Instructions

Submit both the .Rmd and .html files for grading.

Please delete the Instructions shown above prior to submitting your .Rmd and .html files.


Test Items (50 points total)

(1) R has probability functions available for use (Kabacoff, Section 5.2.3). Using one distribution to approximate another is not uncommon.

(1)(a) (4 points) The Poisson distribution may be used to approximate the binomial distribution if n > 20 and np < 7. Estimate the following binomial probabilities using dpois() and ppois() with probability p = 0.05, and n = 100. Then, estimate the same probabilities using dbinom() and pbinom(). Show the numerical results of your calculations.

  1. The probability of exactly 0 successes.
dpois(0,lambda = 5)
## [1] 0.006737947
ppois(0,lambda = 5)
## [1] 0.006737947
dbinom(0,100,0.05)
## [1] 0.005920529
pbinom(0,100,0.05)
## [1] 0.005920529
  1. The probability of fewer than 6 successes.
sum(dpois(0:5,lambda = 5))
## [1] 0.6159607
ppois(5,lambda = 5)
## [1] 0.6159607
sum(dbinom(0:5,100,0.05))
## [1] 0.6159991
pbinom(5,100,0.05)
## [1] 0.6159991

(1)(b) (2 points) Generate side-by-side barplots using par(mfrow = c(1,2)) or grid.arrange(). The left barplot will show Poisson probabilties for outcomes ranging from 0 to 10. The right barplot will show binomial probabilities for outcomes ranging from 0 to 10. Use p = 0.05 and n = 100. Title each plot, present in color and assign names to the bar; i.e. x-axis value labels.

dp<-(dpois(0:10,lambda = 5))
dp
##  [1] 0.006737947 0.033689735 0.084224337 0.140373896 0.175467370
##  [6] 0.175467370 0.146222808 0.104444863 0.065278039 0.036265577
## [11] 0.018132789
db<-(dbinom(0:10,100,0.05))
db
##  [1] 0.005920529 0.031160680 0.081181772 0.139575678 0.178142642
##  [6] 0.180017827 0.150014856 0.106025537 0.064870888 0.034901296
## [11] 0.016715884
par(mfrow=c(1,2))
barplot(dp,main ="Poisson Probability",col="aquamarine3",xlab = "Outcome",ylab ="Probability")
barplot(db,main = "Binomial Probability",col = "coral",xlab = "Outcome",ylab = "Probability")

(1)(c) For this problem refer to Sections 5.2 of Business Statistics. A discrete random variable has outcomes: 0, 1, 2, 3, 4, 5, 6. The corresponding probabilities in sequence with the outcomes are: 0.215, 0.230, 0.240, 0.182, 0.130, 0.003, 0.001. In other words, the probabilty of obtaining “0” is 0.215.

  1. (2 points) Calculate the expected value and variance for this distribution using the general formula for mean and variance of a discrete distribution. To do this, you will need to use integer values from 0 to 6 as outcomes along with the corresponding probabilities. Round your answer to 2 decimal places.
x<-0:6
prob<-c(0.215,0.230,0.240,0.182,0.130,0.003,0.001)
meanx<-round(sum(x*prob),digits=2)
meanx
## [1] 1.8
varx<-round(((sum((x^2)*prob))-(meanx^2)),digits=2)
varx
## [1] 1.78
  1. (2 points) Use the cumsum() function and plot the cumulative probabilties versus the corresponding outcomes. Detemine the value of the median for this distribution and show on this plot.
cumprob<-cumsum(prob)
cumprob
## [1] 0.215 0.445 0.685 0.867 0.997 1.000 1.001
plot(x,cumprob,pch=22,main = "Cum. Prob. vs Corr. Outcomes",xlab="outcomes",ylab="Cum prob")
text(1.8,0.56,"The Median is assumed to be 1.8")

#mean assumed to be (1.8,0) based on the answer to Prob. #1.c(i) above
(2) Conditional probabilities appear in many contexts and in particular are used by Bayes’ Theorem. Correlations are another means for evaluating dependency between variables. The dataset “faithful”" is part of the “datasets” package and may be loaded with the statement data(faithful). It contains 272 observations of 2 variables; waiting time between eruptions (in minutes) and the duration of the eruption (in minutes) for the Old Faithful geyser in Yellowstone National Park.

(2)(a) (2 points) Load the “faithful” and present summary statistics and a histogram of waiting times. Additionally, compute the empirical conditional probability of an eruption less than 3.0 minutes, if the waiting time exceeds 70 minutes.

