Assignment 12

Week 12, Regression 2

Fundamentals of Computational Mathematics

CUNY MSDS DATA 605, Fall 2018

Rose Koh

11/17/2018

The attached who.csv dataset contains real-world data from 2008. The variables included follow.

Country: name of the country

LifeExp: average life expectancy for the country in years

InfantSurvival: proportion of those surviving to one year or more

Under5Survival: proportion of those surviving to five years or more

TBFree: proportion of the population without TB.

PropMD: proportion of the population who are MDs

PropRN: proportion of the population who are RNs

PersExp: mean personal expenditures on healthcare in US dollars at average exchange rate

GovtExp: mean government expenditures per capita on healthcare, US dollars at average exchange rate

TotExp: sum of personal and government expenditures.

df <- read.csv("who.csv", stringsAsFactors = F, header = T)
str(df)
## 'data.frame':    190 obs. of  10 variables:
##  $ Country       : chr  "Afghanistan" "Albania" "Algeria" "Andorra" ...
##  $ LifeExp       : int  42 71 71 82 41 73 75 69 82 80 ...
##  $ InfantSurvival: num  0.835 0.985 0.967 0.997 0.846 0.99 0.986 0.979 0.995 0.996 ...
##  $ Under5Survival: num  0.743 0.983 0.962 0.996 0.74 0.989 0.983 0.976 0.994 0.996 ...
##  $ TBFree        : num  0.998 1 0.999 1 0.997 ...
##  $ PropMD        : num  2.29e-04 1.14e-03 1.06e-03 3.30e-03 7.04e-05 ...
##  $ PropRN        : num  0.000572 0.004614 0.002091 0.0035 0.001146 ...
##  $ PersExp       : int  20 169 108 2589 36 503 484 88 3181 3788 ...
##  $ GovtExp       : int  92 3128 5184 169725 1620 12543 19170 1856 187616 189354 ...
##  $ TotExp        : int  112 3297 5292 172314 1656 13046 19654 1944 190797 193142 ...
head(df)
##               Country LifeExp InfantSurvival Under5Survival  TBFree
## 1         Afghanistan      42          0.835          0.743 0.99769
## 2             Albania      71          0.985          0.983 0.99974
## 3             Algeria      71          0.967          0.962 0.99944
## 4             Andorra      82          0.997          0.996 0.99983
## 5              Angola      41          0.846          0.740 0.99656
## 6 Antigua and Barbuda      73          0.990          0.989 0.99991
##        PropMD      PropRN PersExp GovtExp TotExp
## 1 0.000228841 0.000572294      20      92    112
## 2 0.001143127 0.004614439     169    3128   3297
## 3 0.001060478 0.002091362     108    5184   5292
## 4 0.003297297 0.003500000    2589  169725 172314
## 5 0.000070400 0.001146162      36    1620   1656
## 6 0.000142857 0.002773810     503   12543  13046
summary(df)
##    Country             LifeExp      InfantSurvival   Under5Survival  
##  Length:190         Min.   :40.00   Min.   :0.8350   Min.   :0.7310  
##  Class :character   1st Qu.:61.25   1st Qu.:0.9433   1st Qu.:0.9253  
##  Mode  :character   Median :70.00   Median :0.9785   Median :0.9745  
##                     Mean   :67.38   Mean   :0.9624   Mean   :0.9459  
##                     3rd Qu.:75.00   3rd Qu.:0.9910   3rd Qu.:0.9900  
##                     Max.   :83.00   Max.   :0.9980   Max.   :0.9970  
##      TBFree           PropMD              PropRN         
##  Min.   :0.9870   Min.   :0.0000196   Min.   :0.0000883  
##  1st Qu.:0.9969   1st Qu.:0.0002444   1st Qu.:0.0008455  
##  Median :0.9992   Median :0.0010474   Median :0.0027584  
##  Mean   :0.9980   Mean   :0.0017954   Mean   :0.0041336  
##  3rd Qu.:0.9998   3rd Qu.:0.0024584   3rd Qu.:0.0057164  
##  Max.   :1.0000   Max.   :0.0351290   Max.   :0.0708387  
##     PersExp           GovtExp             TotExp      
##  Min.   :   3.00   Min.   :    10.0   Min.   :    13  
##  1st Qu.:  36.25   1st Qu.:   559.5   1st Qu.:   584  
##  Median : 199.50   Median :  5385.0   Median :  5541  
##  Mean   : 742.00   Mean   : 40953.5   Mean   : 41696  
##  3rd Qu.: 515.25   3rd Qu.: 25680.2   3rd Qu.: 26331  
##  Max.   :6350.00   Max.   :476420.0   Max.   :482750
attach(df)
  1. Provide a scatterplot of LifeExp~TotExp, and run simple linear regression. Do not transform the variables. Provide and interpret the F statistics, R^2, standard error,and p-values only. Discuss whether the assumptions of simple linear regression met.
library(ggplot2)
p1 <- ggplot(df, aes(TotExp,LifeExp)) + 
  geom_point() +
  geom_smooth(method='lm', se = FALSE, color = 'blue') +
  labs(title = "Scatterplot of LifeExp~TotExp") +
  scale_x_continuous(labels = scales::comma)
p1

