About
This worksheet has three main taks: analyze the time series of returns, assess for normal distribution, and check for exponential behavior of prices time series.
Setup
Remember to always set your working directory to the source file location. Go to ‘Session’, scroll down to ‘Set Working Directory’, and click ‘To Source File Location’. Read carefully the below and follow the instructions to complete the tasks and answer any questions. Submit your work to RPubs as detailed in previous notes.
Note
For clarity, tasks/questions to be completed/answered are highlighted in red color (color visible only in preview mode) and numbered according to their particular placement in the task section. Type your answers outside the red color tags!
Quite often you will need to add your own code chunk. Execute sequentially all code chunks, preview, publish, and submit link on Sakai following the naming convention. Make sure to add comments to your code where appropriate. Use own language!
Any sign of plagiarism, will result in dissmissal of work!
Task 1: Plot of Returns & Testing for Normality Distribution
In this task we will look at various type of daily returns calculations for comparison and to test normality.
# Require will load the package only if not installed
# Dependencies = TRUE makes sure that dependencies are install
if(!require("quantmod",quietly = TRUE))
install.packages("quantmod",dependencies = TRUE, repos = "https://cloud.r-project.org")
1A)
Error: unexpected symbol in "1A"
##### 1A) Follow the instructions on p.41 to generate four plots for daily, daily log, weekly, and monthly returns. Select a stock of your choice and a time period long enough (5-10 years) to capture the returns behavior.
getSymbols("AMZN",src="yahoo")
[1] "AMZN"
AMZNRD=periodReturn(AMZN,period = "daily")
plot(AMZNRD, main="AMAZON daily return")

getSymbols("AMZN",src="yahoo")
[1] "AMZN"
AMZNRD=dailyReturn(AMZN,perios="daily", type="log")
plot(AMZNRD, main="AMAZON daily log returns")

getSymbols("AMZN",src="yahoo")
[1] "AMZN"
AMZNRD=periodReturn(AMZN,period="weekly")
plot(AMZNRD, main="AMAZON weekly log returns")

getSymbols("AMZN",src="yahoo")
[1] "AMZN"
AMZNRD=periodReturn(AMZN,period ="monthly")
plot(AMZNRD, main="AMAZON monthly returns")

##### 1B) For the case of daily log returns only, write down the mathematical formula representing the calculation in the code. Confirm integrity of your mathematical formula by selecting a recent data point from your time series object, substituting the corresponding values in the formula to manually calculate the log return, and comparing both results.
ln [\(\frac{Share price at i}{Share price at i-r}\) ]
where i and (i-r) represent time instances
##### 1C) Check the normality of the daily returns using the R function qqnorm() to generate a Q-Q plot. For the function to work properly, you will need to extract first the numeric values from the time series object. Note that a time series object contains both a date and a corresponding value. To extract the numerical value only, on can use the R function as.numeric() on the time series object. Explain what the Y and X axis of the Q-Q plot represent, and share your observation on the normality of the returns distribution.

The qq plot above indicates extreme values on both tails.It is approximately normaly distributed and the larger values are more than expected in a normal distribution and the smaller values are even lesser than expected
Task 2: Density Distribution
Another way to assess the normality of a distribution, other than a Q-Q plot, is to look at the actual density distribution and compare to a normal distribution.
##### 2A) Follow the example in R Lab 2.7.9/p. 70 to generate the density distribution for your stock of choice. Comment on your results.