data("faithful")
summary(faithful)
##    eruptions        waiting    
##  Min.   :1.600   Min.   :43.0  
##  1st Qu.:2.163   1st Qu.:58.0  
##  Median :4.000   Median :76.0  
##  Mean   :3.488   Mean   :70.9  
##  3rd Qu.:4.454   3rd Qu.:82.0  
##  Max.   :5.100   Max.   :96.0
str(faithful)
## 'data.frame':    272 obs. of  2 variables:
##  $ eruptions: num  3.6 1.8 3.33 2.28 4.53 ...
##  $ waiting  : num  79 54 74 62 85 55 88 85 51 85 ...
hist(faithful$waiting)

faithful
##     eruptions waiting
## 1       3.600      79
## 2       1.800      54
## 3       3.333      74
## 4       2.283      62
## 5       4.533      85
## 6       2.883      55
## 7       4.700      88
## 8       3.600      85
## 9       1.950      51
## 10      4.350      85
## 11      1.833      54
## 12      3.917      84
## 13      4.200      78
## 14      1.750      47
## 15      4.700      83
## 16      2.167      52
## 17      1.750      62
## 18      4.800      84
## 19      1.600      52
## 20      4.250      79
## 21      1.800      51
## 22      1.750      47
## 23      3.450      78
## 24      3.067      69
## 25      4.533      74
## 26      3.600      83
## 27      1.967      55
## 28      4.083      76
## 29      3.850      78
## 30      4.433      79
## 31      4.300      73
## 32      4.467      77
## 33      3.367      66
## 34      4.033      80
## 35      3.833      74
## 36      2.017      52
## 37      1.867      48
## 38      4.833      80
## 39      1.833      59
## 40      4.783      90
## 41      4.350      80
## 42      1.883      58
## 43      4.567      84
## 44      1.750      58
## 45      4.533      73
## 46      3.317      83
## 47      3.833      64
## 48      2.100      53
## 49      4.633      82
## 50      2.000      59
## 51      4.800      75
## 52      4.716      90
## 53      1.833      54
## 54      4.833      80
## 55      1.733      54
## 56      4.883      83
## 57      3.717      71
## 58      1.667      64
## 59      4.567      77
## 60      4.317      81
## 61      2.233      59
## 62      4.500      84
## 63      1.750      48
## 64      4.800      82
## 65      1.817      60
## 66      4.400      92
## 67      4.167      78
## 68      4.700      78
## 69      2.067      65
## 70      4.700      73
## 71      4.033      82
## 72      1.967      56
## 73      4.500      79
## 74      4.000      71
## 75      1.983      62
## 76      5.067      76
## 77      2.017      60
## 78      4.567      78
## 79      3.883      76
## 80      3.600      83
## 81      4.133      75
## 82      4.333      82
## 83      4.100      70
## 84      2.633      65
## 85      4.067      73
## 86      4.933      88
## 87      3.950      76
## 88      4.517      80
## 89      2.167      48
## 90      4.000      86
## 91      2.200      60
## 92      4.333      90
## 93      1.867      50
## 94      4.817      78
## 95      1.833      63
## 96      4.300      72
## 97      4.667      84
## 98      3.750      75
## 99      1.867      51
## 100     4.900      82
## 101     2.483      62
## 102     4.367      88
## 103     2.100      49
## 104     4.500      83
## 105     4.050      81
## 106     1.867      47
## 107     4.700      84
## 108     1.783      52
## 109     4.850      86
## 110     3.683      81
## 111     4.733      75
## 112     2.300      59
## 113     4.900      89
## 114     4.417      79
## 115     1.700      59
## 116     4.633      81
## 117     2.317      50
## 118     4.600      85
## 119     1.817      59
## 120     4.417      87
## 121     2.617      53
## 122     4.067      69
## 123     4.250      77
## 124     1.967      56
## 125     4.600      88
## 126     3.767      81
## 127     1.917      45
## 128     4.500      82
## 129     2.267      55
## 130     4.650      90
## 131     1.867      45
## 132     4.167      83
## 133     2.800      56
## 134     4.333      89
## 135     1.833      46
## 136     4.383      82
## 137     1.883      51
## 138     4.933      86
## 139     2.033      53
## 140     3.733      79
## 141     4.233      81
## 142     2.233      60
## 143     4.533      82
## 144     4.817      77
## 145     4.333      76
## 146     1.983      59
## 147     4.633      80
## 148     2.017      49
## 149     5.100      96
## 150     1.800      53
## 151     5.033      77
## 152     4.000      77
## 153     2.400      65
## 154     4.600      81
## 155     3.567      71
## 156     4.000      70
## 157     4.500      81
## 158     4.083      93
## 159     1.800      53
## 160     3.967      89
## 161     2.200      45
## 162     4.150      86
## 163     2.000      58
## 164     3.833      78
## 165     3.500      66
## 166     4.583      76
## 167     2.367      63
## 168     5.000      88
## 169     1.933      52
## 170     4.617      93
## 171     1.917      49
## 172     2.083      57
## 173     4.583      77
## 174     3.333      68
## 175     4.167      81
## 176     4.333      81
## 177     4.500      73
## 178     2.417      50
## 179     4.000      85
## 180     4.167      74
## 181     1.883      55
## 182     4.583      77
## 183     4.250      83
## 184     3.767      83
## 185     2.033      51
## 186     4.433      78
## 187     4.083      84
## 188     1.833      46
## 189     4.417      83
## 190     2.183      55
## 191     4.800      81
## 192     1.833      57
## 193     4.800      76
## 194     4.100      84
## 195     3.966      77
## 196     4.233      81
## 197     3.500      87
## 198     4.366      77
## 199     2.250      51
## 200     4.667      78
## 201     2.100      60
## 202     4.350      82
## 203     4.133      91
## 204     1.867      53
## 205     4.600      78
## 206     1.783      46
## 207     4.367      77
## 208     3.850      84
## 209     1.933      49
## 210     4.500      83
## 211     2.383      71
## 212     4.700      80
## 213     1.867      49
## 214     3.833      75
## 215     3.417      64
## 216     4.233      76
## 217     2.400      53
## 218     4.800      94
## 219     2.000      55
## 220     4.150      76
## 221     1.867      50
## 222     4.267      82
## 223     1.750      54
## 224     4.483      75
## 225     4.000      78
