otherdebtorsA102 0.274102 0.084389 3.248 0.00120 **
## housingA151 0.078315 0.034478 2.271 0.02333 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1604841)
##
## Null deviance: 210.00 on 999 degrees of freedom
## Residual deviance: 157.76 on 983 degrees of freedom
## AIC: 1027.2
##
## Number of Fisher Scoring iterations: 2
## remove housingA151
model10 <- glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
purposeA40 + purposeA41 + purposeA46 +
savingsA61 + employmentlengthA74 +
installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102, data = creditDataNumeric)
summary(model10)
##
## Call:
## glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
## purposeA40 + purposeA41 + purposeA46 + savingsA61 + employmentlengthA74 +
## installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102,
## data = creditDataNumeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.9570 -0.2941 -0.1049 0.3235 1.0546
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.381250 0.078225 -4.874 1.28e-06 ***
## existingcheckingstatusA11 0.273263 0.032564 8.392 < 2e-16 ***
## existingcheckingstatusA12 0.206362 0.031783 6.493 1.33e-10 ***
## duration 0.008534 0.001160 7.360 3.89e-13 ***
## credithistoryA30 0.285911 0.068323 4.185 3.11e-05 ***
## credithistoryA31 0.288335 0.061872 4.660 3.59e-06 ***
## credithistoryA32 0.087859 0.027598 3.184 0.001500 **
## purposeA40 0.124033 0.031303 3.962 7.96e-05 ***
## purposeA41 -0.097373 0.044079 -2.209 0.027403 *
## purposeA46 0.171101 0.059446 2.878 0.004085 **
## savingsA61 0.106760 0.027230 3.921 9.44e-05 ***
## employmentlengthA74 -0.086843 0.033782 -2.571 0.010295 *
## installmentrate 0.025920 0.011636 2.227 0.026140 *
## marriagesexA93 -0.074283 0.026351 -2.819 0.004914 **
## otherdebtorsA101 0.195497 0.058509 3.341 0.000865 ***
## otherdebtorsA102 0.280463 0.084520 3.318 0.000939 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1611625)
##
## Null deviance: 210.00 on 999 degrees of freedom
## Residual deviance: 158.58 on 984 degrees of freedom
## AIC: 1030.4
##
## Number of Fisher Scoring iterations: 2
## remove purposeA41
model11 <- glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
purposeA40 + purposeA46 +
savingsA61 + employmentlengthA74 +
installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102, data = creditDataNumeric)
summary(model11)
##
## Call:
## glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
## purposeA40 + purposeA46 + savingsA61 + employmentlengthA74 +
## installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102,
## data = creditDataNumeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.9577 -0.2943 -0.1020 0.3270 1.0739
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.396966 0.078054 -5.086 4.38e-07 ***
## existingcheckingstatusA11 0.273048 0.032628 8.368 < 2e-16 ***
## existingcheckingstatusA12 0.210577 0.031788 6.624 5.73e-11 ***
## duration 0.008167 0.001150 7.103 2.34e-12 ***
## credithistoryA30 0.294260 0.068353 4.305 1.84e-05 ***
## credithistoryA31 0.289283 0.061992 4.666 3.49e-06 ***
## credithistoryA32 0.089126 0.027646 3.224 0.001306 **
## purposeA40 0.137755 0.030741 4.481 8.29e-06 ***
## purposeA46 0.185465 0.059205 3.133 0.001784 **
## savingsA61 0.111127 0.027211 4.084 4.79e-05 ***
## employmentlengthA74 -0.085691 0.033844 -2.532 0.011499 *
## installmentrate 0.029352 0.011555 2.540 0.011231 *
## marriagesexA93 -0.079455 0.026298 -3.021 0.002582 **
## otherdebtorsA101 0.191918 0.058602 3.275 0.001094 **
## otherdebtorsA102 0.287047 0.084634 3.392 0.000722 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1617973)
##
## Null deviance: 210.00 on 999 degrees of freedom
## Residual deviance: 159.37 on 985 degrees of freedom
## AIC: 1033.4
##
## Number of Fisher Scoring iterations: 2
## remove employmentlengthA74
model12 <- glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
