Batter up

The movie Moneyball focuses on the “quest for the secret of success in baseball”. It follows a low-budget team, the Oakland Athletics, who believed that underused statistics, such as a player’s ability to get on base, betterpredict the ability to score runs than typical statistics like home runs, RBIs (runs batted in), and batting average. Obtaining players who excelled in these underused statistics turned out to be much more affordable for the team.

In this lab we’ll be looking at data from all 30 Major League Baseball teams and examining the linear relationship between runs scored in a season and a number of other player statistics. Our aim will be to summarize these relationships both graphically and numerically in order to find which variable, if any, helps us best predict a team’s runs scored in a season.

The data

Let’s load up the data for the 2011 season.

load("more/mlb11.RData")

In addition to runs scored, there are seven traditionally used variables in the data set: at-bats, hits, home runs, batting average, strikeouts, stolen bases, and wins. There are also three newer variables: on-base percentage, slugging percentage, and on-base plus slugging. For the first portion of the analysis we’ll consider the seven traditional variables. At the end of the lab, you’ll work with the newer variables on your own.

  1. What type of plot would you use to display the relationship between runs and one of the other numerical variables? Plot this relationship using the variable at_bats as the predictor. Does the relationship look linear? If you knew a team’s at_bats, would you be comfortable using a linear model to predict the number of runs?

Answer: We can use a scatterplot to display the relationship between runs and one of the other numerical variables.

library(ggplot2)
ggplot(mlb11, aes(x=at_bats, y=runs)) +
  geom_point()

The data looks to have a good linear positive trend between these 2 variables. Now to create the linear line for the least squared regression, we will define a regressor for the 2 variables. And then build the line for the predicted values as per the regression model.

at_bats_regressor <- lm(formula = runs ~ at_bats, mlb11)

ggplot(mlb11, aes(x=at_bats, y=runs)) +
  geom_point(color = "red") +
  geom_line(aes(x=at_bats, y=predict(at_bats_regressor, newdata = mlb11)), color = "blue")

If the relationship looks linear, we can quantify the strength of the relationship with the correlation coefficient.

cor(mlb11$runs, mlb11$at_bats)
## [1] 0.610627

Sum of squared residuals

Think back to the way that we described the distribution of a single variable. Recall that we discussed characteristics such as center, spread, and shape. It’s also useful to be able to describe the relationship of two numerical variables, such as runs and at_bats above.

  1. Looking at your plot from the previous exercise, describe the relationship between these two variables. Make sure to discuss the form, direction, and strength of the relationship as well as any unusual observations.

Just as we used the mean and standard deviation to summarize a single variable, we can summarize the relationship between these two variables by finding the line that best follows their association. Use the following interactive function to select the line that you think does the best job of going through the cloud of points.

plot_ss(x = mlb11$at_bats, y = mlb11$runs)

## Click two points to make a line.
                                
## Call:
## lm(formula = y ~ x, data = pts)
## 
## Coefficients:
## (Intercept)            x  
##  -2789.2429       0.6305  
## 
## Sum of Squares:  123721.9

After running this command, you’ll be prompted to click two points on the plot to define a line. Once you’ve done that, the line you specified will be shown in black and the residuals in blue. Note that there are 30 residuals, one for each of the 30 observations. Recall that the residuals are the difference between the observed values and the values predicted by the line:

\[ e_i = y_i - \hat{y}_i \]

The most common way to do linear regression is to select the line that minimizes the sum of squared residuals. To visualize the squared residuals, you can rerun the plot command and add the argument showSquares = TRUE.

plot_ss(x = mlb11$at_bats, y = mlb11$runs, showSquares = TRUE)

## Click two points to make a line.
                                
## Call:
## lm(formula = y ~ x, data = pts)
## 
## Coefficients:
## (Intercept)            x  
##  -2789.2429       0.6305  
## 
## Sum of Squares:  123721.9

Note that the output from the plot_ss function provides you with the slope and intercept of your line as well as the sum of squares.

  1. Using plot_ss, choose a line that does a good job of minimizing the sum of squares. Run the function several times. What was the smallest sum of squares that you got? How does it compare to your neighbors?