## 226     4.117      79
## 227     4.083      78
## 228     4.267      78
## 229     3.917      70
## 230     4.550      79
## 231     4.083      70
## 232     2.417      54
## 233     4.183      86
## 234     2.217      50
## 235     4.450      90
## 236     1.883      54
## 237     1.850      54
## 238     4.283      77
## 239     3.950      79
## 240     2.333      64
## 241     4.150      75
## 242     2.350      47
## 243     4.933      86
## 244     2.900      63
## 245     4.583      85
## 246     3.833      82
## 247     2.083      57
## 248     4.367      82
## 249     2.133      67
## 250     4.350      74
## 251     2.200      54
## 252     4.450      83
## 253     3.567      73
## 254     4.500      73
## 255     4.150      88
## 256     3.817      80
## 257     3.917      71
## 258     4.450      83
## 259     2.000      56
## 260     4.283      79
## 261     4.767      78
## 262     4.533      84
## 263     1.850      58
## 264     4.250      83
## 265     1.983      43
## 266     2.250      60
## 267     4.750      75
## 268     4.117      81
## 269     2.150      46
## 270     4.417      90
## 271     1.817      46
## 272     4.467      74
Wait70<-subset(faithful,waiting>70)
Wait70
##     eruptions waiting
## 1       3.600      79
## 3       3.333      74
## 5       4.533      85
## 7       4.700      88
## 8       3.600      85
## 10      4.350      85
## 12      3.917      84
## 13      4.200      78
## 15      4.700      83
## 18      4.800      84
## 20      4.250      79
## 23      3.450      78
## 25      4.533      74
## 26      3.600      83
## 28      4.083      76
## 29      3.850      78
## 30      4.433      79
## 31      4.300      73
## 32      4.467      77
## 34      4.033      80
## 35      3.833      74
## 38      4.833      80
## 40      4.783      90
## 41      4.350      80
## 43      4.567      84
## 45      4.533      73
## 46      3.317      83
## 49      4.633      82
## 51      4.800      75
## 52      4.716      90
## 54      4.833      80
## 56      4.883      83
## 57      3.717      71
## 59      4.567      77
## 60      4.317      81
## 62      4.500      84
## 64      4.800      82
## 66      4.400      92
## 67      4.167      78
## 68      4.700      78
## 70      4.700      73
## 71      4.033      82
## 73      4.500      79
## 74      4.000      71
## 76      5.067      76
## 78      4.567      78
## 79      3.883      76
## 80      3.600      83
## 81      4.133      75
## 82      4.333      82
## 85      4.067      73
## 86      4.933      88
## 87      3.950      76
## 88      4.517      80
## 90      4.000      86
## 92      4.333      90
## 94      4.817      78
## 96      4.300      72
## 97      4.667      84
## 98      3.750      75
## 100     4.900      82
## 102     4.367      88
## 104     4.500      83
## 105     4.050      81
## 107     4.700      84
## 109     4.850      86
## 110     3.683      81
## 111     4.733      75
## 113     4.900      89
## 114     4.417      79
## 116     4.633      81
## 118     4.600      85
## 120     4.417      87
## 123     4.250      77
## 125     4.600      88
## 126     3.767      81
## 128     4.500      82
## 130     4.650      90
## 132     4.167      83
## 134     4.333      89
## 136     4.383      82
## 138     4.933      86
## 140     3.733      79
## 141     4.233      81
## 143     4.533      82
## 144     4.817      77
## 145     4.333      76
## 147     4.633      80
## 149     5.100      96
## 151     5.033      77
## 152     4.000      77
## 154     4.600      81
## 155     3.567      71
## 157     4.500      81
## 158     4.083      93
## 160     3.967      89
## 162     4.150      86
## 164     3.833      78
## 166     4.583      76
## 168     5.000      88
## 170     4.617      93
## 173     4.583      77
## 175     4.167      81
## 176     4.333      81
## 177     4.500      73
## 179     4.000      85
## 180     4.167      74
## 182     4.583      77
## 183     4.250      83
## 184     3.767      83
## 186     4.433      78
## 187     4.083      84
## 189     4.417      83
## 191     4.800      81
## 193     4.800      76
## 194     4.100      84
## 195     3.966      77
## 196     4.233      81
## 197     3.500      87
## 198     4.366      77
## 200     4.667      78
## 202     4.350      82
## 203     4.133      91
## 205     4.600      78
## 207     4.367      77
## 208     3.850      84
## 210     4.500      83
## 211     2.383      71
## 212     4.700      80
## 214     3.833      75
## 216     4.233      76
## 218     4.800      94
## 220     4.150      76
## 222     4.267      82
## 224     4.483      75
## 225     4.000      78
## 226     4.117      79
## 227     4.083      78
## 228     4.267      78
## 230     4.550      79
## 233     4.183      86
## 235     4.450      90
## 238     4.283      77
## 239     3.950      79
## 241     4.150      75
## 243     4.933      86
## 245     4.583      85
## 246     3.833      82
## 248     4.367      82
## 250     4.350      74
## 252     4.450      83
## 253     3.567      73
## 254     4.500      73
## 255     4.150      88
## 256     3.817      80
## 257     3.917      71
## 258     4.450      83
## 260     4.283      79
## 261     4.767      78
## 262     4.533      84
## 264     4.250      83
## 267     4.750      75
## 268     4.117      81
## 270     4.417      90
## 272     4.467      74
erupt3<-subset(Wait70,eruptions<3)
erupt3
##     eruptions waiting
## 211     2.383      71
condprob<-nrow(erupt3)/nrow(Wait70)
condprob
## [1] 0.006060606
  1. (2 points) Identify any observations in “faithful” for which the waiting time exceeds 70 minutes and the eruptions are less than 3.0 minutes. List and show any such observations in a distinct color on a scatterplot of all eruption (vertical axis) and waiting times (horizontal axis). Include a horizontal line at eruption = 3.0, and a vertical line at waiting time = 70. Add a title and appropriate text.
waiting = faithful$waiting
duration = faithful$eruptions   
plot(waiting, duration,main="Faithful Observations", xlab = "Time Waited",ylab = "Eruption Duration")
abline(h=3,v=70,col="blue")

