(a)>=100
num <- 365
mu <- 0
n <- num - 1
y <- 100
mu1 <- mu + y
var <- 0.25 * n
s <- sqrt(var)
x <- 100
pnorm(x, mu1, s, lower.tail = F)## [1] 0.5
library(visualize)
visualize.norm(stat = x, mu = mu1,sd = s, section = "upper")(b)>=100
x <- 110
visualize.norm(stat = x, mu = mu1, sd = s, section = "upper")(c)>=120
x <- 120
visualize.norm(stat = x, mu = mu1, sd = s, section = "upper")The binomial distrubution: \(P(X=k)= (nk) p^k q^{n-k}, where \space q = 1-p\)
he moment generating function is : \(M_{X} (t) = (q+pe^t)^n\)
The First moment fucntion is: \(M_{X}^{\prime}= n(q+pe^t)^{n-1} pe^t\)
\[ \begin{split} E(X)=M'_X(0) &= n(q+pe^0)^{n-1}pe^0\\ &= n(q+p)^{n-1}p\\ &= np(1-p+p)^{n-1}\\ &= np1^{n-1}\\ &=np \end{split}\]
The second moment function is : \(M''_X(t) = n(n-1)(q+pe^t)^{n-2}p^2 e^{2t}+n(q+pe^t)^{n-1}pe^t\)
\[ \begin{split} E(X^2)=M''_X(0) &= n(n-1)(q+pe^0)^{n-2}p^2 e^0+n(q+pe^0)^{n-1}pe^0\\ &= n(n-1)(1-p+p)^{n-2}p^2+n(1-p+p)^{n-1}p\\ &= n(n-1)p^2+np \end{split} \]
The variance is \(V(X)=E(X^2)-E(X)^2\)
\[ \begin{split} V(X) &= n(n-1)p^2+np-n^2p^2 \\ &= np((n-1)p+1-np) \\ &= np(np-p+1-np) \\ &= np(1-p) \\ &= npq \end{split} \]
\(E(X) = np, \space V(X) = npq\)
The prob. density function for exponential distribution is \(f(x)=\lambda e^{-\lambda x}\)
We can obtain the MGF of X using PDF \(M_x(t)=\frac{\lambda}{\lambda-t}, t<\lambda\)
Using calculator, our first derivative is \(M'_x(t) = \frac{\lambda}{(\lambda-t)^2}\) and and second derivative is \(M''_x(t) = \frac{2\lambda}{(\lambda-t)^3}\)
As we set t=0 for the first moment, we will obtain the expected value.
\[ \begin{split} E(x)=M'_x(0) &= \frac{\lambda}{(\lambda-0)^2} \\ &= \frac{\lambda}{\lambda^2}\\ &= \frac{1}{\lambda} \end{split} \]
To obtain variance, we differentiate again and set t=0
\[ \begin{split} V(X) = E(X^2)-E(X)^2 &= M''_X(0)-M'_X(0)^2 \\ &=\frac{2\lambda}{(\lambda-0)^3} - \frac{1}{\lambda^2}\\ &=\frac{2\lambda}{\lambda^3} - \frac{1}{\lambda^2}\\ &=\frac{2}{\lambda^2} - \frac{1}{\lambda^2}\\ &=\frac{1}{\lambda^2} \end{split} \]
\(E(X)=\frac{1}{\lambda}, \space V(X)=\frac{1}{\lambda^2}\)