Answer: The value of sum of squared residuals will change as we run multiple iterations of this function by selecting any 2 pooints every time. To find the minimum squared line, we will use a built-in argument of this function, which is leastSquares = TRUE. It will give the line which is the best linear model in this respect.

plot_ss(x = mlb11$at_bats, y = mlb11$runs, leastSquares = TRUE)

## 
                                
## Call:
## lm(formula = y ~ x)
## 
## Coefficients:
## (Intercept)            x  
##  -2789.2429       0.6305  
## 
## Sum of Squares:  123721.9

The linear model

It is rather cumbersome to try to get the correct least squares line, i.e. the line that minimizes the sum of squared residuals, through trial and error. Instead we can use the lm function in R to fit the linear model (a.k.a. regression line).

m1 <- lm(runs ~ at_bats, data = mlb11)

The first argument in the function lm is a formula that takes the form y ~ x. Here it can be read that we want to make a linear model of runs as a function of at_bats. The second argument specifies that R should look in the mlb11 data frame to find the runs and at_bats variables.

The output of lm is an object that contains all of the information we need about the linear model that was just fit. We can access this information using the summary function.

summary(m1)
## 
## Call:
## lm(formula = runs ~ at_bats, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -125.58  -47.05  -16.59   54.40  176.87 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2789.2429   853.6957  -3.267 0.002871 ** 
## at_bats         0.6305     0.1545   4.080 0.000339 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 66.47 on 28 degrees of freedom
## Multiple R-squared:  0.3729, Adjusted R-squared:  0.3505 
## F-statistic: 16.65 on 1 and 28 DF,  p-value: 0.0003388

Let’s consider this output piece by piece. First, the formula used to describe the model is shown at the top. After the formula you find the five-number summary of the residuals. The “Coefficients” table shown next is key; its first column displays the linear model’s y-intercept and the coefficient of at_bats. With this table, we can write down the least squares regression line for the linear model:

\[ \hat{y} = -2789.2429 + 0.6305 * atbats \]

One last piece of information we will discuss from the summary output is the Multiple R-squared, or more simply, \(R^2\). The \(R^2\) value represents the proportion of variability in the response variable that is explained by the explanatory variable. For this model, 37.3% of the variability in runs is explained by at-bats.

  1. Fit a new model that uses homeruns to predict runs. Using the estimates from the R output, write the equation of the regression line. What does the slope tell us in the context of the relationship between success of a team and its home runs?

Answer: Creating a model to predict runs using homeruns:

homeruns_model <- lm(formula = runs ~ homeruns, data = mlb11)

#Writing the details from the model
summary(homeruns_model)
## 
## Call:
## lm(formula = runs ~ homeruns, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -91.615 -33.410   3.231  24.292 104.631 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 415.2389    41.6779   9.963 1.04e-10 ***
## homeruns      1.8345     0.2677   6.854 1.90e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 51.29 on 28 degrees of freedom
## Multiple R-squared:  0.6266, Adjusted R-squared:  0.6132 
## F-statistic: 46.98 on 1 and 28 DF,  p-value: 1.9e-07

Based on the output from above, in the coefficients table, the first column gives the intercept and the slope respectively from the first row and 2nd row of the table. Hence the equation for the least squared regression line will be: \[ \hat{y} = -415.2389 + 1.8345 * homeruns \]

Also creating the plot for the same, scatter plot Plus the linear model:

ggplot(mlb11, aes(x=homeruns, y=runs)) +
  geom_point(color = "red") +
  geom_line(aes(x=homeruns, y=predict(homeruns_model, newdata = mlb11)), color = "blue")

Prediction and prediction errors

Let’s create a scatterplot with the least squares line laid on top.

plot(mlb11$runs ~ mlb11$at_bats)
abline(m1)

The function abline plots a line based on its slope and intercept. Here, we used a shortcut by providing the model m1, which contains both parameter estimates. This line can be used to predict \(y\) at any value of \(x\). When predictions are made for values of \(x\) that are beyond the range of the observed data, it is referred to as extrapolation and is not usually recommended. However, predictions made within the range of the data are more reliable. They’re also used to compute the residuals.

  1. If a team manager saw the least squares regression line and not the actual data, how many runs would he or she predict for a team with 5,578 at-bats? Is this an overestimate or an underestimate, and by how much? In other words, what is the residual for this prediction?

Answer: Base don the equation:

y_predict <- -2789.2429 + (0.6305 * 5578)
y_predict
## [1] 727.6861

In the actual data set, there is no entry for the ab_stats value 5578. However, there is a very close value which is 5579. The runs for this value is 713. Hence the predicted value > actual value

So, residual is: observed value - predicted value = 713 - 727.69 = -24.69

Model diagnostics

To assess whether the linear model is reliable, we need to check for (1) linearity, (2) nearly normal residuals, and (3) constant variability.