purposeA40 + purposeA46 +
savingsA61 +
installmentrate + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102, data = creditDataNumeric)
summary(model12)
##
## Call:
## glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
## purposeA40 + purposeA46 + savingsA61 + installmentrate +
## marriagesexA93 + otherdebtorsA101 + otherdebtorsA102, data = creditDataNumeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.9352 -0.2957 -0.1051 0.3316 1.0910
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.412170 0.078036 -5.282 1.57e-07 ***
## existingcheckingstatusA11 0.273803 0.032716 8.369 < 2e-16 ***
## existingcheckingstatusA12 0.211449 0.031874 6.634 5.38e-11 ***
## duration 0.007919 0.001149 6.893 9.74e-12 ***
## credithistoryA30 0.305557 0.068394 4.468 8.82e-06 ***
## credithistoryA31 0.288162 0.062161 4.636 4.03e-06 ***
## credithistoryA32 0.090224 0.027718 3.255 0.001172 **
## purposeA40 0.136854 0.030823 4.440 1.00e-05 ***
## purposeA46 0.188729 0.059353 3.180 0.001520 **
## savingsA61 0.112216 0.027282 4.113 4.23e-05 ***
## installmentrate 0.029868 0.011585 2.578 0.010075 *
## marriagesexA93 -0.083124 0.026330 -3.157 0.001643 **
## otherdebtorsA101 0.195864 0.058742 3.334 0.000887 ***
## otherdebtorsA102 0.294405 0.084816 3.471 0.000541 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1626852)
##
## Null deviance: 210.00 on 999 degrees of freedom
## Residual deviance: 160.41 on 986 degrees of freedom
## AIC: 1037.8
##
## Number of Fisher Scoring iterations: 2
## remove installmentrate
model13 <- glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
purposeA40 + purposeA46 +
savingsA61 +
marriagesexA93 + otherdebtorsA101 + otherdebtorsA102, data = creditDataNumeric)
summary(model13)
##
## Call:
## glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + credithistoryA32 +
## purposeA40 + purposeA46 + savingsA61 + marriagesexA93 + otherdebtorsA101 +
## otherdebtorsA102, data = creditDataNumeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.9083 -0.2838 -0.1014 0.3361 1.1126
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.330578 0.071535 -4.621 4.32e-06 ***
## existingcheckingstatusA11 0.276911 0.032787 8.446 < 2e-16 ***
## existingcheckingstatusA12 0.209030 0.031951 6.542 9.72e-11 ***
## duration 0.008128 0.001149 7.072 2.89e-12 ***
## credithistoryA30 0.294359 0.068451 4.300 1.87e-05 ***
## credithistoryA31 0.290935 0.062329 4.668 3.47e-06 ***
## credithistoryA32 0.089435 0.027796 3.218 0.001335 **
## purposeA40 0.133545 0.030884 4.324 1.69e-05 ***
## purposeA46 0.193724 0.059491 3.256 0.001167 **
## savingsA61 0.111680 0.027359 4.082 4.83e-05 ***
## marriagesexA93 -0.075803 0.026252 -2.888 0.003967 **
## otherdebtorsA101 0.196291 0.058909 3.332 0.000894 ***
## otherdebtorsA102 0.291052 0.085048 3.422 0.000647 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.163616)
##
## Null deviance: 210.00 on 999 degrees of freedom
## Residual deviance: 161.49 on 987 degrees of freedom
## AIC: 1042.6
##
## Number of Fisher Scoring iterations: 2
## credithistoryA32
model14 <- glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
duration + credithistoryA30 + credithistoryA31 +
purposeA40 + purposeA46 +
savingsA61 +
marriagesexA93 + otherdebtorsA101 + otherdebtorsA102, data = creditDataNumeric)
summary(model14)
##
## Call:
## glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + purposeA40 +
## purposeA46 + savingsA61 + marriagesexA93 + otherdebtorsA101 +
## otherdebtorsA102, data = creditDataNumeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.9018 -0.2965 -0.1114 0.3467 1.1388
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.261331 0.068543 -3.813 0.000146 ***