  1. (1 point) What does the plot suggest about the relationship between eruption time and waiting time?

Answer: (There is generally a positive, linear relationship between eruption time and waiting time with Wait Times Increasing when the Duration of the Eruption also increases )


(2)(b) (3 points) Past research indicates that the waiting times between consecutive eruptions are not independent. This problem will check to see if there is evidence of this. Form consecutive pairs of waiting times. In other words, pair the first and second waiting times, pair the third and fourth waiting times, and so forth. There are 136 resulting consecutive pairs of waiting times. Form a data frame with the first column containing the first waiting time in a pair and the second column with the second waiting time in a pair. Plot the pairs with the second member of a pair on the vertical axis and the first member on the horizontal axis.

One way to do this is to pass the vector of waiting times - faithful$waiting - to matrix(), specifying 2 columns for our matrix, with values organized by row; i.e. byrow = TRUE.

dim(faithful)
## [1] 272   2
colnames(faithful)
## [1] "eruptions" "waiting"
mwait<-matrix(waiting,ncol=2,byrow=TRUE)
mwait
##        [,1] [,2]
##   [1,]   79   54
##   [2,]   74   62
##   [3,]   85   55
##   [4,]   88   85
##   [5,]   51   85
##   [6,]   54   84
##   [7,]   78   47
##   [8,]   83   52
##   [9,]   62   84
##  [10,]   52   79
##  [11,]   51   47
##  [12,]   78   69
##  [13,]   74   83
##  [14,]   55   76
##  [15,]   78   79
##  [16,]   73   77
##  [17,]   66   80
##  [18,]   74   52
##  [19,]   48   80
##  [20,]   59   90
##  [21,]   80   58
##  [22,]   84   58
##  [23,]   73   83
##  [24,]   64   53
##  [25,]   82   59
##  [26,]   75   90
##  [27,]   54   80
##  [28,]   54   83
##  [29,]   71   64
##  [30,]   77   81
##  [31,]   59   84
##  [32,]   48   82
##  [33,]   60   92
##  [34,]   78   78
##  [35,]   65   73
##  [36,]   82   56
##  [37,]   79   71
##  [38,]   62   76
##  [39,]   60   78
##  [40,]   76   83
##  [41,]   75   82
##  [42,]   70   65
##  [43,]   73   88
##  [44,]   76   80
##  [45,]   48   86
##  [46,]   60   90
##  [47,]   50   78
##  [48,]   63   72
##  [49,]   84   75
##  [50,]   51   82
##  [51,]   62   88
##  [52,]   49   83
##  [53,]   81   47
##  [54,]   84   52
##  [55,]   86   81
##  [56,]   75   59
##  [57,]   89   79
##  [58,]   59   81
##  [59,]   50   85
##  [60,]   59   87
##  [61,]   53   69
##  [62,]   77   56
##  [63,]   88   81
##  [64,]   45   82
##  [65,]   55   90
##  [66,]   45   83
##  [67,]   56   89
##  [68,]   46   82
##  [69,]   51   86
##  [70,]   53   79
##  [71,]   81   60
##  [72,]   82   77
##  [73,]   76   59
##  [74,]   80   49
##  [75,]   96   53
##  [76,]   77   77
##  [77,]   65   81
##  [78,]   71   70
##  [79,]   81   93
##  [80,]   53   89
##  [81,]   45   86
##  [82,]   58   78
##  [83,]   66   76
##  [84,]   63   88
##  [85,]   52   93
##  [86,]   49   57
##  [87,]   77   68
##  [88,]   81   81
##  [89,]   73   50
##  [90,]   85   74
##  [91,]   55   77
##  [92,]   83   83
##  [93,]   51   78
##  [94,]   84   46
##  [95,]   83   55
##  [96,]   81   57
##  [97,]   76   84
##  [98,]   77   81
##  [99,]   87   77
## [100,]   51   78
## [101,]   60   82
## [102,]   91   53
## [103,]   78   46
## [104,]   77   84
## [105,]   49   83
## [106,]   71   80
## [107,]   49   75
## [108,]   64   76
## [109,]   53   94
## [110,]   55   76
## [111,]   50   82
## [112,]   54   75
## [113,]   78   79
## [114,]   78   78
## [115,]   70   79
## [116,]   70   54
## [117,]   86   50
## [118,]   90   54
## [119,]   54   77
## [120,]   79   64
## [121,]   75   47
## [122,]   86   63
## [123,]   85   82
## [124,]   57   82
## [125,]   67   74
## [126,]   54   83
## [127,]   73   73
## [128,]   88   80
## [129,]   71   83
## [130,]   56   79
## [131,]   78   84
## [132,]   58   83
## [133,]   43   60
## [134,]   75   81
## [135,]   46   90
## [136,]   46   74
plot(y=mwait[,2],x=mwait[,1],xlab="First Column",ylab = "Second Column")

