Manual Solution
\[ y = 5x \] Make it a function of \(y\):
\[ x = \frac{y}{5}\] The disk method is given as:
\[ V = \pi \int_a^b{R(x)^2}dx\]
\[ \begin{align} V &= \pi \int_5^{10}{(\frac{y}{5})^2}dx \\ \\ &= \pi\bigg[ \frac{x^3}{75} \bigg]_5^{10} \\ \\ &= \pi \bigg[\frac{1000}{75} - \frac{125}{75}\bigg] \\ \\ &= \pi \frac{875}{75} \\ \\ &\approx 36.65191 \space units^3 \end{align} \]
Solution in R
volume <- integrate( function(y){(y/5)^2} ,lower = 5, upper = 10)
print(paste0("The volume is ", volume$value * pi , " cubic units."))## [1] "The volume is 36.6519142918809 cubic units."