require(quantmod)
getSymbols("AMZN",src='yahoo')
[1] "AMZN"
AMZNRd= periodReturn(AMZN,period="daily",type="log")
dsd=density(AMZNRd) #estimate density of daily log ret
yl=c(min(dsd$y),max(dsd$y)) #set y limits
plot(dsd,main="AMAZON daily density distribution",ylim=yl)
##plot the normal density with mean, stdv of apRd
a=seq(min(AMZNRd),max(AMZNRd),0.001)
points(a,dnorm(a,mean(AMZNRd),sd(AMZNRd)), type="l",lty=2)

require(quantmod)
getSymbols("AMZN",src="yahoo")
[1] "AMZN"
AMZNRd= periodReturn(AMZN,period="weekly",type="log")
dsd=density(AMZNRd) #estimate density of daily log ret
yl=c(min(dsd$y),max(dsd$y)) #set y limits
plot(dsd,main="AMAZON weekly density distribution",ylim=yl)
##plot the normal density with mean, stdv of apRd
a=seq(min(AMZNRd),max(AMZNRd),0.001)
points(a,dnorm(a,mean(AMZNRd),sd(AMZNRd)), type="l",lty=2)

require(quantmod)
getSymbols("AMZN",src="yahoo")
[1] "AMZN"
AMZNRd= periodReturn(AMZN,period="monthly",type="log")
dsd=density(AMZNRd) #estimate density of daily log ret
yl=c(min(dsd$y),max(dsd$y)) #set y limits
plot(dsd,main="AMAZON monthly density distribution",ylim=yl)
##plot the normal density with mean, stdv of apRd
a=seq(min(AMZNRd),max(AMZNRd),0.001)
points(a,dnorm(a,mean(AMZNRd),sd(AMZNRd)), type="l",lty=2)

##Repeat above with period="weekly", "monthly".
Task 3: Exponential Behavior of Prices & Curve Fitting
In general, the price history of a stock, over a sufficiently large time window, tends to follow an exponential curve. Many other economic indicators like GDP, population growth, and inflation also follow exponential growth over a long time. Keep in mind that for investment purposes we care more about returns and not prices.
##### 3A) Follow the example in R Lab 2.7.2/p. 67 or R Labs 2 from bookâs website (*) to generate an exponential fit for the Dow Jones Industrial Average DJIA. In case the suggested command in the book does not work, consider using instead the command in the code chunk below to capture the DIJA prices.
getSymbols.FRED("DJIA",env=globalenv())