(2)(c) (2) Test the hypothesis of independence with a two-sided test at the 5% level using the Kendall correlation coefficient.

library(Kendall)
cor.test(mwait[,1],mwait[,2],alternative = "two.sided",method = "kendall", conf.level = 0.95)
## 
##  Kendall's rank correlation tau
## 
## data:  mwait[, 1] and mwait[, 2]
## z = -4.9482, p-value = 7.489e-07
## alternative hypothesis: true tau is not equal to 0
## sample estimates:
##        tau 
## -0.2935579
#Null hypothesis = data are not independent; we reject the Null hypothesis
(3) Performing hypothesis tests using random samples is fundamental to statistical inference. The first part of this problem involves comparing two different diets. Using “ChickWeight” data available in the base R, “datasets” package, execute the following code to prepare a data frame for analysis.
# load "ChickWeight" dataset
data(ChickWeight)

# Create T | F vector indicating observations with Time == 21 and Diet == "1" OR "3"
index <- ChickWeight$Time == 21 & (ChickWeight$Diet == "1" | ChickWeight$Diet == "3")

# Create data frame, "result," with the weight and Diet of those observations with "TRUE" "index"" values
result <- subset(ChickWeight[index, ], select = c(weight, Diet))

# Encode "Diet" as a factor
result$Diet <- factor(result$Diet)
str(result) 
## Classes 'nfnGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame':   26 obs. of  2 variables:
##  $ weight: num  205 215 202 157 223 157 305 98 124 175 ...
##  $ Diet  : Factor w/ 2 levels "1","3": 1 1 1 1 1 1 1 1 1 1 ...
The data frame, “result”, has chick weights for two diets, identified as diet “1” and “3”. Use the data frame, “result,” to complete the following item.

(3)(a) (2 points) Display two side-by-side vertical boxplots using par(mfrow = c(1,2)). One boxplot would display diet “1” and the other diet “3”.

par(mfrow=c(1,2))
result
##     weight Diet
## 12     205    1
## 24     215    1
## 36     202    1
## 48     157    1
## 60     223    1
## 72     157    1
## 84     305    1
## 107     98    1
## 119    124    1
## 131    175    1
## 143    205    1
## 155     96    1
## 167    266    1
## 194    142    1
## 208    157    1
## 220    117    1
## 352    256    3
## 364    305    3
## 376    147    3
## 388    341    3
## 400    373    3
## 412    220    3
## 424    178    3
## 436    290    3
## 448    272    3
## 460    321    3
result1<-subset(result,Diet == "1")
result1
##     weight Diet
## 12     205    1
## 24     215    1
## 36     202    1
## 48     157    1
## 60     223    1
## 72     157    1
## 84     305    1
## 107     98    1
## 119    124    1
## 131    175    1
## 143    205    1
## 155     96    1
## 167    266    1
## 194    142    1
## 208    157    1
## 220    117    1
boxplot(result1$weight)
result3<-subset(result,Diet == "3")
boxplot(result3$weight)

(3)(b) (2 points) Use the “weight” data for the two diets to test the null hypothesis of equal population mean weights for the two diets. Test at the 95% confidence level with a two-sided t-test. This can be done using t.test() in R. Assume equal variances. Display the results of t.test().

t.test(result1$weight,result3$weight,alternative = "two.sided",conf.level = 0.95)
## 
##  Welch Two Sample t-test
## 
## data:  result1$weight and result3$weight
## t = -3.4293, df = 16.408, p-value = 0.003337
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -149.64644  -35.45356
## sample estimates:
## mean of x mean of y 
##    177.75    270.30
Working with paired data is another common statistical activity. The “ChickWeight” data will be used to illustrate how the weight gain from day 20 to 21 may be analyzed. Use the following code to prepare pre- and post-data from Diet == “3” for analysis.
# load "ChickWeight" dataset
data(ChickWeight)

