Converted data to date format
Learned the power of the %>% (pipe) function
We wrangled data
Used organized data to make a table
as.Date() # change the data into a date format
%>% # pipe function, it means "and then",
# links lines of code together
select() # allows you to subset the data you want
mutate() # makes a new column
floor_date() # Identifies the first date in a month
group_by() # groups data by a column or variable you want
summarise() # generate summary statistics, perform math on columns
kable() # makes a table in R
kable_styling() # makes a really cool table in R
group_rows() # make row headings for a kable table
Title : Pediatric Neurotrauma at MRRH
MRRH Neurosurgery Database
Date : Jan 2018 - Oct 2018
setwd("C:/Users/cyrus/OneDrive/Documents/R/input")
ped_one <- read_csv("ped_one.csv")
ped_two <- read_csv("ped_two.csv")
ped_one2 <- ped_one %>%
dplyr::select(
"Admission Date",
"Patien's Age",
"Gender",
"Actual Operation Date",
"Outcome:"
)
ped_one2$surg <- ifelse(is.na(ped_one2$`Actual Operation Date`), "0", "1")
ped_one2$death <- ifelse(ped_one2$`Outcome:` == "Died", "1", "0")
ped_two2 <- ped_two %>%
dplyr::select(
"Admission Date",
"Patien's Age",
"Gender",
"Actual Operation Date",
"Outcome:"
)
ped_two2$surg <- ifelse(is.na(ped_two2$`Actual Operation Date`), "0", "1")
ped_two2$death <- ifelse(ped_two2$`Outcome:` == "Died", "1", "0")
#rbind() is for combing two data sets. The columns must match ped_total <- rbind(ped_one2, ped_two2) #convert admission date to a date format ped_total$'Admission Date' <- as.Date(ped_total$"Admission Date", "%m/%d/%Y")
colnames(ped_total) <- c("adm_date",
"age",
"gender",
"surg_date",
"outcome",
"surg",
"death")
ped_total$vol <- 1
ped_total$age <- as.integer(ped_total$age)
ped_total$surg <- as.integer(ped_total$surg)
ped_total$death <- as.integer(ped_total$death)
ped_total$vol <- as.integer(ped_total$vol)
#Reduce dataset to include only toto patients
peds_total2 <- subset(ped_total, age < 18 )
ped_trend <- peds_total2 %>%
group_by(month=floor_date(adm_date, "month")) %>%
summarise(death_sum = sum(death, na.rm = TRUE),
volume_month = sum(vol, na.rm = TRUE),
surg_sum = sum(surg, na.rm = TRUE),
death_prop = sum(death, na.rm = TRUE) / sum(vol, na.rm = TRUE)
)
ped_trend2 <- ped_trend[c(1:10) , ]
ped_trend3 <- ped_trend2[ , c(1, 3, 4, 2, 5)]
colnames(ped_trend3) <- c("Time",
"Admissions",
"Received Surgery",
"Deaths",
"Mortality Proprotion")
ped_trend3 %>%
kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "responsive"), full_width = F) %>%
add_header_above(c( "Pediatric Neurotrauma at MRRH" = 5))
| Time | Admissions | Received Surgery | Deaths | Mortality Proprotion |
|---|---|---|---|---|
| 2018-01-01 | 7 | 1 | 0 | 0.0000000 |
| 2018-02-01 | 8 | 3 | 0 | 0.0000000 |
| 2018-03-01 | 9 | 2 | 0 | 0.0000000 |
| 2018-04-01 | 7 | 1 | 0 | 0.0000000 |
| 2018-05-01 | 11 | 0 | 1 | 0.0909091 |
| 2018-06-01 | 19 | 0 | 2 | 0.1052632 |
| 2018-07-01 | 16 | 1 | 1 | 0.0625000 |
| 2018-08-01 | 14 | 1 | 0 | 0.0000000 |
| 2018-09-01 | 13 | 2 | 0 | 0.0000000 |
| 2018-10-01 | 15 | 0 | 0 | 0.0000000 |