According to equation 9.42 in Seinfeld & Pandis (2006), settling velocity of a spherical particle is
\[
v_t = \frac{1}{18} \frac{D_p^2 \rho_p g C_c}{\mu}
\]
settl_vel <- function(Dp, # particle diameter [micron]
rhop=1, # particle density [g/cm^3]
Cc # slip correction factor [-]
) {
g <- 980.7 # gravity accel. [cm/s^2]
mu <- 1.72*10^(-4) # atm.viscosity [g/(cm*s)]
Dp_cm <- Dp/10000 # particle diameter [cm]
v_t <- 1/18 * (Dp_cm^2*rhop*g*Cc) / mu # settling velocity [cm/s]
return(v_t)
}
For a 10 micron diameter, with Cc=1.016 (Tab.9.3, Seinfeld & Pandis 2006)
settl_vel(Dp=10, Cc=1.016) * 3600 # [cm/h]
[1] 1158.594
We can express the slip correction factor as a linear approximation to the empirical values (see Tab.9.3)
slip_corr_fact <- function(Dp) {
approxfun(x = c(0.001,0.002,0.005,0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10,20,50,100),
y = c(216,108,43.6,22.2,11.4,4.95,2.85,1.865,1.326,1.164,1.082,1.032,1.016,1.008,1.003,1.0016))(Dp)
}
Let’s plot settling velocities as a function of diameter and density. Tipical values for density are in the range 0.1-1.7 g/cm3 (Rissler et al, 2014).
# data for lines
density <- c(0.1,0.5,1,1.7)
diameter <- c(0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10,20)
library(dplyr)
df <- expand.grid(diameter=diameter, density=density) %>%
mutate(velocity=settl_vel(Dp = diameter,
rhop = density,
Cc = slip_corr_fact(diameter)),
density=as.factor(density),
velocity=velocity*3600 # cm/h
)
# data for points
density <- c(0.1,1.7)
diameter <- c(0.1, 1,10)
df2 <- expand.grid(diameter=diameter, density=density) %>%
mutate(velocity=settl_vel(Dp = diameter,
rhop = density,
Cc = slip_corr_fact(diameter)),
density=as.factor(density),
velocity=velocity*3600 # cm/h
)
library(ggplot2)
ggplot(data=df, aes(x=diameter, y=velocity, col=density, group=density)) +
geom_line(data=df) +
labs(x=expression(D[p]~(mu*m)), y=expression(v[t]~(cm/h))) +
scale_x_log10(breaks=c(0.01,0.1,1,10), labels=c(0.01,0.1,1,10)) +
scale_y_log10(breaks=c(0.1,1,10,100,1000), labels=c(0.1,1,10,100,1000)) +
theme_bw() +
geom_text(data=df2, aes(label=signif(velocity,2)), col="black")

LS0tCnRpdGxlOiAiZ3Jhdml0YXRpb25hbCBzZXR0bGluZyBvZiBhbiBhZXJvc29sIHBhcnRpY2xlIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgpBY2NvcmRpbmcgdG8gZXF1YXRpb24gOS40MiBpbiBTZWluZmVsZCAmIFBhbmRpcyAoMjAwNiksIHNldHRsaW5nIHZlbG9jaXR5IG9mIGEgc3BoZXJpY2FsIHBhcnRpY2xlIGlzCgokJAp2X3QgPSBcZnJhY3sxfXsxOH0gXGZyYWN7RF9wXjIgXHJob19wIGcgQ19jfXtcbXV9CiQkCgpgYGB7cn0Kc2V0dGxfdmVsIDwtIGZ1bmN0aW9uKERwLCAjIHBhcnRpY2xlIGRpYW1ldGVyIFttaWNyb25dCiAgICAgICAgICAgICAgIHJob3A9MSwgICAgIyBwYXJ0aWNsZSBkZW5zaXR5IFtnL2NtXjNdCiAgICAgICAgICAgICAgIENjICAgICAgICAgIyBzbGlwIGNvcnJlY3Rpb24gZmFjdG9yIFstXQogICAgICAgICAgICAgICApIHsKICBnICA8LSA5ODAuNyAgICAgICAgIyBncmF2aXR5IGFjY2VsLiBbY20vc14yXQogIG11IDwtIDEuNzIqMTBeKC00KSAjIGF0bS52aXNjb3NpdHkgW2cvKGNtKnMpXQogIERwX2NtIDwtIERwLzEwMDAwICAjIHBhcnRpY2xlIGRpYW1ldGVyIFtjbV0KICB2X3QgPC0gMS8xOCAqIChEcF9jbV4yKnJob3AqZypDYykgLyBtdSAjIHNldHRsaW5nIHZlbG9jaXR5IFtjbS9zXQogIHJldHVybih2X3QpCn0KYGBgCgpGb3IgYSAxMCBtaWNyb24gZGlhbWV0ZXIsIHdpdGggQ35jfj0xLjAxNiAoVGFiLjkuMywgU2VpbmZlbGQgJiBQYW5kaXMgMjAwNikKYGBge3IsIGVjaG89VFJVRX0Kc2V0dGxfdmVsKERwPTEwLCBDYz0xLjAxNikgKiAzNjAwICAjIFtjbS9oXQpgYGAKCldlIGNhbiBleHByZXNzIHRoZSBzbGlwIGNvcnJlY3Rpb24gZmFjdG9yIGFzIGEgbGluZWFyIGFwcHJveGltYXRpb24gdG8gdGhlIGVtcGlyaWNhbCB2YWx1ZXMgKHNlZSBUYWIuOS4zKQpgYGB7cn0Kc2xpcF9jb3JyX2ZhY3QgPC0gZnVuY3Rpb24oRHApIHsKICBhcHByb3hmdW4oeCA9IGMoMC4wMDEsMC4wMDIsMC4wMDUsMC4wMSwwLjAyLDAuMDUsMC4xLDAuMiwwLjUsMSwyLDUsMTAsMjAsNTAsMTAwKSwKICAgICAgICAgICAgeSA9IGMoMjE2LDEwOCw0My42LDIyLjIsMTEuNCw0Ljk1LDIuODUsMS44NjUsMS4zMjYsMS4xNjQsMS4wODIsMS4wMzIsMS4wMTYsMS4wMDgsMS4wMDMsMS4wMDE2KSkoRHApCn0KCmBgYAoKTGV0J3MgcGxvdCBzZXR0bGluZyB2ZWxvY2l0aWVzIGFzIGEgZnVuY3Rpb24gb2YgZGlhbWV0ZXIgYW5kIGRlbnNpdHkuIFRpcGljYWwgdmFsdWVzIGZvciBkZW5zaXR5IGFyZSBpbiB0aGUgcmFuZ2UgMC4xLTEuNyBnL2NtXjNeIChbUmlzc2xlciBldCBhbCwgMjAxNF0oaHR0cHM6Ly9wdWJzLmFjcy5vcmcvZG9pL2Z1bGwvMTAuMTAyMS9lczUwMDAzNTMpKS4KCmBgYHtyfQojIGRhdGEgZm9yIGxpbmVzCmRlbnNpdHkgPC0gYygwLjEsMC41LDEsMS43KQpkaWFtZXRlciA8LSBjKDAuMDEsMC4wMiwwLjA1LDAuMSwwLjIsMC41LDEsMiw1LDEwLDIwKQpsaWJyYXJ5KGRwbHlyKQpkZiA8LSBleHBhbmQuZ3JpZChkaWFtZXRlcj1kaWFtZXRlciwgZGVuc2l0eT1kZW5zaXR5KSAlPiUKICBtdXRhdGUodmVsb2NpdHk9c2V0dGxfdmVsKERwID0gZGlhbWV0ZXIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgcmhvcCA9IGRlbnNpdHksIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgQ2MgPSBzbGlwX2NvcnJfZmFjdChkaWFtZXRlcikpLAogICAgICAgICBkZW5zaXR5PWFzLmZhY3RvcihkZW5zaXR5KSwKICAgICAgICAgdmVsb2NpdHk9dmVsb2NpdHkqMzYwMCAgIyBjbS9oCiAgICAgICAgICkKIyBkYXRhIGZvciBwb2ludHMKZGVuc2l0eSA8LSBjKDAuMSwxLjcpCmRpYW1ldGVyIDwtIGMoMC4xLCAxLDEwKQpkZjIgPC0gZXhwYW5kLmdyaWQoZGlhbWV0ZXI9ZGlhbWV0ZXIsIGRlbnNpdHk9ZGVuc2l0eSkgJT4lCiAgbXV0YXRlKHZlbG9jaXR5PXNldHRsX3ZlbChEcCA9IGRpYW1ldGVyLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJob3AgPSBkZW5zaXR5LCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgIENjID0gc2xpcF9jb3JyX2ZhY3QoZGlhbWV0ZXIpKSwKICAgICAgICAgZGVuc2l0eT1hcy5mYWN0b3IoZGVuc2l0eSksCiAgICAgICAgIHZlbG9jaXR5PXZlbG9jaXR5KjM2MDAgICMgY20vaAogICAgICAgICApCmxpYnJhcnkoZ2dwbG90MikKZ2dwbG90KGRhdGE9ZGYsIGFlcyh4PWRpYW1ldGVyLCB5PXZlbG9jaXR5LCBjb2w9ZGVuc2l0eSwgZ3JvdXA9ZGVuc2l0eSkpICsKICBnZW9tX2xpbmUoZGF0YT1kZikgKwogIGxhYnMoeD1leHByZXNzaW9uKERbcF1+KG11Km0pKSwgeT1leHByZXNzaW9uKHZbdF1+KGNtL2gpKSkgKwogIHNjYWxlX3hfbG9nMTAoYnJlYWtzPWMoMC4wMSwwLjEsMSwxMCksIGxhYmVscz1jKDAuMDEsMC4xLDEsMTApKSArCiAgc2NhbGVfeV9sb2cxMChicmVha3M9YygwLjEsMSwxMCwxMDAsMTAwMCksIGxhYmVscz1jKDAuMSwxLDEwLDEwMCwxMDAwKSkgKwogIHRoZW1lX2J3KCkgKwogIGdlb21fdGV4dChkYXRhPWRmMiwgYWVzKGxhYmVsPXNpZ25pZih2ZWxvY2l0eSwyKSksIGNvbD0iYmxhY2siKQpgYGAKCg==