# Create T | F vector indicating observations with Diet == "3"
index <- ChickWeight$Diet == "3"

# Create vector of "weight" for observations where Diet == "3" and Time == 20
pre <- subset(ChickWeight[index, ], Time == 20, select = weight)$weight

# Create vector of "weight" for observations where Diet == "3" and Time == 21
post <- subset(ChickWeight[index, ], Time == 21, select = weight)$weight

# The pre and post values are paired, each pair corresponding to an individual chick.
cbind(pre, post)
##       pre post
##  [1,] 235  256
##  [2,] 291  305
##  [3,] 156  147
##  [4,] 327  341
##  [5,] 361  373
##  [6,] 225  220
##  [7,] 169  178
##  [8,] 280  290
##  [9,] 250  272
## [10,] 295  321

(3)(c) (2 points) Present a scatterplot of the variable “post” as a function of the variable “pre”. Include a diagonal line with zero intercept and slope equal to one. Title and label the variables in this scatterplot.

plot(pre,post,col="blue",xlab="Variable Pre",ylab="Variable Post",
main="Scatterplot Pre~Post",pch=15)
abline(0,1,col="red")

(3)(d) (4 points) Calculate and present a one-sided, 95% confidence interval for the average weight gain from day 20 to day 21. Write the code for the paired t-test and for determination of the confidence interval endpoints. **Do not use *t.test()**, although you may check your answers using this function. Present the resulting test statistic value, critical value, p-value and confidence interval.

mean_pre<-mean(pre)
mean_pre
## [1] 258.9
mean_post<-mean(post)
mean_post
## [1] 270.3
mean_weight_gain<-mean_post-mean_pre
mean_weight_gain
## [1] 11.4
t.test(pre,post,alternate="two.sided",conf.level = 0.95)
## 
##  Welch Two Sample t-test
## 
## data:  pre and post
## t = -0.37209, df = 17.846, p-value = 0.7142
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -75.8069  53.0069
## sample estimates:
## mean of x mean of y 
##     258.9     270.3
n<-length(pre)
n
## [1] 10
df<-n-1
df
## [1] 9
t_lower<-qt(0.025,df)
t_lower
## [1] -2.262157
t_upper<-qt(0.975,df)
t_upper
## [1] 2.262157
std.dev<-sqrt(sum(mean_weight_gain^2)/(n-1))
std.dev
## [1] 3.8
std_error<-std.dev/sqrt(n)
std_error
## [1] 1.201666
lowerci<-mean_weight_gain+(std_error*t_lower)
lowerci
## [1] 8.681644
upperci<-mean_weight_gain+(std_error*t_upper)
upperci
## [1] 14.11836
(4) Statistical inference depends on using a sampling distribution for a statistic in order to make confidence statements about unknown population parameters. The Central Limit Theorem is used to justify use of the normal distribution as a sampling distribution for statistical inference. Using Nile River flow data from 1871 to 1970, this problem demonstrates sampling distribution convergence to normality. Use the code below to prepare the data. Refer to this example when completing (4)(c) below.
data(Nile)
m <- mean(Nile)
std <- sd(Nile)

x <- seq(from = 400, to = 1400, by = 1)
hist(Nile, freq = FALSE, col = "darkblue", xlab = "Flow",
     main = "Histogram of Nile River Flows, 1871 to 1970")
curve(dnorm(x, mean = m, sd = std), col = "orange", lwd = 2, add = TRUE)

(4)(a) (2 points) Using Nile River flow data and the “moments” package, calculate skewness and kurtosis. Present a QQ plot and boxplot of the flow data side-by-side using qqnorm(), qqline() and boxplot(); par(mfrow = c(1, 2)) may be used to locate the plots side-by-side. Add features to these displays as you choose.

library(moments) 
skewness1<-skewness(Nile)
skewness1
## [1] 0.3223697
kurtosis1<-kurtosis(Nile)
kurtosis1
## [1] 2.695093
par(mfrow=c(1,2))
qqnorm(Nile,main = "QQ PLOT")
qqline(Nile)
boxplot(Nile,main="Boxplot")

(4)(b) (4 points) Using set.seed(124) and the Nile data, generate 1000 random samples of size n = 16, with replacement. For each sample drawn, calculate and store the sample mean. This can be done with a for-loop and use of the sample() function. Label the resulting 1000 mean values as “sample1”. Repeat these steps using set.seed(127) - a different “seed” - and samples of size n = 64. Label these 1000 mean values as “sample2”. Compute and present the means, sample standard deviations and sample variances for “sample1” and “sample2” in a table with the first row for “sample1”, the second row for “sample2” and the columns labled for each statistic.

set.seed(124)
sample1<-rep(1:1000,0)
for(i in 1:1000) {
  sample1[i]<-mean(sample(Nile,16,replace=TRUE))
}

set.seed(127)
sample2<-rep(1:1000,0)

for(i in 1:1000) {
  sample2[i]<-mean(sample(Nile,64,replace = TRUE))
}

row_names<-c("sample1","sample2")
col_names<-c("mean","sample std dev","sample variance")
matrix(c(mean(sample1),mean(sample2),sd(sample1),sd(sample2),var(sample1),var(sample2)),nrow = 2,ncol = 3,dimnames = list(row_names,col_names))
##             mean sample std dev sample variance
## sample1 918.7349       41.57159        1728.197
## sample2 919.4785       20.07329         402.937

