About
This worksheet has three main taks: analyze the time series of returns, assess for normal distribution, and check for exponential behavior of prices time series.
Setup
Remember to always set your working directory to the source file location. Go to ‘Session’, scroll down to ‘Set Working Directory’, and click ‘To Source File Location’. Read carefully the below and follow the instructions to complete the tasks and answer any questions. Submit your work to RPubs as detailed in previous notes.
Note
For clarity, tasks/questions to be completed/answered are highlighted in red color (color visible only in preview mode) and numbered according to their particular placement in the task section. Type your answers outside the red color tags!
Quite often you will need to add your own code chunk. Execute sequentially all code chunks, preview, publish, and submit link on Sakai following the naming convention. Make sure to add comments to your code where appropriate. Use own language!
Any sign of plagiarism, will result in dissmissal of work!
Task 1: Plot of Returns & Testing for Normality Distribution
In this task we will look at various type of daily returns calculations for comparison and to test normality.
# Require will load the package only if not installed
# Dependencies = TRUE makes sure that dependencies are install
if(!require("quantmod",quietly = TRUE))
install.packages("quantmod",dependencies = TRUE, repos = "https://cloud.r-project.org")
##### 1A) Follow the instructions on p.41 to generate four plots for daily, daily log, weekly, and monthly returns. Select a stock of your choice and a time period long enough (5-10 years) to capture the returns behavior.
getSymbols("AAPL",src="yahoo",from="2013-01-01") ##data starts from 2013
愼<U+3E31>愼<U+3E65>getSymbols愼<U+3E31>愼<U+3E66> currently uses auto.assign=TRUE by default, but will
use auto.assign=FALSE in 0.5-0. You will still be able to use
愼<U+3E31>愼<U+3E65>loadSymbols愼<U+3E31>愼<U+3E66> to automatically load data. getOption("getSymbols.env")
and getOption("getSymbols.auto.assign") will still be checked for
alternate defaults.
This message is shown once per session and may be disabled by setting
options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.
WARNING: There have been significant changes to Yahoo Finance data.
Please see the Warning section of 愼<U+3E31>愼<U+3E65>?getSymbols.yahoo愼<U+3E31>愼<U+3E66> for details.
This message is shown once per session and may be disabled by setting
options("getSymbols.yahoo.warning"=FALSE).
[1] "AAPL"
aplRd = periodReturn(AAPL,period="daily")
plot(aplRd, main="APPLE daily returns")

getSymbols("AAPL",src="yahoo",from="2013-01-01") ##data starts from 2013
[1] "AAPL"
aplRd = periodReturn(AAPL,period="weekly")
plot(aplRd, main="APPLE weekly returns")

getSymbols("AAPL",src="yahoo",from="2013-01-01") ##data starts from 2013
[1] "AAPL"
aplRd = periodReturn(AAPL,period="monthly")
plot(aplRd, main="APPLE monthly returns")

getSymbols("AAPL",src="yahoo",from="2013-01-01") ##data starts from 2013
[1] "AAPL"
aplRd = periodReturn(AAPL,period="daily",type="log")
plot(aplRd, main="APPLE daily log returns")#it says the daily log is not the correct code

##### 1B) For the case of daily log returns only, write down the mathematical formula representing the calculation in the code. Confirm integrity of your mathematical formula by selecting a recent data point from your time series object, substituting the corresponding values in the formula to manually calculate the log return, and comparing both results. 
##### 1C) Check the normality of the daily returns using the R function qqnorm() to generate a Q-Q plot. For the function to work properly, you will need to extract first the numeric values from the time series object. Note that a time series object contains both a date and a corresponding value. To extract the numerical value only, on can use the R function as.numeric() on the time series object. Explain what the Y and X axis of the Q-Q plot represent, and share your observation on the normality of the returns distribution.
qqnorm("APPLE daily returns"")
xlab=
ylab=
as.numeric()
Error: Incomplete expression: qqnorm("APPLE daily returns"")
xlab=
ylab=
as.numeric()
Task 2: Density Distribution
Another way to assess the normality of a distribution, other than a Q-Q plot, is to look at the actual density distribution and compare to a normal distribution.