## existingcheckingstatusA11 0.290420 0.032671 8.889 < 2e-16 ***
## existingcheckingstatusA12 0.216919 0.032007 6.777 2.10e-11 ***
## duration 0.007982 0.001154 6.918 8.23e-12 ***
## credithistoryA30 0.242052 0.066806 3.623 0.000306 ***
## credithistoryA31 0.235710 0.060202 3.915 9.65e-05 ***
## purposeA40 0.129431 0.031003 4.175 3.25e-05 ***
## purposeA46 0.185517 0.059717 3.107 0.001946 **
## savingsA61 0.107411 0.027456 3.912 9.78e-05 ***
## marriagesexA93 -0.086718 0.026154 -3.316 0.000948 ***
## otherdebtorsA101 0.185641 0.059094 3.141 0.001731 **
## otherdebtorsA102 0.284701 0.085427 3.333 0.000892 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1651648)
##
## Null deviance: 210.00 on 999 degrees of freedom
## Residual deviance: 163.18 on 988 degrees of freedom
## AIC: 1051
##
## Number of Fisher Scoring iterations: 2
## remove purposeA46
model15 <- glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
duration + credithistoryA30 + credithistoryA31 +
purposeA40 +
savingsA61 +
marriagesexA93 + otherdebtorsA101 + otherdebtorsA102, data = creditDataNumeric)
summary(model15)
##
## Call:
## glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + purposeA40 +
## savingsA61 + marriagesexA93 + otherdebtorsA101 + otherdebtorsA102,
## data = creditDataNumeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.8940 -0.2983 -0.1034 0.3553 1.1494
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.259465 0.068839 -3.769 0.000174 ***
## existingcheckingstatusA11 0.291363 0.032812 8.880 < 2e-16 ***
## existingcheckingstatusA12 0.217625 0.032146 6.770 2.21e-11 ***
## duration 0.007953 0.001159 6.863 1.19e-11 ***
## credithistoryA30 0.230900 0.067001 3.446 0.000592 ***
## credithistoryA31 0.238298 0.060459 3.941 8.67e-05 ***
## purposeA40 0.116962 0.030877 3.788 0.000161 ***
## savingsA61 0.107957 0.027576 3.915 9.66e-05 ***
## marriagesexA93 -0.086411 0.026268 -3.290 0.001039 **
## otherdebtorsA101 0.196978 0.059239 3.325 0.000916 ***
## otherdebtorsA102 0.285231 0.085799 3.324 0.000919 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1666096)
##
## Null deviance: 210.00 on 999 degrees of freedom
## Residual deviance: 164.78 on 989 degrees of freedom
## AIC: 1058.7
##
## Number of Fisher Scoring iterations: 2
## marriagesexA93
model16 <- glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
duration + credithistoryA30 + credithistoryA31 +
purposeA40 +
savingsA61 +
otherdebtorsA101 + otherdebtorsA102, data = creditDataNumeric)
summary(model16)
##
## Call:
## glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + purposeA40 +
## savingsA61 + otherdebtorsA101 + otherdebtorsA102, data = creditDataNumeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.91272 -0.30089 -0.09708 0.37664 1.11610
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.303005 0.067889 -4.463 9.00e-06 ***
## existingcheckingstatusA11 0.295843 0.032946 8.980 < 2e-16 ***
## existingcheckingstatusA12 0.226177 0.032199 7.024 4.00e-12 ***
## duration 0.007455 0.001155 6.457 1.67e-10 ***
## credithistoryA30 0.226845 0.067321 3.370 0.000782 ***
## credithistoryA31 0.236330 0.060755 3.890 0.000107 ***
## purposeA40 0.112360 0.030997 3.625 0.000304 ***
## savingsA61 0.110455 0.027702 3.987 7.17e-05 ***
## otherdebtorsA101 0.200170 0.059524 3.363 0.000801 ***
## otherdebtorsA102 0.283037 0.086221 3.283 0.001064 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1682624)
##
## Null deviance: 210.00 on 999 degrees of freedom
## Residual deviance: 166.58 on 990 degrees of freedom
## AIC: 1067.6
##
## Number of Fisher Scoring iterations: 2
## otherdebtorsA102
model17 <- glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
duration + credithistoryA30 + credithistoryA31 +
purposeA40 +
savingsA61 +
otherdebtorsA101, data = creditDataNumeric)
summary(model17)