(4)(c) (4 points) Present side-by-side histograms of “sample1” and “sample2” with the normal density curve superimposed. To prepare comparable histograms, it will be necessary to use “freq = FALSE” and to maintain the same x-axis with “xlim = c(750, 1050)”, and the same y-axis with “ylim = c(0, 0.025).” To superimpose separate density functions, you will need to use the mean and standard deviation for each “sample” - each histogram - separately.

par(mfrow=c(1,2))
hist(sample1,freq = FALSE,xlim = c(750,1040),ylim = c(0,0.025))
curve(dnorm(x,mean=mean(sample1),sd=sd(sample1)),add=TRUE,col="red",lty=2,lwd=2)

hist(sample2,freq = FALSE,xlim = c(750,1040),ylim = c(0,0.025))
curve(dnorm(x,mean=mean(sample2),sd=sd(sample2)),add=TRUE,col="red",lty=2,lwd=2)


(5) This problem deals with contingency table analysis. This is an example of categorical data analysis (see Kabacoff, pp. 145-151). The “warpbreaks” dataset gives the number of warp breaks per loom, where a loom corresponds to a fixed length of yarn. There are 54 observations on 3 variables: breaks (numeric, the number of breaks), wool (factor, type of wool: A or B), and tension (factor, low L, medium M and high H). These data have been studied and used for example elsewhere. For the purposes of this problem, we will focus on the relationship between breaks and tension using contingency table analysis.

(5)(a)(3 points) warpbreaks is part of the “datasets” package and may be loaded via data(warpbreaks). Load “warpbreaks” and present the structure using str(). Calculate the median number of breaks for the entire dataset, disregarding “tension” and “wool”. Define this median value as “median_breaks”. Present a histogram of the number of breaks with the location of the median indicated.

Create a new variable “number” as follows: for each value of “breaks”, classify the number of breaks as either strictly below “median_breaks”, or the alternative. Convert the “above”|“below” classifications to a factor, and combine with the dataset warpbreaks. Present a summary of the augmented dataset using summary(). Present a contingency table of the frequency of breaks using the two variables “tension” and “number”. There should be six cells in this table.

data("warpbreaks")
str(warpbreaks)
## 'data.frame':    54 obs. of  3 variables:
##  $ breaks : num  26 30 54 25 70 52 51 26 67 18 ...
##  $ wool   : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1 1 ...
##  $ tension: Factor w/ 3 levels "L","M","H": 1 1 1 1 1 1 1 1 1 2 ...
median_breaks<-median(warpbreaks$breaks)
median_breaks
## [1] 26
hist(warpbreaks$breaks)
abline(v = median(warpbreaks$breaks),
 col = "royalblue",
 lwd = 2)

number<-ifelse(warpbreaks$breaks<median_breaks,"below","above")
number
##  [1] "above" "above" "above" "below" "above" "above" "above" "above"
##  [9] "above" "below" "below" "above" "below" "below" "below" "above"
## [17] "above" "above" "above" "below" "below" "below" "below" "above"
## [25] "above" "below" "above" "above" "below" "above" "below" "above"
## [33] "above" "above" "below" "above" "above" "above" "below" "below"
## [41] "above" "above" "below" "above" "above" "below" "below" "below"
## [49] "below" "below" "below" "below" "below" "above"
warpbreaks2<-cbind(warpbreaks,number)
warpbreaks2
##    breaks wool tension number
## 1      26    A       L  above
## 2      30    A       L  above
## 3      54    A       L  above
## 4      25    A       L  below
## 5      70    A       L  above
## 6      52    A       L  above
## 7      51    A       L  above
## 8      26    A       L  above
## 9      67    A       L  above
## 10     18    A       M  below
## 11     21    A       M  below
## 12     29    A       M  above
## 13     17    A       M  below
## 14     12    A       M  below
## 15     18    A       M  below
## 16     35    A       M  above
## 17     30    A       M  above
## 18     36    A       M  above
## 19     36    A       H  above
## 20     21    A       H  below
## 21     24    A       H  below
## 22     18    A       H  below
## 23     10    A       H  below
## 24     43    A       H  above
## 25     28    A       H  above
## 26     15    A       H  below
## 27     26    A       H  above
## 28     27    B       L  above
## 29     14    B       L  below
## 30     29    B       L  above
## 31     19    B       L  below
## 32     29    B       L  above
## 33     31    B       L  above
## 34     41    B       L  above
## 35     20    B       L  below
## 36     44    B       L  above
## 37     42    B       M  above
## 38     26    B       M  above
## 39     19    B       M  below
## 40     16    B       M  below
## 41     39    B       M  above
## 42     28    B       M  above
## 43     21    B       M  below
## 44     39    B       M  above
## 45     29    B       M  above
## 46     20    B       H  below
## 47     21    B       H  below
## 48     24    B       H  below
## 49     17    B       H  below
## 50     13    B       H  below
## 51     15    B       H  below
## 52     15    B       H  below
## 53     16    B       H  below
## 54     28    B       H  above
summary(warpbreaks2)
##      breaks      wool   tension   number  
##  Min.   :10.00   A:27   L:18    above:29  
##  1st Qu.:18.25   B:27   M:18    below:25  
##  Median :26.00          H:18              
##  Mean   :28.15                            
##  3rd Qu.:34.00                            
##  Max.   :70.00
contingency<-table(warpbreaks2$tension,warpbreaks2$number)
contingency
##    
##     above below
##   L    14     4
##   M    10     8
##   H     5    13

