준비한 자료는 E. Saez 교수의 홈페이지에 있는 TabFig2017prel.xls
와 Tax Foundation에서 제공하는 자료를 손봐서 불러들인 것이다.
options(digits = 2)
library(xlsx)
library(knitr)
library(reshape2)
library(magrittr)
load("US_top_income_shares_2017.RData")
# load("US_top_income_shares_vs_tax_rates_2017.rda")
# US_top_income_shares_17 <- read.xlsx("../data/TabFig2017prel.xlsx", sheetIndex = 9, sheetName = "Table A3", startRow = 6, endRow = 108, colIndex = c(1:7, 9:13), header = FALSE)
US_income_averages_17 <- read.xlsx("../data/TabFig2017prel.xlsx",
sheetIndex = 57, sheetName = "data-FigA1",
startRow = 4, endRow = 108,
colIndex = c(1:3, 5:6), header = FALSE)
# v_names <- read.xlsx("./data/TabFig2017prel.xlsx", sheetName = "Table A3", startRow = 4, endRow = 4, colIndex = c(2:7, 9:14), colClasses = character, header = FALSE)
# str(US_top_income_shares_17)
v_names <- c("Year", "Bottom_99", "Top_1", "Bottom_99_K", "Top_1_K")
names(US_income_averages_17) <- v_names
tax_rates <- read.table("../data/federal_income_tax_rates.txt",
skip = 1, header = FALSE)
names(tax_rates) <- c("Year", "Lowest", "Marginal")
top_income_tax <- cbind(US_top_income_shares_17[c("Year", "P99_100")], US_income_averages_17[c("Bottom_99", "Top_1", "Bottom_99_K", "Top_1_K")], tax_rates[2:3])
Rate_99 <- US_income_averages_17[, "Bottom_99"] / US_income_averages_17[, "Bottom_99"][1] * 100
Rate_1 <- US_income_averages_17[, "Top_1"] / US_income_averages_17[, "Top_1"][1] * 100
Rate_99_K <- US_income_averages_17[, "Bottom_99_K"] / US_income_averages_17[, "Bottom_99_K"][1] * 100
Rate_1_K <- US_income_averages_17[, "Top_1_K"] / US_income_averages_17[, "Top_1_K"][1] * 100
선형변환에 사용할 함수 작성 q = x
로 하면 변수의 관찰값 전체를 변환. q
는 그 중 일부의 변환된 값을 보고자 할 때 입력
z <- function(x, q, a = min(x), b = max(x)) {
(q - a) / (b - a)
}
#> 0애서 1사이의 범위로 변환
top_income_tax$P99_100_z <- top_income_tax$P99_100 %>%
z(., .)
top_income_tax$Marginal_z <- top_income_tax$Marginal %>%
z(., .)
Rate_99_z <- Rate_99 %>%
z(., ., a = min(c(Rate_99, Rate_1)), b = max(c(Rate_99, Rate_1)))
Rate_1_z <- Rate_1 %>%
z(., ., a = min(c(Rate_99, Rate_1)), b = max(c(Rate_99, Rate_1)))
Rate_99_K_z <- Rate_99_K %>%
z(., ., a = min(c(Rate_99_K, Rate_1_K)), b = max(c(Rate_99_K, Rate_1_K)))
Rate_1_K_z <- Rate_1_K %>%
z(., ., a = min(c(Rate_99_K, Rate_1_K)), b = max(c(Rate_99_K, Rate_1_K)))
kable(cbind(top_income_tax, Rate_99 = Rate_99_z, Rate_1 = Rate_1_z, Rate_99_K = Rate_99_K_z, Rate_1_K = Rate_1_K_z))