[1] "DJIA"
require(quantmod); getSymbols("DJIA",src="FRED")
[1] "DJIA"
serie=DJIA["1988/2017"]
price=as.numeric(serie) #extract numeric values of price
time = index(serie) #extract the indices
x=1:length(price)
model=lm(log(price)~x)
expo=exp(model$coef[1]+model$coef[2]*x)
plot(x=time,y=price, main="Dow Jones",type="l")
lines(time,expo,col=2,lwd=2)

##### 3B) Write down the mathematical form representing the exponential function in the code. Substitute for the exact coefficients in the exponential form and clearly label the variables in the function, in particular the time index.
\(e^{(9.090135+0.0003966874t)}\)
where1<=t<=2376
##### 3C) Repeat the exercise in 3A) for AAPL Adjusted prices.
getSymbols("AAPL",src='yahoo')
[1] "AAPL"
AAPLad=AAPL$AAPL.Adjusted
serie=AAPLad["1988/2017"]
price=as.numeric(serie) #extract numeric values of price
time = index(serie) #extract the indices
x=1:length(price)
model=lm(log(price)~x)
expo=exp(model$coef[1]+model$coef[2]*x)
plot(x=time,y=price, main="Apple Adjusted",type="l")
lines(time,expo,col=2,lwd=2)

*http://computationalfinance.lsi.upc.edu
LS0tDQp0aXRsZTogIkZJTkM2MjEgV2ludGVyIDIwMTgtMTkgTGFiIFdvcmtzaGVldCAwMiINCmF1dGhvcjogIlNhbmdhbWl0cmEgQWdyYXdhbCINCmRhdGU6ICIxMS8yMC8yMDE4Ig0Kb3V0cHV0Og0KICBodG1sX25vdGVib29rOiBkZWZhdWx0DQogIGh0bWxfZG9jdW1lbnQ6IGRlZmF1bHQNCnN1YnRpdGxlOiBUaW1lIFNlcmllcyBEaXN0cmlidXRpb25zICYgTm9ybWFsaXR5IChmaW5jNjIxLWxhYjAyKQ0KLS0tDQoNCiMjIyBBYm91dA0KDQpUaGlzIHdvcmtzaGVldCBoYXMgdGhyZWUgbWFpbiB0YWtzOiBhbmFseXplIHRoZSB0aW1lIHNlcmllcyBvZiByZXR1cm5zLCBhc3Nlc3MgZm9yIG5vcm1hbCBkaXN0cmlidXRpb24sIGFuZCBjaGVjayBmb3IgZXhwb25lbnRpYWwgYmVoYXZpb3Igb2YgcHJpY2VzIHRpbWUgc2VyaWVzLg0KDQojIyMgU2V0dXANCg0KUmVtZW1iZXIgdG8gYWx3YXlzIHNldCB5b3VyIHdvcmtpbmcgZGlyZWN0b3J5IHRvIHRoZSBzb3VyY2UgZmlsZSBsb2NhdGlvbi4gR28gdG8gJ1Nlc3Npb24nLCBzY3JvbGwgZG93biB0byAnU2V0IFdvcmtpbmcgRGlyZWN0b3J5JywgYW5kIGNsaWNrICdUbyBTb3VyY2UgRmlsZSBMb2NhdGlvbicuIFJlYWQgY2FyZWZ1bGx5IHRoZSBiZWxvdyBhbmQgZm9sbG93IHRoZSBpbnN0cnVjdGlvbnMgdG8gY29tcGxldGUgdGhlIHRhc2tzIGFuZCBhbnN3ZXIgYW55IHF1ZXN0aW9ucy4gIFN1Ym1pdCB5b3VyIHdvcmsgdG8gUlB1YnMgYXMgZGV0YWlsZWQgaW4gcHJldmlvdXMgbm90ZXMuIA0KDQojIyMgTm90ZQ0KDQpGb3IgY2xhcml0eSwgdGFza3MvcXVlc3Rpb25zIHRvIGJlIGNvbXBsZXRlZC9hbnN3ZXJlZCBhcmUgaGlnaGxpZ2h0ZWQgaW4gcmVkIGNvbG9yIChjb2xvciB2aXNpYmxlIG9ubHkgaW4gcHJldmlldyBtb2RlKSBhbmQgbnVtYmVyZWQgYWNjb3JkaW5nIHRvIHRoZWlyIHBhcnRpY3VsYXIgcGxhY2VtZW50IGluIHRoZSB0YXNrIHNlY3Rpb24uICBUeXBlIHlvdXIgYW5zd2VycyBvdXRzaWRlIHRoZSByZWQgY29sb3IgdGFncyENCg0KUXVpdGUgb2Z0ZW4geW91IHdpbGwgbmVlZCB0byBhZGQgeW91ciBvd24gY29kZSBjaHVuay4gRXhlY3V0ZSBzZXF1ZW50aWFsbHkgYWxsIGNvZGUgY2h1bmtzLCBwcmV2aWV3LCBwdWJsaXNoLCBhbmQgc3VibWl0IGxpbmsgb24gU2FrYWkgZm9sbG93aW5nIHRoZSBuYW1pbmcgY29udmVudGlvbi4gTWFrZSBzdXJlIHRvIGFkZCBjb21tZW50cyB0byB5b3VyIGNvZGUgd2hlcmUgYXBwcm9wcmlhdGUuIFVzZSBvd24gbGFuZ3VhZ2UhDQoNCioqQW55IHNpZ24gb2YgcGxhZ2lhcmlzbSwgd2lsbCByZXN1bHQgaW4gZGlzc21pc3NhbCBvZiB3b3JrISoqDQoNCi0tLS0tLS0tLS0tLS0tDQoNCiMjIyBUYXNrIDE6IFBsb3Qgb2YgUmV0dXJucyAmIFRlc3RpbmcgZm9yIE5vcm1hbGl0eSBEaXN0cmlidXRpb24NCg0KSW4gdGhpcyB0YXNrIHdlIHdpbGwgbG9vayBhdCB2YXJpb3VzIHR5cGUgb2YgZGFpbHkgcmV0dXJucyBjYWxjdWxhdGlvbnMgZm9yIGNvbXBhcmlzb24gYW5kIHRvIHRlc3Qgbm9ybWFsaXR5Lg0KDQpgYGB7cn0NCiMgUmVxdWlyZSB3aWxsIGxvYWQgdGhlIHBhY2thZ2Ugb25seSBpZiBub3QgaW5zdGFsbGVkIA0KIyBEZXBlbmRlbmNpZXMgPSBUUlVFIG1ha2VzIHN1cmUgdGhhdCBkZXBlbmRlbmNpZXMgYXJlIGluc3RhbGwNCmlmKCFyZXF1aXJlKCJxdWFudG1vZCIscXVpZXRseSA9IFRSVUUpKQ0KICBpbnN0YWxsLnBhY2thZ2VzKCJxdWFudG1vZCIsZGVwZW5kZW5jaWVzID0gVFJVRSwgcmVwb3MgPSAiaHR0cHM6Ly9jbG91ZC5yLXByb2plY3Qub3JnIg0KDQpgYGANCg0KDQo8c3BhbiBzdHlsZT0iY29sb3I6cmVkIj4NCiMjIyMjIDFBKSBGb2xsb3cgdGhlIGluc3RydWN0aW9ucyBvbiBwLjQxIHRvIGdlbmVyYXRlIGZvdXIgcGxvdHMgZm9yIGRhaWx5LCBkYWlseSBsb2csIHdlZWtseSwgYW5kIG1vbnRobHkgcmV0dXJucy4gU2VsZWN0IGEgc3RvY2sgb2YgeW91ciBjaG9pY2UgYW5kIGEgdGltZSBwZXJpb2QgbG9uZyBlbm91Z2ggKDUtMTAgeWVhcnMpIHRvIGNhcHR1cmUgdGhlIHJldHVybnMgYmVoYXZpb3IuIA0KPC9zcGFuPg0KYGBge3J9DQpnZXRTeW1ib2xzKCJBTVpOIixzcmM9InlhaG9vIikNCkFNWk5SRD1wZXJpb2RSZXR1cm4oQU1aTixwZXJpb2QgPSAiZGFpbHkiKQ0KcGxvdChBTVpOUkQsIG1haW49IkFNQVpPTiBkYWlseSByZXR1cm4iKQ0KDQpnZXRTeW1ib2xzKCJBTVpOIixzcmM9InlhaG9vIikNCkFNWk5SRD1kYWlseVJldHVybihBTVpOLHBlcmlvcz0iZGFpbHkiLCB0eXBlPSJsb2ciKQ0KcGxvdChBTVpOUkQsIG1haW49IkFNQVpPTiBkYWlseSBsb2cgcmV0dXJucyIpDQoNCmdldFN5bWJvbHMoIkFNWk4iLHNyYz0ieWFob28iKQ0KQU1aTlJEPXBlcmlvZFJldHVybihBTVpOLHBlcmlvZD0id2Vla2x5IikNCnBsb3QoQU1aTlJELCBtYWluPSJBTUFaT04gd2Vla2x5IGxvZyByZXR1cm5zIikNCg0KZ2V0U3ltYm9scygiQU1aTiIsc3JjPSJ5YWhvbyIpDQpBTVpOUkQ9cGVyaW9kUmV0dXJuKEFNWk4scGVyaW9kID0ibW9udGhseSIpDQpwbG90KEFNWk5SRCwgbWFpbj0iQU1BWk9OIG1vbnRobHkgcmV0dXJucyIpDQpgYGANCg0KDQoNCjxzcGFuIHN0eWxlPSJjb2xvcjpyZWQiPg0KIyMjIyMgMUIpIEZvciB0aGUgY2FzZSBvZiAqKmRhaWx5IGxvZyByZXR1cm5zKiogIG9ubHksIHdyaXRlIGRvd24gdGhlIG1hdGhlbWF0aWNhbCBmb3JtdWxhIHJlcHJlc2VudGluZyB0aGUgY2FsY3VsYXRpb24gaW4gdGhlIGNvZGUuIENvbmZpcm0gaW50ZWdyaXR5IG9mIHlvdXIgbWF0aGVtYXRpY2FsIGZvcm11bGEgYnkgc2VsZWN0aW5nIGEgcmVjZW50IGRhdGEgcG9pbnQgZnJvbSB5b3VyIHRpbWUgc2VyaWVzIG9iamVjdCwgc3Vic3RpdHV0aW5nIHRoZSBjb3JyZXNwb25kaW5nIHZhbHVlcyBpbiB0aGUgZm9ybXVsYSB0byBtYW51YWxseSBjYWxjdWxhdGUgdGhlIGxvZyByZXR1cm4sIGFuZCBjb21wYXJpbmcgYm90aCByZXN1bHRzLg0KPC9zcGFuPg0KDQpsbiBbJFxmcmFje1NoYXJlIHByaWNlIGF0IGl9e1NoYXJlIHByaWNlIGF0IGktcn0kIF0NCg0KDQp3aGVyZSBpIGFuZCAoaS1yKSByZXByZXNlbnQgdGltZSBpbnN0YW5jZXMNCg0KDQo8c3BhbiBzdHlsZT0iY29sb3I6cmVkIj4NCiMjIyMjIDFDKSBDaGVjayB0aGUgbm9ybWFsaXR5IG9mIHRoZSAqKmRhaWx5IHJldHVybnMqKiB1c2luZyB0aGUgUiBmdW5jdGlvbiBgcXFub3JtKClgIHRvIGdlbmVyYXRlIGEgUS1RIHBsb3QuIEZvciB0aGUgZnVuY3Rpb24gdG8gd29yayBwcm9wZXJseSwgeW91IHdpbGwgbmVlZCB0byBleHRyYWN0IGZpcnN0IHRoZSBudW1lcmljIHZhbHVlcyBmcm9tIHRoZSB0aW1lIHNlcmllcyBvYmplY3QuIE5vdGUgdGhhdCBhIHRpbWUgc2VyaWVzIG9iamVjdCBjb250YWlucyBib3RoIGEgZGF0ZSBhbmQgYSBjb3JyZXNwb25kaW5nIHZhbHVlLiBUbyBleHRyYWN0IHRoZSBudW1lcmljYWwgdmFsdWUgb25seSwgb24gY2FuIHVzZSB0aGUgUiBmdW5jdGlvbiBgYXMubnVtZXJpYygpYCBvbiB0aGUgdGltZSBzZXJpZXMgb2JqZWN0LiBFeHBsYWluIHdoYXQgdGhlIFkgYW5kIFggYXhpcyBvZiB0aGUgUS1RIHBsb3QgcmVwcmVzZW50LCBhbmQgc2hhcmUgeW91ciBvYnNlcnZhdGlvbiBvbiB0aGUgbm9ybWFsaXR5IG9mIHRoZSByZXR1cm5zIGRpc3RyaWJ1dGlvbi4NCjwvc3Bhbj4NCg0KYGBge3J9DQpnZXRTeW1ib2xzKCJBTVpOIixzcmM9InlhaG9vIikNCmFwbFJEPWRhaWx5UmV0dXJuKEFNWk4scGVyaW9zPSJkYWlseSIpDQphcy5udW1lcmljKGFwbFJEKQ0KcXFub3JtKGFwbFJEKQ0KYGBgDQpUaGUgcXEgcGxvdCBhYm92ZSBpbmRpY2F0ZXMgZXh0cmVtZSB2YWx1ZXMgb24gYm90aCB0YWlscy5JdCBpcyBhcHByb3hpbWF0ZWx5IG5vcm1hbHkgZGlzdHJpYnV0ZWQgYW5kIHRoZSBsYXJnZXIgdmFsdWVzIGFyZSBtb3JlIHRoYW4gZXhwZWN0ZWQgaW4gYSBub3JtYWwgZGlzdHJpYnV0aW9uIGFuZCB0aGUgc21hbGxlciB2YWx1ZXMgYXJlIGV2ZW4gbGVzc2VyIHRoYW4gZXhwZWN0ZWQNCg0KDQojIyMgVGFzayAyOiBEZW5zaXR5IERpc3RyaWJ1dGlvbg0KDQpBbm90aGVyIHdheSB0byBhc3Nlc3MgdGhlIG5vcm1hbGl0eSBvZiBhIGRpc3RyaWJ1dGlvbiwgb3RoZXIgdGhhbiBhIFEtUSBwbG90LCBpcyB0byBsb29rIGF0IHRoZSBhY3R1YWwgZGVuc2l0eSBkaXN0cmlidXRpb24gYW5kIGNvbXBhcmUgdG8gYSBub3JtYWwgZGlzdHJpYnV0aW9uLg0KDQoNCjxzcGFuIHN0eWxlPSJjb2xvcjpyZWQiPg0KIyMjIyMgMkEpIEZvbGxvdyB0aGUgZXhhbXBsZSBpbiBSIExhYiAyLjcuOS9wLiA3MCB0byBnZW5lcmF0ZSB0aGUgZGVuc2l0eSBkaXN0cmlidXRpb24gZm9yIHlvdXIgc3RvY2sgb2YgY2hvaWNlLiBDb21tZW50IG9uIHlvdXIgcmVzdWx0cy4NCjwvc3Bhbj4NCmBgYHtyfQ0KcmVxdWlyZShxdWFudG1vZCkNCmdldFN5bWJvbHMoIkFNWk4iLHNyYz0neWFob28nKQ0KQU1aTlJkPSBwZXJpb2RSZXR1cm4oQU1aTixwZXJpb2Q9ImRhaWx5Iix0eXBlPSJsb2ciKQ0KZHNkPWRlbnNpdHkoQU1aTlJkKSAjZXN0aW1hdGUgZGVuc2l0eSBvZiBkYWlseSBsb2cgcmV0DQp5bD1jKG1pbihkc2QkeSksbWF4KGRzZCR5KSkgI3NldCB5IGxpbWl0cw0KcGxvdChkc2QsbWFpbj0iQU1BWk9OIGRhaWx5IGRlbnNpdHkgZGlzdHJpYnV0aW9uIix5bGltPXlsKQ0KIyNwbG90IHRoZSBub3JtYWwgZGVuc2l0eSB3aXRoIG1lYW4sIHN0ZHYgb2YgYXBSZA0KYT1zZXEobWluKEFNWk5SZCksbWF4KEFNWk5SZCksMC4wMDEpDQpwb2ludHMoYSxkbm9ybShhLG1lYW4oQU1aTlJkKSxzZChBTVpOUmQpKSwgdHlwZT0ibCIsbHR5PTIpDQogDQpyZXF1aXJlKHF1YW50bW9kKQ0KZ2V0U3ltYm9scygiQU1aTiIsc3JjPSJ5YWhvbyIpDQpBTVpOUmQ9IHBlcmlvZFJldHVybihBTVpOLHBlcmlvZD0id2Vla2x5Iix0eXBlPSJsb2ciKQ0KZHNkPWRlbnNpdHkoQU1aTlJkKSAjZXN0aW1hdGUgZGVuc2l0eSBvZiBkYWlseSBsb2cgcmV0DQp5bD1jKG1pbihkc2QkeSksbWF4KGRzZCR5KSkgI3NldCB5IGxpbWl0cw0KcGxvdChkc2QsbWFpbj0iQU1BWk9OIHdlZWtseSBkZW5zaXR5IGRpc3RyaWJ1dGlvbiIseWxpbT15bCkNCiMjcGxvdCB0aGUgbm9ybWFsIGRlbnNpdHkgd2l0aCBtZWFuLCBzdGR2IG9mIGFwUmQNCmE9c2VxKG1pbihBTVpOUmQpLG1heChBTVpOUmQpLDAuMDAxKQ0KcG9pbnRzKGEsZG5vcm0oYSxtZWFuKEFNWk5SZCksc2QoQU1aTlJkKSksIHR5cGU9ImwiLGx0eT0yKQ0KIA0KDQpyZXF1aXJlKHF1YW50bW9kKQ0KZ2V0U3ltYm9scygiQU1aTiIsc3JjPSJ5YWhvbyIpDQpBTVpOUmQ9IHBlcmlvZFJldHVybihBTVpOLHBlcmlvZD0ibW9udGhseSIsdHlwZT0ibG9nIikNCmRzZD1kZW5zaXR5KEFNWk5SZCkgI2VzdGltYXRlIGRlbnNpdHkgb2YgZGFpbHkgbG9nIHJldA0KeWw9YyhtaW4oZHNkJHkpLG1heChkc2QkeSkpICNzZXQgeSBsaW1pdHMNCnBsb3QoZHNkLG1haW49IkFNQVpPTiBtb250aGx5IGRlbnNpdHkgZGlzdHJpYnV0aW9uIix5bGltPXlsKQ0KIyNwbG90IHRoZSBub3JtYWwgZGVuc2l0eSB3aXRoIG1lYW4sIHN0ZHYgb2YgYXBSZA0KYT1zZXEobWluKEFNWk5SZCksbWF4KEFNWk5SZCksMC4wMDEpDQpwb2ludHMoYSxkbm9ybShhLG1lYW4oQU1aTlJkKSxzZChBTVpOUmQpKSwgdHlwZT0ibCIsbHR5PTIpDQogDQoNCmBgYA0KDQoNCg0KIyMjIFRhc2sgMzogRXhwb25lbnRpYWwgQmVoYXZpb3Igb2YgUHJpY2VzICYgQ3VydmUgRml0dGluZw0KDQpJbiBnZW5lcmFsLCB0aGUgcHJpY2UgaGlzdG9yeSBvZiBhIHN0b2NrLCBvdmVyIGEgc3VmZmljaWVudGx5IGxhcmdlIHRpbWUgd2luZG93LCB0ZW5kcyB0byBmb2xsb3cgYW4gZXhwb25lbnRpYWwgY3VydmUuIE1hbnkgb3RoZXIgZWNvbm9taWMgaW5kaWNhdG9ycyBsaWtlIEdEUCwgcG9wdWxhdGlvbiBncm93dGgsIGFuZCBpbmZsYXRpb24gYWxzbyBmb2xsb3cgZXhwb25lbnRpYWwgZ3Jvd3RoIG92ZXIgYSBsb25nIHRpbWUuIEtlZXAgaW4gbWluZCB0aGF0IGZvciBpbnZlc3RtZW50IHB1cnBvc2VzIHdlIGNhcmUgbW9yZSBhYm91dCByZXR1cm5zIGFuZCBub3QgcHJpY2VzLg0KDQo8c3BhbiBzdHlsZT0iY29sb3I6cmVkIj4NCiMjIyMjIDNBKSBGb2xsb3cgdGhlIGV4YW1wbGUgaW4gUiBMYWIgMi43LjIvcC4gNjcgb3IgUiBMYWJzIDIgZnJvbSBib29r4oCZcyB3ZWJzaXRlICgqKSB0byBnZW5lcmF0ZSBhbiBleHBvbmVudGlhbCBmaXQgZm9yIHRoZSBEb3cgSm9uZXMgSW5kdXN0cmlhbCBBdmVyYWdlIERKSUEuIEluIGNhc2UgdGhlIHN1Z2dlc3RlZCBjb21tYW5kIGluIHRoZSBib29rIGRvZXMgbm90IHdvcmssIGNvbnNpZGVyIHVzaW5nIGluc3RlYWQgdGhlIGNvbW1hbmQgaW4gdGhlIGNvZGUgY2h1bmsgYmVsb3cgdG8gY2FwdHVyZSB0aGUgRElKQSBwcmljZXMuICANCjwvc3Bhbj4NCg0KDQoNCmBgYHtyfQ0KI0ZlZGVyYWwgUmVzZXJ2ZSBCYW5rIG9mIFN0IExvdWlzDQpnZXRTeW1ib2xzLkZSRUQoIkRKSUEiLGVudj1nbG9iYWxlbnYoKSkgDQpyZXF1aXJlKHF1YW50bW9kKTsgZ2V0U3ltYm9scygiREpJQSIsc3JjPSJGUkVEIikNCnNlcmllPURKSUFbIjE5ODgvMjAxNyJdDQpwcmljZT1hcy5udW1lcmljKHNlcmllKSAjZXh0cmFjdCBudW1lcmljIHZhbHVlcyBvZiBwcmljZQ0KdGltZSA9IGluZGV4KHNlcmllKSAjZXh0cmFjdCB0aGUgaW5kaWNlcw0KeD0xOmxlbmd0aChwcmljZSkNCm1vZGVsPWxtKGxvZyhwcmljZSl+eCkNCmV4cG89ZXhwKG1vZGVsJGNvZWZbMV0rbW9kZWwkY29lZlsyXSp4KQ0KcGxvdCh4PXRpbWUseT1wcmljZSwgbWFpbj0iRG93IEpvbmVzIix0eXBlPSJsIikNCmxpbmVzKHRpbWUsZXhwbyxjb2w9Mixsd2Q9MikNCmBgYA0KDQo8c3BhbiBzdHlsZT0iY29sb3I6cmVkIj4NCiMjIyMjIDNCKSBXcml0ZSBkb3duIHRoZSBtYXRoZW1hdGljYWwgZm9ybSByZXByZXNlbnRpbmcgdGhlIGV4cG9uZW50aWFsIGZ1bmN0aW9uIGluIHRoZSBjb2RlLiBTdWJzdGl0dXRlIGZvciB0aGUgZXhhY3QgY29lZmZpY2llbnRzIGluIHRoZSBleHBvbmVudGlhbCBmb3JtIGFuZCBjbGVhcmx5IGxhYmVsIHRoZSB2YXJpYWJsZXMgaW4gdGhlIGZ1bmN0aW9uLCBpbiBwYXJ0aWN1bGFyIHRoZSB0aW1lIGluZGV4LiANCjwvc3Bhbj4NCg0KJGVeeyg5LjA5MDEzNSswLjAwMDM5NjY4NzR0KX0kDQoNCndoZXJlMTw9dDw9MjM3Ng0KDQoNCjxzcGFuIHN0eWxlPSJjb2xvcjpyZWQiPg0KIyMjIyMgM0MpIFJlcGVhdCB0aGUgIGV4ZXJjaXNlIGluIDNBKSBmb3IgQUFQTCBBZGp1c3RlZCBwcmljZXMuDQo8L3NwYW4+DQoNCmBgYHtyfQ0KZ2V0U3ltYm9scygiQUFQTCIsc3JjPSd5YWhvbycpDQpBQVBMYWQ9QUFQTCRBQVBMLkFkanVzdGVkDQpzZXJpZT1BQVBMYWRbIjE5ODgvMjAxNyJdDQpwcmljZT1hcy5udW1lcmljKHNlcmllKSAjZXh0cmFjdCBudW1lcmljIHZhbHVlcyBvZiBwcmljZQ0KdGltZSA9IGluZGV4KHNlcmllKSAjZXh0cmFjdCB0aGUgaW5kaWNlcw0KeD0xOmxlbmd0aChwcmljZSkNCm1vZGVsPWxtKGxvZyhwcmljZSl+eCkNCmV4cG89ZXhwKG1vZGVsJGNvZWZbMV0rbW9kZWwkY29lZlsyXSp4KQ0KcGxvdCh4PXRpbWUseT1wcmljZSwgbWFpbj0iQXBwbGUgQWRqdXN0ZWQiLHR5cGU9ImwiKQ0KbGluZXModGltZSxleHBvLGNvbD0yLGx3ZD0yKQ0KYGBgDQoNCg0KDQoNCipbaHR0cDovL2NvbXB1dGF0aW9uYWxmaW5hbmNlLmxzaS51cGMuZWR1IF0oaHR0cDovL2NvbXB1dGF0aW9uYWxmaW5hbmNlLmxzaS51cGMuZWR1KQ0K