##### 2A) Follow the example in R Lab 2.7.9/p. 70 to generate the density distribution for your stock of choice. Comment on your results.
appl = getSymbols("AAPL",src="yahoo",from="2013-01-01")
apRd =periodReturn(AAPL,period="daily",type = "log")
dsd=density(apRd) #estimate density of daily log ret
yl=c(min(dsd$y),max(dsd$y)) #set y limits
plot(dsd,main=NULL,ylim=yl)
##plot the normal density with mean, stdv of apRd
a=seq(min(apRd),max(apRd),0.001)
points(a,dnorm(a,mean(apRd),sd(apRd)), type="l",lty=2)

Task 3: Exponential Behavior of Prices & Curve Fitting
In general, the price history of a stock, over a sufficiently large time window, tends to follow an exponential curve. Many other economic indicators like GDP, population growth, and inflation also follow exponential growth over a long time. Keep in mind that for investment purposes we care more about returns and not prices.
##### 3A) Follow the example in R Lab 2.7.2/p. 67 or R Labs 2 from book’s website (*) to generate an exponential fit for the Dow Jones Industrial Average DJIA. In case the suggested command in the book does not work, consider using instead the command in the code chunk below to capture the DIJA prices.
#Federal Reserve Bank of St Louis
getSymbols.FRED("DJIA",env=globalenv())
[1] "DJIA"
require(quantmod); getSymbols("DJIA",src="FRED")
[1] "DJIA"
serie=DJIA["2010/2018"]
price=as.numeric(serie) #extract numeric values of price
time = index(serie) #extract the indices
x=1:length(price)
model=lm(log(price)~x)
expo=exp(model$coef[1]+model$coef[2]*x)
plot(x=time,y=price, main="Dow Jones",type="l")
lines(time,expo,col=2,lwd=2)

