Homework 12

The attached who.csv dataset contains real-world data from 2008. The variables included follow.

Country: name of the country LifeExp: average life expectancy for the country in years InfantSurvival: proportion of those surviving to one year or more Under5Survival: proportion of those surviving to five years or more TBFree: proportion of the population without TB. PropMD: proportion of the population who are MDs PropRN: proportion of the population who are RNs PersExp: mean personal expenditures on healthcare in US dollars at average exchange rate GovtExp: mean government expenditures per capita on healthcare, US dollars at average exchange rate TotExp: sum of personal and government expenditures.

Loading the data into a data frame

rm(list=ls())
who<-read.csv('https://raw.githubusercontent.com/VioletaStoyanova/Data605/master/who.csv', header=TRUE)
head(who)
##               Country LifeExp InfantSurvival Under5Survival  TBFree
## 1         Afghanistan      42          0.835          0.743 0.99769
## 2             Albania      71          0.985          0.983 0.99974
## 3             Algeria      71          0.967          0.962 0.99944
## 4             Andorra      82          0.997          0.996 0.99983
## 5              Angola      41          0.846          0.740 0.99656
## 6 Antigua and Barbuda      73          0.990          0.989 0.99991
##        PropMD      PropRN PersExp GovtExp TotExp
## 1 0.000228841 0.000572294      20      92    112
## 2 0.001143127 0.004614439     169    3128   3297
## 3 0.001060478 0.002091362     108    5184   5292
## 4 0.003297297 0.003500000    2589  169725 172314
## 5 0.000070400 0.001146162      36    1620   1656
## 6 0.000142857 0.002773810     503   12543  13046

Question 1

Provide a scatterplot of LifeExp~TotExp, and run simple linear regression. Do not transform the variables. Provide and interpret the F statistics, R^2, standard error,and p-values only. Discuss whether the assumptions of simple linear regression met.

summary(who)
##                 Country       LifeExp      InfantSurvival  
##  Afghanistan        :  1   Min.   :40.00   Min.   :0.8350  
##  Albania            :  1   1st Qu.:61.25   1st Qu.:0.9433  
##  Algeria            :  1   Median :70.00   Median :0.9785  
##  Andorra            :  1   Mean   :67.38   Mean   :0.9624  
##  Angola             :  1   3rd Qu.:75.00   3rd Qu.:0.9910  
##  Antigua and Barbuda:  1   Max.   :83.00   Max.   :0.9980  
##  (Other)            :184                                   
##  Under5Survival       TBFree           PropMD              PropRN         
##  Min.   :0.7310   Min.   :0.9870   Min.   :0.0000196   Min.   :0.0000883  
##  1st Qu.:0.9253   1st Qu.:0.9969   1st Qu.:0.0002444   1st Qu.:0.0008455  
##  Median :0.9745   Median :0.9992   Median :0.0010474   Median :0.0027584  
##  Mean   :0.9459   Mean   :0.9980   Mean   :0.0017954   Mean   :0.0041336  
##  3rd Qu.:0.9900   3rd Qu.:0.9998   3rd Qu.:0.0024584   3rd Qu.:0.0057164  
##  Max.   :0.9970   Max.   :1.0000   Max.   :0.0351290   Max.   :0.0708387  
##                                                                           
##     PersExp           GovtExp             TotExp      
##  Min.   :   3.00   Min.   :    10.0   Min.   :    13  
##  1st Qu.:  36.25   1st Qu.:   559.5   1st Qu.:   584  
##  Median : 199.50   Median :  5385.0   Median :  5541  
##  Mean   : 742.00   Mean   : 40953.5   Mean   : 41696  
##  3rd Qu.: 515.25   3rd Qu.: 25680.2   3rd Qu.: 26331  
##  Max.   :6350.00   Max.   :476420.0   Max.   :482750  
## 
pairs(who[,-1], gap = 0.5, col = "blue")