##
## Call:
## glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + purposeA40 +
## savingsA61 + otherdebtorsA101, data = creditDataNumeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.8212 -0.2903 -0.1094 0.3845 1.0105
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.175993 0.056059 -3.139 0.001743 **
## existingcheckingstatusA11 0.295065 0.033107 8.912 < 2e-16 ***
## existingcheckingstatusA12 0.217313 0.032244 6.740 2.69e-11 ***
## duration 0.007662 0.001159 6.614 6.11e-11 ***
## credithistoryA30 0.224475 0.067648 3.318 0.000939 ***
## credithistoryA31 0.232596 0.061044 3.810 0.000147 ***
## purposeA40 0.114032 0.031146 3.661 0.000264 ***
## savingsA61 0.106454 0.027811 3.828 0.000137 ***
## otherdebtorsA101 0.073584 0.045567 1.615 0.106659
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1699222)
##
## Null deviance: 210.00 on 999 degrees of freedom
## Residual deviance: 168.39 on 991 degrees of freedom
## AIC: 1076.4
##
## Number of Fisher Scoring iterations: 2
## otherdebtorsA101
model18 <- glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
duration + credithistoryA30 + credithistoryA31 +
purposeA40 +
savingsA61, data = creditDataNumeric)
summary(model18)
##
## Call:
## glm(formula = classification ~ existingcheckingstatusA11 + existingcheckingstatusA12 +
## duration + credithistoryA30 + credithistoryA31 + purposeA40 +
## savingsA61, data = creditDataNumeric)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.8221 -0.2917 -0.1129 0.3892 1.0126
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.104863 0.034704 -3.022 0.002579 **
## existingcheckingstatusA11 0.290386 0.033007 8.798 < 2e-16 ***
## existingcheckingstatusA12 0.212121 0.032109 6.606 6.42e-11 ***
## duration 0.007685 0.001159 6.629 5.54e-11 ***
## credithistoryA30 0.231170 0.067576 3.421 0.000650 ***
## credithistoryA31 0.228067 0.061028 3.737 0.000197 ***
## purposeA40 0.114729 0.031168 3.681 0.000245 ***
## savingsA61 0.102479 0.027724 3.696 0.000231 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1701976)
##
## Null deviance: 210.00 on 999 degrees of freedom
## Residual deviance: 168.84 on 992 degrees of freedom
## AIC: 1077
##
## Number of Fisher Scoring iterations: 2
#### at this point all the variables are quite significant so chhosing this as final glm model
glm_final <- model18
## predict using glm_final
test_pred = predict(glm_final, type = "response",
newdata = test[,-60])
test$pred <- test_pred
summary(test$pred)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.05875 0.12556 0.29554 0.30805 0.47245 0.86502
## use a cutoff of 0.5
test_pred_default <- factor(ifelse(test_pred >= 0.50, "Yes", "No"))
test_actual_default <- factor(ifelse(test$classification==1,"Yes","No"))
## create table
table(test_actual_default,test_pred_default)
## test_pred_default
## test_actual_default No Yes
## No 209 19
## Yes 36 36
## confusion matrix
test_conf <- confusionMatrix(test_pred_default, test_actual_default, positive = "Yes")
test_conf
## Confusion Matrix and Statistics
##
## Reference
## Prediction No Yes
## No 209 36
## Yes 19 36
##
## Accuracy : 0.8167
## 95% CI : (0.7682, 0.8588)
## No Information Rate : 0.76
## P-Value [Acc > NIR] : 0.01119
##
## Kappa : 0.4533
## Mcnemar's Test P-Value : 0.03097
##
## Sensitivity : 0.5000
## Specificity : 0.9167
## Pos Pred Value : 0.6545
## Neg Pred Value : 0.8531
## Prevalence : 0.2400
## Detection Rate : 0.1200
## Detection Prevalence : 0.1833
## Balanced Accuracy : 0.7083
##
## 'Positive' Class : Yes
##
## calculate cost
cost_glm <- sum(test_conf$table * as.vector(penaltyMatrix))
cost_glm
## [1] 131
final_model <- glm_final
creditDataNumeric$prediction <- predict(final_model, type = "response", newdata = creditDataNumeric[, -60])
creditDataNumeric$prediction <- factor(ifelse(creditDataNumeric$prediction >= 0.50, "Default", "Not Default"))
creditData$prediction <- creditDataNumeric$prediction