LS0tDQp0aXRsZTogIkZJTkM2MjEgV2ludGVyIDIwMTgtMTkgTGFiIFdvcmtzaGVldCAwMiINCmF1dGhvcjogIllvdXIgTmFtZSBIZXJlIg0KZGF0ZTogIkFkZCBEYXRlIEhlcmUiDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQNCiAgaHRtbF9kb2N1bWVudDogZGVmYXVsdA0Kc3VidGl0bGU6IFRpbWUgU2VyaWVzIERpc3RyaWJ1dGlvbnMgJiBOb3JtYWxpdHkgKGZpbmM2MjEtbGFiMDIpDQotLS0NCg0KIyMjIEFib3V0DQoNClRoaXMgd29ya3NoZWV0IGhhcyB0aHJlZSBtYWluIHRha3M6IGFuYWx5emUgdGhlIHRpbWUgc2VyaWVzIG9mIHJldHVybnMsIGFzc2VzcyBmb3Igbm9ybWFsIGRpc3RyaWJ1dGlvbiwgYW5kIGNoZWNrIGZvciBleHBvbmVudGlhbCBiZWhhdmlvciBvZiBwcmljZXMgdGltZSBzZXJpZXMuDQoNCiMjIyBTZXR1cA0KDQpSZW1lbWJlciB0byBhbHdheXMgc2V0IHlvdXIgd29ya2luZyBkaXJlY3RvcnkgdG8gdGhlIHNvdXJjZSBmaWxlIGxvY2F0aW9uLiBHbyB0byAnU2Vzc2lvbicsIHNjcm9sbCBkb3duIHRvICdTZXQgV29ya2luZyBEaXJlY3RvcnknLCBhbmQgY2xpY2sgJ1RvIFNvdXJjZSBGaWxlIExvY2F0aW9uJy4gUmVhZCBjYXJlZnVsbHkgdGhlIGJlbG93IGFuZCBmb2xsb3cgdGhlIGluc3RydWN0aW9ucyB0byBjb21wbGV0ZSB0aGUgdGFza3MgYW5kIGFuc3dlciBhbnkgcXVlc3Rpb25zLiAgU3VibWl0IHlvdXIgd29yayB0byBSUHVicyBhcyBkZXRhaWxlZCBpbiBwcmV2aW91cyBub3Rlcy4gDQoNCiMjIyBOb3RlDQoNCkZvciBjbGFyaXR5LCB0YXNrcy9xdWVzdGlvbnMgdG8gYmUgY29tcGxldGVkL2Fuc3dlcmVkIGFyZSBoaWdobGlnaHRlZCBpbiByZWQgY29sb3IgKGNvbG9yIHZpc2libGUgb25seSBpbiBwcmV2aWV3IG1vZGUpIGFuZCBudW1iZXJlZCBhY2NvcmRpbmcgdG8gdGhlaXIgcGFydGljdWxhciBwbGFjZW1lbnQgaW4gdGhlIHRhc2sgc2VjdGlvbi4gIFR5cGUgeW91ciBhbnN3ZXJzIG91dHNpZGUgdGhlIHJlZCBjb2xvciB0YWdzIQ0KDQpRdWl0ZSBvZnRlbiB5b3Ugd2lsbCBuZWVkIHRvIGFkZCB5b3VyIG93biBjb2RlIGNodW5rLiBFeGVjdXRlIHNlcXVlbnRpYWxseSBhbGwgY29kZSBjaHVua3MsIHByZXZpZXcsIHB1Ymxpc2gsIGFuZCBzdWJtaXQgbGluayBvbiBTYWthaSBmb2xsb3dpbmcgdGhlIG5hbWluZyBjb252ZW50aW9uLiBNYWtlIHN1cmUgdG8gYWRkIGNvbW1lbnRzIHRvIHlvdXIgY29kZSB3aGVyZSBhcHByb3ByaWF0ZS4gVXNlIG93biBsYW5ndWFnZSENCg0KKipBbnkgc2lnbiBvZiBwbGFnaWFyaXNtLCB3aWxsIHJlc3VsdCBpbiBkaXNzbWlzc2FsIG9mIHdvcmshKioNCg0KLS0tLS0tLS0tLS0tLS0NCg0KIyMjIFRhc2sgMTogUGxvdCBvZiBSZXR1cm5zICYgVGVzdGluZyBmb3IgTm9ybWFsaXR5IERpc3RyaWJ1dGlvbg0KDQpJbiB0aGlzIHRhc2sgd2Ugd2lsbCBsb29rIGF0IHZhcmlvdXMgdHlwZSBvZiBkYWlseSByZXR1cm5zIGNhbGN1bGF0aW9ucyBmb3IgY29tcGFyaXNvbiBhbmQgdG8gdGVzdCBub3JtYWxpdHkuDQoNCmBgYHtyfQ0KIyBSZXF1aXJlIHdpbGwgbG9hZCB0aGUgcGFja2FnZSBvbmx5IGlmIG5vdCBpbnN0YWxsZWQgDQojIERlcGVuZGVuY2llcyA9IFRSVUUgbWFrZXMgc3VyZSB0aGF0IGRlcGVuZGVuY2llcyBhcmUgaW5zdGFsbA0KaWYoIXJlcXVpcmUoInF1YW50bW9kIixxdWlldGx5ID0gVFJVRSkpDQogIGluc3RhbGwucGFja2FnZXMoInF1YW50bW9kIixkZXBlbmRlbmNpZXMgPSBUUlVFLCByZXBvcyA9ICJodHRwczovL2Nsb3VkLnItcHJvamVjdC5vcmciKQ0KYGBgDQoNCg0KPHNwYW4gc3R5bGU9ImNvbG9yOnJlZCI+DQojIyMjIyAxQSkgRm9sbG93IHRoZSBpbnN0cnVjdGlvbnMgb24gcC40MSB0byBnZW5lcmF0ZSBmb3VyIHBsb3RzIGZvciBkYWlseSwgZGFpbHkgbG9nLCB3ZWVrbHksIGFuZCBtb250aGx5IHJldHVybnMuIFNlbGVjdCBhIHN0b2NrIG9mIHlvdXIgY2hvaWNlIGFuZCBhIHRpbWUgcGVyaW9kIGxvbmcgZW5vdWdoICg1LTEwIHllYXJzKSB0byBjYXB0dXJlIHRoZSByZXR1cm5zIGJlaGF2aW9yLiANCjwvc3Bhbj4NCmBgYHtyfQ0KZ2V0U3ltYm9scygiQUFQTCIsc3JjPSJ5YWhvbyIsZnJvbT0iMjAxMy0wMS0wMSIpICMjZGF0YSBzdGFydHMgZnJvbSAyMDEzDQphcGxSZCA9IHBlcmlvZFJldHVybihBQVBMLHBlcmlvZD0iZGFpbHkiKQ0KcGxvdChhcGxSZCwgbWFpbj0iQVBQTEUgZGFpbHkgcmV0dXJucyIpDQpgYGANCmBgYHtyfQ0KZ2V0U3ltYm9scygiQUFQTCIsc3JjPSJ5YWhvbyIsZnJvbT0iMjAxMy0wMS0wMSIpICMjZGF0YSBzdGFydHMgZnJvbSAyMDEzDQphcGxSZCA9IHBlcmlvZFJldHVybihBQVBMLHBlcmlvZD0id2Vla2x5IikNCnBsb3QoYXBsUmQsIG1haW49IkFQUExFIHdlZWtseSByZXR1cm5zIikNCmBgYA0KYGBge3J9DQpnZXRTeW1ib2xzKCJBQVBMIixzcmM9InlhaG9vIixmcm9tPSIyMDEzLTAxLTAxIikgIyNkYXRhIHN0YXJ0cyBmcm9tIDIwMTMNCmFwbFJkID0gcGVyaW9kUmV0dXJuKEFBUEwscGVyaW9kPSJtb250aGx5IikNCnBsb3QoYXBsUmQsIG1haW49IkFQUExFIG1vbnRobHkgcmV0dXJucyIpDQpgYGANCg0KYGBge3J9DQpnZXRTeW1ib2xzKCJBQVBMIixzcmM9InlhaG9vIixmcm9tPSIyMDEzLTAxLTAxIikgIyNkYXRhIHN0YXJ0cyBmcm9tIDIwMTMNCmFwbFJkID0gcGVyaW9kUmV0dXJuKEFBUEwscGVyaW9kPSJkYWlseSIsdHlwZT0ibG9nIikNCnBsb3QoYXBsUmQsIG1haW49IkFQUExFIGRhaWx5IGxvZyByZXR1cm5zIikjaXQgc2F5cyB0aGUgZGFpbHkgbG9nIGlzIG5vdCB0aGUgY29ycmVjdCBjb2RlDQpgYGANCg0KDQoNCjxzcGFuIHN0eWxlPSJjb2xvcjpyZWQiPg0KIyMjIyMgMUIpIEZvciB0aGUgY2FzZSBvZiAqKmRhaWx5IGxvZyByZXR1cm5zKiogIG9ubHksIHdyaXRlIGRvd24gdGhlIG1hdGhlbWF0aWNhbCBmb3JtdWxhIHJlcHJlc2VudGluZyB0aGUgY2FsY3VsYXRpb24gaW4gdGhlIGNvZGUuIENvbmZpcm0gaW50ZWdyaXR5IG9mIHlvdXIgbWF0aGVtYXRpY2FsIGZvcm11bGEgYnkgc2VsZWN0aW5nIGEgcmVjZW50IGRhdGEgcG9pbnQgZnJvbSB5b3VyIHRpbWUgc2VyaWVzIG9iamVjdCwgc3Vic3RpdHV0aW5nIHRoZSBjb3JyZXNwb25kaW5nIHZhbHVlcyBpbiB0aGUgZm9ybXVsYSB0byBtYW51YWxseSBjYWxjdWxhdGUgdGhlIGxvZyByZXR1cm4sIGFuZCBjb21wYXJpbmcgYm90aCByZXN1bHRzLg0KPC9zcGFuPg0KIVtDYXB0aW9uIEhlcmVdKGhvbWV3b3JrMWIuanBnKQ0KDQo8c3BhbiBzdHlsZT0iY29sb3I6cmVkIj4NCiMjIyMjIDFDKSBDaGVjayB0aGUgbm9ybWFsaXR5IG9mIHRoZSAqKmRhaWx5IHJldHVybnMqKiB1c2luZyB0aGUgUiBmdW5jdGlvbiBgcXFub3JtKClgIHRvIGdlbmVyYXRlIGEgUS1RIHBsb3QuIEZvciB0aGUgZnVuY3Rpb24gdG8gd29yayBwcm9wZXJseSwgeW91IHdpbGwgbmVlZCB0byBleHRyYWN0IGZpcnN0IHRoZSBudW1lcmljIHZhbHVlcyBmcm9tIHRoZSB0aW1lIHNlcmllcyBvYmplY3QuIE5vdGUgdGhhdCBhIHRpbWUgc2VyaWVzIG9iamVjdCBjb250YWlucyBib3RoIGEgZGF0ZSBhbmQgYSBjb3JyZXNwb25kaW5nIHZhbHVlLiBUbyBleHRyYWN0IHRoZSBudW1lcmljYWwgdmFsdWUgb25seSwgb24gY2FuIHVzZSB0aGUgUiBmdW5jdGlvbiBgYXMubnVtZXJpYygpYCBvbiB0aGUgdGltZSBzZXJpZXMgb2JqZWN0LiBFeHBsYWluIHdoYXQgdGhlIFkgYW5kIFggYXhpcyBvZiB0aGUgUS1RIHBsb3QgcmVwcmVzZW50LCBhbmQgc2hhcmUgeW91ciBvYnNlcnZhdGlvbiBvbiB0aGUgbm9ybWFsaXR5IG9mIHRoZSByZXR1cm5zIGRpc3RyaWJ1dGlvbi4NCjwvc3Bhbj4NCmBgYHtyfQ0KcXFub3JtKCJBUFBMRSBkYWlseSByZXR1cm5zIiIpDQp4bGFiPQ0KeWxhYj0NCmFzLm51bWVyaWMoKQ0KYGBgDQoNCg0KIyMjIFRhc2sgMjogRGVuc2l0eSBEaXN0cmlidXRpb24NCg0KQW5vdGhlciB3YXkgdG8gYXNzZXNzIHRoZSBub3JtYWxpdHkgb2YgYSBkaXN0cmlidXRpb24sIG90aGVyIHRoYW4gYSBRLVEgcGxvdCwgaXMgdG8gbG9vayBhdCB0aGUgYWN0dWFsIGRlbnNpdHkgZGlzdHJpYnV0aW9uIGFuZCBjb21wYXJlIHRvIGEgbm9ybWFsIGRpc3RyaWJ1dGlvbi4NCg0KPHNwYW4gc3R5bGU9ImNvbG9yOnJlZCI+DQojIyMjIyAyQSkgRm9sbG93IHRoZSBleGFtcGxlIGluIFIgTGFiIDIuNy45L3AuIDcwIHRvIGdlbmVyYXRlIHRoZSBkZW5zaXR5IGRpc3RyaWJ1dGlvbiBmb3IgeW91ciBzdG9jayBvZiBjaG9pY2UuIENvbW1lbnQgb24geW91ciByZXN1bHRzLg0KPC9zcGFuPg0KYGBge3J9DQphcHBsID0gZ2V0U3ltYm9scygiQUFQTCIsc3JjPSJ5YWhvbyIsZnJvbT0iMjAxMy0wMS0wMSIpDQphcFJkID1wZXJpb2RSZXR1cm4oQUFQTCxwZXJpb2Q9ImRhaWx5Iix0eXBlID0gImxvZyIpDQogZHNkPWRlbnNpdHkoYXBSZCkgI2VzdGltYXRlIGRlbnNpdHkgb2YgZGFpbHkgbG9nIHJldA0KIHlsPWMobWluKGRzZCR5KSxtYXgoZHNkJHkpKSAjc2V0IHkgbGltaXRzDQogcGxvdChkc2QsbWFpbj1OVUxMLHlsaW09eWwpDQogIyNwbG90IHRoZSBub3JtYWwgZGVuc2l0eSB3aXRoIG1lYW4sIHN0ZHYgb2YgYXBSZA0KIGE9c2VxKG1pbihhcFJkKSxtYXgoYXBSZCksMC4wMDEpDQogcG9pbnRzKGEsZG5vcm0oYSxtZWFuKGFwUmQpLHNkKGFwUmQpKSwgdHlwZT0ibCIsbHR5PTIpDQpgYGANCg0KDQojIyMgVGFzayAzOiBFeHBvbmVudGlhbCBCZWhhdmlvciBvZiBQcmljZXMgJiBDdXJ2ZSBGaXR0aW5nDQoNCkluIGdlbmVyYWwsIHRoZSBwcmljZSBoaXN0b3J5IG9mIGEgc3RvY2ssIG92ZXIgYSBzdWZmaWNpZW50bHkgbGFyZ2UgdGltZSB3aW5kb3csIHRlbmRzIHRvIGZvbGxvdyBhbiBleHBvbmVudGlhbCBjdXJ2ZS4gTWFueSBvdGhlciBlY29ub21pYyBpbmRpY2F0b3JzIGxpa2UgR0RQLCBwb3B1bGF0aW9uIGdyb3d0aCwgYW5kIGluZmxhdGlvbiBhbHNvIGZvbGxvdyBleHBvbmVudGlhbCBncm93dGggb3ZlciBhIGxvbmcgdGltZS4gS2VlcCBpbiBtaW5kIHRoYXQgZm9yIGludmVzdG1lbnQgcHVycG9zZXMgd2UgY2FyZSBtb3JlIGFib3V0IHJldHVybnMgYW5kIG5vdCBwcmljZXMuDQoNCjxzcGFuIHN0eWxlPSJjb2xvcjpyZWQiPg0KIyMjIyMgM0EpIEZvbGxvdyB0aGUgZXhhbXBsZSBpbiBSIExhYiAyLjcuMi9wLiA2NyBvciBSIExhYnMgMiBmcm9tIGJvb2sncyB3ZWJzaXRlICgqKSB0byBnZW5lcmF0ZSBhbiBleHBvbmVudGlhbCBmaXQgZm9yIHRoZSBEb3cgSm9uZXMgSW5kdXN0cmlhbCBBdmVyYWdlIERKSUEuIEluIGNhc2UgdGhlIHN1Z2dlc3RlZCBjb21tYW5kIGluIHRoZSBib29rIGRvZXMgbm90IHdvcmssIGNvbnNpZGVyIHVzaW5nIGluc3RlYWQgdGhlIGNvbW1hbmQgaW4gdGhlIGNvZGUgY2h1bmsgYmVsb3cgdG8gY2FwdHVyZSB0aGUgRElKQSBwcmljZXMuICANCjwvc3Bhbj4NCg0KYGBge3J9DQojRmVkZXJhbCBSZXNlcnZlIEJhbmsgb2YgU3QgTG91aXMNCmdldFN5bWJvbHMuRlJFRCgiREpJQSIsZW52PWdsb2JhbGVudigpKSANCg0KYGBgDQoNCjxzcGFuIHN0eWxlPSJjb2xvcjpyZWQiPg0KYGBge3J9DQpyZXF1aXJlKHF1YW50bW9kKTsgZ2V0U3ltYm9scygiREpJQSIsc3JjPSJGUkVEIikNCnNlcmllPURKSUFbIjIwMTAvMjAxOCJdDQpwcmljZT1hcy5udW1lcmljKHNlcmllKSAjZXh0cmFjdCBudW1lcmljIHZhbHVlcyBvZiBwcmljZQ0KdGltZSA9IGluZGV4KHNlcmllKSAjZXh0cmFjdCB0aGUgaW5kaWNlcw0KeD0xOmxlbmd0aChwcmljZSkNCm1vZGVsPWxtKGxvZyhwcmljZSl+eCkNCmV4cG89ZXhwKG1vZGVsJGNvZWZbMV0rbW9kZWwkY29lZlsyXSp4KQ0KcGxvdCh4PXRpbWUseT1wcmljZSwgbWFpbj0iRG93IEpvbmVzIix0eXBlPSJsIikNCmxpbmVzKHRpbWUsZXhwbyxjb2w9Mixsd2Q9MikNCg0KYGBgDQoNCiMjIyMjIDNCKSBXcml0ZSBkb3duIHRoZSBtYXRoZW1hdGljYWwgZm9ybSByZXByZXNlbnRpbmcgdGhlIGV4cG9uZW50aWFsIGZ1bmN0aW9uIGluIHRoZSBjb2RlLiBTdWJzdGl0dXRlIGZvciB0aGUgZXhhY3QgY29lZmZpY2llbnRzIGluIHRoZSBleHBvbmVudGlhbCBmb3JtIGFuZCBjbGVhcmx5IGxhYmVsIHRoZSB2YXJpYWJsZXMgaW4gdGhlIGZ1bmN0aW9uLCBpbiBwYXJ0aWN1bGFyIHRoZSB0aW1lIGluZGV4LiANCjwvc3Bhbj4NCg0KIVtDYXB0aW9uIEhlcmVdKGhvbWV3b3JrM2IuanBnKQ0KPHNwYW4gc3R5bGU9ImNvbG9yOnJlZCI+DQojIyMjIyAzQykgUmVwZWF0IHRoZSAgZXhlcmNpc2UgaW4gM0EpIGZvciBBQVBMIEFkanVzdGVkIHByaWNlcy4NCjwvc3Bhbj4NCmBgYHtyfQ0KbGlicmFyeSgicXVhbnRtb2QiKQ0KIyNyZXRyaWV2ZSBoaXN0b3JpY2FsIHByaWNlIGRhdGEgZm9yIEFBUEwgQ28uIGZyb20gWWFob28gRmluYW5jZQ0KZ2V0U3ltYm9scygnQUFQTCcsc3JjPSd5YWhvbycsIGZyb209IjIwMTAtMDEtMDEiKQ0KIyN0byBzZWUgaGVhZGVycyBvZiBmaWxlIChPSExDViB0eXBlKQ0KbmFtZXMoQUFQTCkNCiMjIGV4dHJhY3QgQWRqdXN0ZWQgQ2xvc2UNCmdlQWRqID0gQUFQTCRBQVBMLkFkanVzdGVkWyIyMDAwLTAxLTAxLzIwMDAtMDEtMjAiXQ0KIyNjb21wdXRlIG1heCwgbWluIGFuZCBtZWFuDQptYXgoZ2VBZGopOyBtaW4oZ2VBZGopOyBtZWFuKGdlQWRqKQ0KIyMgZHJhdyBhIGNoYXJ0DQpjaGFydFNlcmllcyhBQVBMKQ0KYGBgDQoNCg0KDQoNCg0KKltodHRwOi8vY29tcHV0YXRpb25hbGZpbmFuY2UubHNpLnVwYy5lZHUgXShodHRwOi8vY29tcHV0YXRpb25hbGZpbmFuY2UubHNpLnVwYy5lZHUpDQo=