Creating the linear regression model

mod1<- lm(LifeExp ~ TotExp, data = who)
summary(mod1)
## 
## Call:
## lm(formula = LifeExp ~ TotExp, data = who)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.764  -4.778   3.154   7.116  13.292 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.475e+01  7.535e-01  85.933  < 2e-16 ***
## TotExp      6.297e-05  7.795e-06   8.079 7.71e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared:  0.2577, Adjusted R-squared:  0.2537 
## F-statistic: 65.26 on 1 and 188 DF,  p-value: 7.714e-14
plot(who$TotExp, who$LifeExp, xlab = "Total Expenditures ($)" ,ylab = "Life Expectancy (yrs)", col = "blue")
abline(mod1, col="red")

hist(resid(mod1), main = "Histogram of Residuals", xlab = "residuals")

plot(fitted(mod1), resid(mod1))

p value is smaller than .05 therefore there’s a significant relationship between total expenditures and life expectancy The R2 of 0.2577 means that about 25.77% of the variability of life expectancy about the mean is explained by the model. The correlation in this case is moderately weak.F???Statistic is 65.26 and the Standard Error is 9.371

The linear model, when plotted over the data, does not match the data very closely. Furthermore, the residual analysis shows that the residuals have a strong right skew and do not show constant variance. Therefore, the linear model is not valid in this case.

Question 2

Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and r re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error, and p-values. Which model is “better?”

le_4.6 <- who$LifeExp^4.6
te_0.06 <- who$TotExp^0.06
mod2 <- lm(le_4.6 ~ te_0.06)
summary(mod2)
## 
## Call:
## lm(formula = le_4.6 ~ te_0.06)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -308616089  -53978977   13697187   59139231  211951764 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -736527910   46817945  -15.73   <2e-16 ***
## te_0.06      620060216   27518940   22.53   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared:  0.7298, Adjusted R-squared:  0.7283 
## F-statistic: 507.7 on 1 and 188 DF,  p-value: < 2.2e-16
plot(who$TotExp^0.06, who$LifeExp^4.6, xlab = "Total Expenditures^0.06 ($^0.06)" ,ylab = "Life Expectancy^4.6 (yrs^0.06)", col = "blue")
abline(mod2, col="red")

hist(resid(mod2), main = "Histogram of Residuals", xlab = "residuals")

plot(fitted(mod2), resid(mod2))

The p???value is again smaller than .05 F???Statistic is 507.7 and the Standard Error is 90490000. The correlation is 0.8543 which is much better than the previous case and R2 is 0.7298. This transformed model seems to perform better than the previous one.

Question 3

Using the results from 3, forecast life expectancy when TotExp^.06 =1.5. Then forecast life expectancy when TotExp^.06=2.5.

x = 1.5
y = round(mod2$coefficients[1], 4) + round(mod2$coefficients[2], 4) * x
le = round(y^(1/4.6), 2)
print(le)
## (Intercept) 
##       63.31

The forecast life expectancy is 63.31 years when TotExp^.06=1.6

x = 2.5
y = round(mod2$coefficients[1], 4) + round(mod2$coefficients[2], 4) * x
le = round(y^(1/4.6), 2)
print(le)
## (Intercept) 
##       86.51

The forecast life expctancy is 86.51 years when TotExp^.06=2.5 #Question 4 Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model?

LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp

mod3<-lm(LifeExp ~ PropMD + TotExp + PropMD*TotExp, data = who)
summary(mod3)
## 
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + PropMD * TotExp, data = who)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.320  -4.132   2.098   6.540  13.074 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    6.277e+01  7.956e-01  78.899  < 2e-16 ***
## PropMD         1.497e+03  2.788e+02   5.371 2.32e-07 ***
## TotExp         7.233e-05  8.982e-06   8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03  1.472e-03  -4.093 6.35e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared:  0.3574, Adjusted R-squared:  0.3471 
## F-statistic: 34.49 on 3 and 186 DF,  p-value: < 2.2e-16
hist(resid(mod3), main = "Histogram of Residuals", xlab = "residuals")

plot(fitted(mod3), resid(mod3))

F???Statistic is 34.49 and the Standard Error is 8.765. The p???value is smaller than .05. The R2 is 0.3574. The model explains only 35.74% of variability. The residuals are not normally distributed. This model is not a good model to describe the relationships between variables TotExp, PropMd and LifeExp.

Question 5

Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not? LifeExp=6.277???101+1.497???103???PropMD+7.233???10???5TotExp???6.026???10???3???PropMD???TotExp LifeExp=6.277???101+1.497???103???0.03+7.233???10???5???14???6.026???10???3???0.03???14 LifeExp=107.6808

When PropMd=0.03 and TotExp=14, the forecast value of LifeExp is 107.69 years which is unrealistic because the highest life expectancy in the dataset is 83 years. Thus this forecast seems unrealistic.