Linearity: You already checked if the relationship between runs and at-bats is linear using a scatterplot. We should also verify this condition with a plot of the residuals vs. at-bats. Recall that any code following a # is intended to be a comment that helps understand the code but is ignored by R.

plot(m1$residuals ~ mlb11$at_bats)
abline(h = 0, lty = 3)  # adds a horizontal dashed line at y = 0

  1. Is there any apparent pattern in the residuals plot? What does this indicate about the linearity of the relationship between runs and at-bats? Answer: There are 3 outliers in this statistics. Also the residuals does not seem to be normal, and is skewed on the right.

Nearly normal residuals: To check this condition, we can look at a histogram

hist(m1$residuals)

or a normal probability plot of the residuals.

qqnorm(m1$residuals)
qqline(m1$residuals)  # adds diagonal line to the normal prob plot

  1. Based on the histogram and the normal probability plot, does the nearly normal residuals condition appear to be met? Answer: Though it is not completely normal and is skewed on the right. Ideally this should not be ignored. And hence fitting the linear model might not be the best fit.

Constant variability:

  1. Based on the plot in (1), does the constant variability condition appear to be met? Answer: Poltting the same graph here to answer the question.
ggplot(mlb11, aes(x=at_bats, y=runs)) +
  geom_point(color = "red") +
  geom_line(aes(x=at_bats, y=predict(at_bats_regressor, newdata = mlb11)), color = "blue")

The constant variability does not appear to be met as there are at least 3 points which have high variability around the least squares line. * * *

On Your Own

Answer: Let us try hits as a predictor for runs for this question.

hits_regressor <- lm(formula = runs ~ hits, mlb11)

ggplot(mlb11, aes(x=hits, y=runs)) +
  geom_point(color = "red") +
  geom_line(aes(x=hits, y=predict(hits_regressor, newdata = mlb11)), color = "blue")

Yes, from the plot and linear line, it looks like there is a linear relationship between runs and hits.

Answer:

summary(hits_regressor)
## 
## Call:
## lm(formula = runs ~ hits, data = mlb11)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -103.718  -27.179   -5.233   19.322  140.693 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -375.5600   151.1806  -2.484   0.0192 *  
## hits           0.7589     0.1071   7.085 1.04e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.23 on 28 degrees of freedom
## Multiple R-squared:  0.6419, Adjusted R-squared:  0.6292 
## F-statistic:  50.2 on 1 and 28 DF,  p-value: 1.043e-07

More the R-value squared is near to value 1, better linear model it is. Also lesser the p-value, more better the linear regression model is and the predictor value is better indicator of the response variable. For hits, R-value is 0.6419, and same for at_bats is 0.3729. Also the p-value for hits is much less than the p-value for at_bats. Hence we can safely say that hits is a better predictor of runs as compared to the at_bats.

Using bat_avg:

bat_avg_model <- lm(formula = runs ~ bat_avg, mlb11)

ggplot(mlb11, aes(x=bat_avg, y=runs)) +
  geom_point(color = "red") +
  geom_line(aes(x=bat_avg, y=predict(bat_avg_model, newdata = mlb11)), color = "blue")

summary(bat_avg_model)
## 
## Call:
## lm(formula = runs ~ bat_avg, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -94.676 -26.303  -5.496  28.482 131.113 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -642.8      183.1  -3.511  0.00153 ** 
## bat_avg       5242.2      717.3   7.308 5.88e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 49.23 on 28 degrees of freedom
## Multiple R-squared:  0.6561, Adjusted R-squared:  0.6438 
## F-statistic: 53.41 on 1 and 28 DF,  p-value: 5.877e-08

Using strikeouts:

strikeouts_model <- lm(formula = runs ~ strikeouts, mlb11)

ggplot(mlb11, aes(x=strikeouts, y=runs)) +
  geom_point(color = "red") +
  geom_line(aes(x=strikeouts, y=predict(strikeouts_model, newdata = mlb11)), color = "blue")

summary(strikeouts_model)
## 
## Call:
## lm(formula = runs ~ strikeouts, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -132.27  -46.95  -11.92   55.14  169.76 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1054.7342   151.7890   6.949 1.49e-07 ***
## strikeouts    -0.3141     0.1315  -2.389   0.0239 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 76.5 on 28 degrees of freedom
## Multiple R-squared:  0.1694, Adjusted R-squared:  0.1397 
## F-statistic: 5.709 on 1 and 28 DF,  p-value: 0.02386

