WebTest Name: (Test)
x <- c(5.6, 6.3, 7, 7.7, 8.4)
y <- c(8.8, 12.4, 14.8, 18.2, 20.8)
regression_line <- lm(y~x)
(variables<-summary(regression_line))
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## 1 2 3 4 5
## -0.24 0.38 -0.20 0.22 -0.16
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.8000 1.0365 -14.28 0.000744 ***
## x 4.2571 0.1466 29.04 8.97e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3246 on 3 degrees of freedom
## Multiple R-squared: 0.9965, Adjusted R-squared: 0.9953
## F-statistic: 843.1 on 1 and 3 DF, p-value: 8.971e-05
\[f(x) = 4.26x -14.8\]
\(\frac{df}{dx} = 24-6y^2\) => \(24-6y^2 = 0\) => \(y = -2,2\)
\(\frac{df}{dy} = -12xy-24y^2\) => \(-12xy-24y^2 = 0\) => \(-xy-2y^2=0\) => \(x = -2y = 4,-4\)
\[\begin{cases}(4,-2): f(x,y) = 24*4-6*4*(-2)^2-8(-2)^3 = 64 > 0 \space [saddle \space point] \\ (-4,2): f(x,y) = 24*-4-(6*-4*(2)^2)-8(2)^3 = -64 < 0 \end{cases}\]
\(\frac{d^2f}{dx} = 0\)
\(\frac{d^2f}{dy} = -12x-48y\)
$2.30 and the “name” brand for $4.10?Step 1. \(R(x,y) = x(81 - 21x + 17y) + y(40 + 11x - 23y) \\ = 81x−21x^2+17xy+40y+11xy−23y^2 \\ = -21x^2 - 23y^2 + 28xy + 81x + 40y\)
x <- 2.3; y <- 4.1
(total <- -21*x^2 - 23*y^2 + 28*x*y + 81*x + 40*y)
## [1] 116.62
Step 2. \(R(2.3, 4.1) =\) 116.62
\(x+y=96\) => \(x=96-y\)
\(C(96-y, y) = \frac{1}{6}(96-y)^2 + \frac{1}{6}y^2 + 7(96-y) + 25y + 700 \\ = \frac{1}{6}(9216−192y+y^2)+ \frac{1}{6}y^2 + 672 -7y +25y+700 \\ = \frac{1}{6}y^2+1536−32y+\frac{1}{6}y^2+18y+1372 \\ = \frac{1}{3}y^2−14y+2908\)
\(C^{'}(y) = \frac{2}{3}y-14\) => \(\frac{2}{3}y-14 = 0\) => \(y = 21\)
\(x=96-y=96-21=75\)
To minimize the total weekly cost: \(\begin{cases} 75 \space units \space in \space LA \\ 21 \space units \space in \space Denver \end{cases}\)Let \(u = 8x + 3y\) => \(du = 8dx\) => \(dx = \frac{1}{8}du\)
\[ \int_2^4\int_2^4 e^{(8x + 3y)} dA\\ = \int_2^4\int_2^4 e^{(8x+3y)} dxdy \\ = \frac{1}{8}\int_2^4\int_2^4 e^udu \\ = \frac{1}{8}\int_2^4 [e^{(8x+3y)}]_2^4 dy\\ = \frac{1}{8}\int_2^4 [e^{(32+3y)}-e^{(16+3y)}] dy\\ = \frac{1}{8}\int_2^4 e^{(32+3y)}dy -\frac{1}{8}\int_2^4e^{(16+3y)}dy \\ = \frac{1}{24} [e^{(32+3y)}-e^{(16+3y)}]_2^4 \\ = \frac{1}{24} \Bigg[e^{44}-e^{38}-6^{28}+e^{22}\Bigg] \]
1/24*(exp(44) - exp(38) - exp(28) + exp(22))
## [1] 5.341559e+17