lm1 <- lm(LifeExp~TotExp)
summary(lm1)
## 
## Call:
## lm(formula = LifeExp ~ TotExp)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.764  -4.778   3.154   7.116  13.292 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.475e+01  7.535e-01  85.933  < 2e-16 ***
## TotExp      6.297e-05  7.795e-06   8.079 7.71e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared:  0.2577, Adjusted R-squared:  0.2537 
## F-statistic: 65.26 on 1 and 188 DF,  p-value: 7.714e-14
par(mfrow = c(2,2))
plot(lm1)

An F-Test compares a model with no predictors to the model that we specify. The F-statistic from this model is 65.26 (the model has one regression degree of freedom and 188 degrees of freedom). F-table value for one regression degree of freedom and 120 residual degrees of freedom is 6.851. Since our model’s F-statistic is much greater than the F-table value, this suggests we can reject the Null hypothesis, a regression model with a zero coefficient. The p-value is near 0. The \(R^2 = 0.2577\) tells us that 25.77% of the variation in the data is accounted for the model; The model does not strongly fit the data. The standard error is a reasonably small percentage of the coefficient.

The residual plots shows there is no constant variabiliity and the residuals are not normally distributed. The model is not a good fit to describe the relationship and it is clear that the relationship is not linear.

  1. Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error, and p-values. Which model is “better?”
detach(df)
df$LifeExp4.6 <- df$LifeExp^4.6
df$TotExp0.06 <- df$TotExp^.06
attach(df)
p2 <- ggplot(df, aes(TotExp0.06, LifeExp4.6)) + 
  geom_point() +
  geom_smooth(method='lm', se = FALSE, color = 'blue') +
  labs(title = "Scatterplot of LifeExp~TotExp") +
  scale_y_continuous(labels = scales::comma)
p2

lm2 <- lm(LifeExp4.6~TotExp0.06)
summary(lm2)
## 
## Call:
## lm(formula = LifeExp4.6 ~ TotExp0.06)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -308616089  -53978977   13697187   59139231  211951764 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -736527910   46817945  -15.73   <2e-16 ***
## TotExp0.06   620060216   27518940   22.53   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared:  0.7298, Adjusted R-squared:  0.7283 
## F-statistic: 507.7 on 1 and 188 DF,  p-value: < 2.2e-16
par(mfrow = c(2,2))
plot(lm2)

The transformed model shows F-statistic 507.7 that is better than the previous model. The P-value is also more statistically significant than the previous model. The \(R^2\) value is 0.7298, which is higher than the previous model. The standard error is 90,490,000 and is significantly higher than the previous model. The residual plot shows the variability is fairly constant with a few outliers. The distribution seems near normal with some deviation at the tails. It is a much better model to describe the relationship than the previous model.

  1. Using the results from 3, forecast life expectancy when TotExp^.06 =1.5. Then forecast life expectancy when TotExp^.06=2.5.