Using stolen_bases:

stolen_bases_model <- lm(formula = runs ~ stolen_bases, mlb11)

ggplot(mlb11, aes(x=stolen_bases, y=runs)) +
  geom_point(color = "red") +
  geom_line(aes(x=stolen_bases, y=predict(stolen_bases_model, newdata = mlb11)), color = "blue")

summary(stolen_bases_model)
## 
## Call:
## lm(formula = runs ~ stolen_bases, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -139.94  -62.87   10.01   38.54  182.49 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  677.3074    58.9751  11.485 4.17e-12 ***
## stolen_bases   0.1491     0.5211   0.286    0.777    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 83.82 on 28 degrees of freedom
## Multiple R-squared:  0.002914,   Adjusted R-squared:  -0.0327 
## F-statistic: 0.08183 on 1 and 28 DF,  p-value: 0.7769

Using wins:

wins_model <- lm(formula = runs ~ wins, mlb11)

ggplot(mlb11, aes(x=wins, y=runs)) +
  geom_point(color = "red") +
  geom_line(aes(x=wins, y=predict(wins_model, newdata = mlb11)), color = "blue")

summary(wins_model)
## 
## Call:
## lm(formula = runs ~ wins, data = mlb11)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -145.450  -47.506   -7.482   47.346  142.186 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  342.121     89.223   3.834 0.000654 ***
## wins           4.341      1.092   3.977 0.000447 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 67.1 on 28 degrees of freedom
## Multiple R-squared:  0.361,  Adjusted R-squared:  0.3381 
## F-statistic: 15.82 on 1 and 28 DF,  p-value: 0.0004469

If we see the R-squared value for bat_avg, it is the maximum in all which is 0.6561, and also the p-value is the minimum of all, which is 5.877e-08. Hence the best predictor of runs from the list of traditional variables is the bat_avg.

new_onbase_model <- lm(formula = runs ~ new_onbase, mlb11)

ggplot(mlb11, aes(x=new_onbase, y=runs)) +
  geom_point(color = "red") +
  geom_line(aes(x=new_onbase, y=predict(new_onbase_model, newdata = mlb11)), color = "blue")

summary(new_onbase_model)
## 
## Call:
## lm(formula = runs ~ new_onbase, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -58.270 -18.335   3.249  19.520  69.002 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -1118.4      144.5  -7.741 1.97e-08 ***
## new_onbase    5654.3      450.5  12.552 5.12e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 32.61 on 28 degrees of freedom
## Multiple R-squared:  0.8491, Adjusted R-squared:  0.8437 
## F-statistic: 157.6 on 1 and 28 DF,  p-value: 5.116e-13

Using new_slug:

new_slug_model <- lm(formula = runs ~ new_slug, mlb11)

ggplot(mlb11, aes(x=new_slug, y=runs)) +
  geom_point(color = "red") +
  geom_line(aes(x=new_slug, y=predict(new_slug_model, newdata = mlb11)), color = "blue")

summary(new_slug_model)
## 
## Call:
## lm(formula = runs ~ new_slug, data = mlb11)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -45.41 -18.66  -0.91  16.29  52.29 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -375.80      68.71   -5.47 7.70e-06 ***
## new_slug     2681.33     171.83   15.61 2.42e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 26.96 on 28 degrees of freedom
## Multiple R-squared:  0.8969, Adjusted R-squared:  0.8932 
## F-statistic: 243.5 on 1 and 28 DF,  p-value: 2.42e-15

Using new_obs:

new_obs_model <- lm(formula = runs ~ new_obs, mlb11)

ggplot(mlb11, aes(x=new_obs, y=runs)) +
  geom_point(color = "red") +
  geom_line(aes(x=new_obs, y=predict(new_obs_model, newdata = mlb11)), color = "blue")

summary(new_obs_model)
## 
## Call:
## lm(formula = runs ~ new_obs, data = mlb11)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -43.456 -13.690   1.165  13.935  41.156 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -686.61      68.93  -9.962 1.05e-10 ***
## new_obs      1919.36      95.70  20.057  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 21.41 on 28 degrees of freedom
## Multiple R-squared:  0.9349, Adjusted R-squared:  0.9326 
## F-statistic: 402.3 on 1 and 28 DF,  p-value: < 2.2e-16

All these 3 new variables are all better predictor of the runs as compared to the seven traditional variables, as we see the squared R values for these 3 are more than that of all of the traditional variables. Also, the p-value of these 3 new variables is very less as compared the p-value of each of the traditional variables. From within these 3 new variables, the maximum R-quared and the minimum p-value are for the variable : new_obs, which are 0.9349 and 2.2e-16 respectively. Hence the best predictor of runs from all the 10 variables is the variable : new_obs.

This is a product of OpenIntro that is released under a Creative Commons Attribution-ShareAlike 3.0 Unported. This lab was adapted for OpenIntro by Andrew Bray and Mine Çetinkaya-Rundel from a lab written by the faculty and TAs of UCLA Statistics.