WebTest Name: (Test)
\[\int 4e^{-7x}dx\]
Let u = -7x => \(du = -7dx\) => \(-\frac{1}{7}du = dx\)
\(\int 4e^{-7x}dx = 4\int e^{-7x}dx = -\frac{4}{7}\int e^{u}du = -\frac{4}{7} e^{u} + C\)
\(N(t) = \int \frac{dN}{dt} = \int (-\frac{3150}{t^4} - 220)dt = -\int_{t=0}^{t=1}(\frac{3150}{t^4} + 220)dt = -(-\frac{3150}{3t^3}+220t) + C = [\frac{3150}{3t^3}-220t + C]_{0}^{1} = \frac{3150}{3}-220 + C\)
for \(N(t) = 6530 = \frac{3150}{3}-220 + C\) => C = 5700
library(ggplot2)
f <- function(x)(2*x-9)
ggplot(mapping = aes(x = 4.5:8.5)) +
stat_function(fun = f, size = 1, aes(color = "f(x)")) +
labs(x = "x", y = "f(x)") +
theme_light() +
theme(legend.position = "bottom")
\(x^2 - 2x - 2 = x + 2 <=> x^2 - 3x - 3 = 0 <=> (x-4)(x+1) = 0 <=> x = -1,4\)
f <- function(x)(x^2 - 2*x - 2)
g <- function(x)(x+2)
i <- (as.numeric(integrate(g, lower = -1, upper = 4)[1]) - as.numeric(integrate(f, lower = -1, upper = 4)[1]))
\[\int_{-1}^{4} \bigg((x+2)-(x^2 - 2x - 2)\bigg)dx = \int_{-1}^{4} (-x^2+3x+4)dx = [\frac{-x^3}{3}+\frac{3x^2}{2}+4x]_{-1}^{4} = 20.8333333 \]
ggplot(mapping = aes(x = -5:5)) +
stat_function(fun = g, size = 1, aes(color = "g(x)")) +
stat_function(fun = f, size = 1, aes(color = "f(x)")) +
labs(x = "x", y = "f(x)") +
theme_light() +
theme(legend.position = "bottom")
$3.75
to store one flat iron for one year. There is a fixed cost of $8.25
for each order. Find the lot size and the number of orders per year that will minimize inventory costs.storage cost = \(3.75 * \frac{x}{2} = 1.875x\)
ordering cost = \(8.25\frac{110}{x} = \frac{907.5}{x}\)
orders = \(\frac{110}{x}\)
\(f(x) = 1.875x + \frac{907.5}{x}\) => \(f^{'}(x) = 1.875 - \frac{907.5}{x^2}\)
at \(f^{'}(x) = 0 => 1.875 - \frac{907.5}{x^2} = 0\) :
\[ \begin{cases} x = inventory \space costs = \sqrt\frac{907.5}{1.875} = 22 \\ orders = \frac{110}{x} = \frac{110}{22} = 5\end{cases} \]\[\int ln(9x).x^6 dx\]
Let \(u = ln(9x)\) => \(du = \frac{1}{x}dx\) and \(dv = x^6 dx\) => \(v = \frac{x^7}{7}\)
\(\int ln(9x).x^6 dx = \int udv = uv - \int vdu = ln(9x)\frac{x^7}{7} - \int\frac{x^7}{7}\frac{1}{x}dx = ln(9x)\frac{x^7}{7} - \frac{1}{7} \int x^6dx = ln(9x)\frac{x^7}{7} - \frac{x^7}{49} + C = \frac{x^7}{7}\bigg(ln(9x) - \frac{1}{7}\bigg) + C\)\[f(x)=\frac{1}{6x}\]
\(\int_{1}^{e^6} \frac{1}{6x}dx = [\frac{logx}{6}+C]_{1}^{e^6} = \frac{loge^6-log1}{6} = 1 \in [1, e^6]\)