(5)(b)(2 points) Using the table constructed in (5)(a), test at the 5% level the null hypothesis of independence using the uncorrected chisq.test() (Black, Business Statistics, Section 16.2). Show the results of this test and state your conclusions.

chisq.test(contingency)
## 
##  Pearson's Chi-squared test
## 
## data:  contingency
## X-squared = 9.0869, df = 2, p-value = 0.01064
#As the resulting p-value is small, reject the Null hypothesis and the variables are not independent

(5)(c) (5 points) Write a function that computes the uncorrected Pearson Chi-squared statistic. Apply your function to the table from (5)(a). You should be able to duplicate the X-squared value (chi-squared) and p-value. Present both.

Shown below are examples of the type of function required. These examples will have to be modified to accomodate the table generated in (5)(a).

chi <- function(x) { # To be used with 2x2 contingency tables that have margins added. # Expected values are calculated. e11 <- x[3,1]x[1,3]/x[3,3] e12 <- x[3,2]x[1,3]/x[3,3] e21 <- x[3,1]x[2,3]/x[3,3] e22 <- x[3,2]x[2,3]/x[3,3] # Value of chi square statistic is calculated. chisqStat <- (x[1,1] - e11)^2/e11 + (x[1,2] - e12)^2/e12 + (x[2,1] - e21)^2/e21 + (x[2,2] - e22)^2/e22 return(list(“chi-squared” = chisqStat, “p-value” = pchisq(chisqStat, 1, lower.tail = F))) }

chisqfun <- function(t) { x <- addmargins(t) e <- matrix(0, nrow = nrow(t), ncol = ncol(t), byrow = T) r <- matrix(0, nrow = nrow(t), ncol = ncol(t), byrow = T) for (i in 1:2) { for (j in 1:2) { e[i,j] = x[nrow(x),j] * x[i,ncol(x)]/x[nrow(x), ncol(x)] r[i,j] = ((x[i,j] - e[i,j])^2)/e[i,j] } } chi <- sum(r) xdf <- nrow(t) - 1 pv <- pchisq(chi, df = xdf, lower.tail = FALSE) return(cat(“Pearson’s Chi-squared test \n”,“Chi sq:”, chi, “; Degree of Freedom :”,xdf," ; P-value :“,pv)) }

chi <- function(x) {
   # To be used with 3x2 contingency tables that have margins added.
   # Expected values are calculated.
     e11 <- x[4,1]*x[1,3]/x[4,3]
     e12 <- x[4,2]*x[1,3]/x[4,3]
     e21 <- x[4,1]*x[2,3]/x[4,3]
     e22 <- x[4,2]*x[2,3]/x[4,3]
     e31 <- x[4,1]*x[3,3]/x[4,3]
     e32 <- x[4,2]*x[3,3]/x[4,3]
     
   # Value of chi square statistic is calculated.
     chisqStat <- (x[1,1] - e11)^2/e11 + (x[1,2] - e12)^2/e12 + (x[2,1] - e21)^2/e21 + 
             (x[2,2] - e22)^2/e22 + (x[3,1] - e31)^2/e31 + (x[3,2] - e32)^2/e32
     return(list("chi-squared" = chisqStat, "p-value" = pchisq(chisqStat, 2, lower.tail = F)))
     }

x<-addmargins(contingency)
chi(x)
## $`chi-squared`
## [1] 9.086897
## 
## $`p-value`
## [1] 0.01063667
chisqfun <- function(t) {
   x <- addmargins(t)
   e <- matrix(0, nrow = nrow(t), ncol = ncol(t), byrow = T)
   r <- matrix(0, nrow = nrow(t), ncol = ncol(t), byrow = T)
   for (i in 1:3) {
       for (j in 1:2) {
          e[i,j] = x[nrow(x),j] * x[i,ncol(x)]/x[nrow(x), ncol(x)]
         r[i,j] = ((x[i,j] - e[i,j])^2)/e[i,j]
         }
     }
  chi <- sum(r)
  xdf <- nrow(t) - 1
  pv <- pchisq(chi, df = xdf, lower.tail = FALSE) 
 return(cat("Pearson's Chi-squared test \\n","Chi sq: ", chi, "; 
            Degree of Freedom :",xdf," ; P-value :",pv))
}

chisqfun(contingency)
## Pearson's Chi-squared test \n Chi sq:  9.086897 ; 
##             Degree of Freedom : 2  ; P-value : 0.01063667