The model is \(\widehat{LifeExp4.6} = 736527910 + 620060216 * TotExp0.06\)

predict.TotExp <- function(x){
  n <- lm2$coefficients[1] + lm2$coefficients[2] * x
  return(n ** (1/4.6)) # Must transform the data into a sensible number
}

#TotExp^.06=1.5
predict.TotExp(1.5)
## (Intercept) 
##    63.31153
#TotExp^.06=2.5
predict.TotExp(2.5)
## (Intercept) 
##    86.50645
  1. Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model?

LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp

\(LifeExp = \beta0 + \beta1 \times PropMd + \beta2 \times TotExp + \beta3 \times PropMD \times TotExp\)

detach(df)
df$PropMD.TotExp <- df$PropMD * df$TotExp
attach(df)
lm4 <- lm(LifeExp ~ PropMD + TotExp + PropMD.TotExp)
summary(lm4)
## 
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + PropMD.TotExp)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.320  -4.132   2.098   6.540  13.074 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    6.277e+01  7.956e-01  78.899  < 2e-16 ***
## PropMD         1.497e+03  2.788e+02   5.371 2.32e-07 ***
## TotExp         7.233e-05  8.982e-06   8.053 9.39e-14 ***
## PropMD.TotExp -6.026e-03  1.472e-03  -4.093 6.35e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared:  0.3574, Adjusted R-squared:  0.3471 
## F-statistic: 34.49 on 3 and 186 DF,  p-value: < 2.2e-16
par(mfrow = c(2,2))
plot(lm4)
## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced

## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced

The F-statistics is fairly high but lower than the value of the first model. The P-value <2.2e-16 is statistically signifiicant. A residual standard error 8.765 seems to have improved compare to the first moddel. The \(R^2\) is only 0.3574, meaniing the model explains only 35.74% of variability which is pretty low. This model is somewhat similar to the first model and not as good as the previous transformation model. The residual plot shows there is no constant variability and the distribution doesn’t seem normal. This isn’t good model to desribe the relationship.

  1. Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?

\(\widehat{LifeExp} = \beta0 + \beta1 \times PropMd + \beta2 \times TotExp + \beta3 \times PropMD \times TotExp\)

tbl4 <- summary(lm4)$coefficients

predict5 <- function(prop.md, tot.exp){
  n <- tbl4[1] + tbl4[2] * prop.md + tbl4[3] * tot.exp + tbl4[4] * prop.md * tot.exp
  return(n)
}
prop.md <- .03
tot.exp <- 14.
predict5(prop.md, tot.exp)
## [1] 107.696
# OR 

data <- data.frame(PropMD=0.03, TotExp=14, PropMD.TotExp = 14*0.03)
predict(lm4, data, interval="predict")
##       fit      lwr      upr
## 1 107.696 84.24791 131.1441

The predicted life expectancy is 107 years old with 95% confidende interval between 84 yo and 131 yo. The forrecast seem unrealiistic.

Look at the following data, Where the total Expenditure of $13 shows Life Expectancy of 49:

df[TotExp<15,]
##    Country LifeExp InfantSurvival Under5Survival  TBFree   PropMD
## 28 Burundi      49          0.891          0.819 0.99286 2.45e-05
##         PropRN PersExp GovtExp TotExp LifeExp4.6 TotExp0.06 PropMD.TotExp
## 28 0.000164933       3      10     13   59552770   1.166371     0.0003185

How does increasing $1 in Total Expenditure jumps the value from 49 to 107?

df[LifeExp == max(LifeExp),]
##    Country LifeExp InfantSurvival Under5Survival  TBFree      PropMD
## 85   Japan      83          0.997          0.996 0.99971 0.002113049
##         PropRN PersExp GovtExp TotExp LifeExp4.6 TotExp0.06 PropMD.TotExp
## 85 0.009461544    2936  159192 162128  672603658   2.053958      342.5844

The maximum life expectancy shows in Japan at 83, with Tot Exp of 162128.

I would say this is not a good model to support life expectancy forecast.