Year | P99_100 | Bottom_99 | Top_1 | Bottom_99_K | Top_1_K | Lowest | Marginal | P99_100_z | Marginal_z | Rate_99 | Rate_1 | Rate_99_K | Rate_1_K |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1913 | 18.0 | 13776 | 298567 | 13776 | 298567 | 1.0 | 7 | 0.60 | 0.00 | 0.11 | 0.11 | 0.07 | 0.07 |
1914 | 18.2 | 13426 | 294909 | 13426 | 294909 | 1.0 | 7 | 0.62 | 0.00 | 0.11 | 0.11 | 0.07 | 0.07 |
1915 | 17.6 | 13652 | 288244 | 13652 | 288244 | 1.0 | 7 | 0.58 | 0.00 | 0.11 | 0.10 | 0.07 | 0.07 |
1916 | 19.3 | 14673 | 331338 | 14773 | 350013 | 2.0 | 15 | 0.69 | 0.09 | 0.14 | 0.15 | 0.09 | 0.11 |
1917 | 17.7 | 15123 | 319764 | 15229 | 325087 | 2.0 | 67 | 0.59 | 0.69 | 0.15 | 0.14 | 0.10 | 0.09 |
1918 | 16.0 | 14611 | 273130 | 14705 | 276502 | 6.0 | 77 | 0.47 | 0.80 | 0.13 | 0.09 | 0.09 | 0.06 |
1919 | 16.4 | 14313 | 267238 | 14508 | 281974 | 4.0 | 73 | 0.50 | 0.76 | 0.13 | 0.08 | 0.08 | 0.06 |
1920 | 14.8 | 12978 | 217168 | 13184 | 227257 | 4.0 | 73 | 0.40 | 0.76 | 0.10 | 0.03 | 0.06 | 0.02 |
1921 | 15.6 | 11314 | 205033 | 11405 | 209301 | 4.0 | 73 | 0.45 | 0.76 | 0.06 | 0.01 | 0.04 | 0.01 |
1922 | 17.1 | 12651 | 243763 | 12807 | 260749 | 4.0 | 58 | 0.54 | 0.59 | 0.09 | 0.06 | 0.06 | 0.05 |
1923 | 15.6 | 14291 | 249489 | 14498 | 266154 | 4.0 | 58 | 0.45 | 0.59 | 0.13 | 0.06 | 0.08 | 0.05 |
1924 | 17.4 | 13899 | 268283 | 14126 | 295058 | 2.0 | 46 | 0.57 | 0.45 | 0.12 | 0.08 | 0.08 | 0.07 |
1925 | 20.2 | 13821 | 292300 | 14165 | 355953 | 1.5 | 25 | 0.75 | 0.21 | 0.12 | 0.11 | 0.08 | 0.11 |
1926 | 19.9 | 13902 | 302353 | 14216 | 349852 | 1.5 | 25 | 0.73 | 0.21 | 0.12 | 0.12 | 0.08 | 0.11 |
1927 | 21.0 | 13890 | 315864 | 14252 | 375638 | 1.5 | 25 | 0.81 | 0.21 | 0.12 | 0.13 | 0.08 | 0.13 |
1928 | 23.9 | 14021 | 338367 | 14450 | 450262 | 1.5 | 25 | 1.00 | 0.21 | 0.12 | 0.16 | 0.08 | 0.18 |
1929 | 22.4 | 14833 | 331518 | 15210 | 433498 | 1.5 | 25 | 0.89 | 0.21 | 0.14 | 0.15 | 0.10 | 0.17 |
1930 | 17.2 | 13773 | 267926 | 13997 | 288326 | 1.5 | 25 | 0.55 | 0.21 | 0.11 | 0.08 | 0.08 | 0.07 |
1931 | 15.5 | 12668 | 226038 | 12773 | 231921 | 1.5 | 25 | 0.44 | 0.21 | 0.09 | 0.04 | 0.06 | 0.03 |
1932 | 15.6 | 10630 | 192716 | 10658 | 194371 | 4.0 | 63 | 0.44 | 0.64 | 0.04 | 0.00 | 0.03 | 0.00 |
1933 | 16.5 | 10320 | 191306 | 10409 | 203032 | 4.0 | 63 | 0.50 | 0.64 | 0.03 | 0.00 | 0.02 | 0.01 |
1934 | 16.4 | 11328 | 211515 | 11373 | 220824 | 4.0 | 63 | 0.50 | 0.64 | 0.06 | 0.02 | 0.04 | 0.02 |
1935 | 16.7 | 12301 | 225570 | 12398 | 245641 | 4.0 | 63 | 0.52 | 0.64 | 0.08 | 0.04 | 0.05 | 0.04 |
1936 | 19.3 | 13183 | 279477 | 13391 | 316822 | 4.0 | 79 | 0.69 | 0.83 | 0.10 | 0.09 | 0.07 | 0.09 |
1937 | 17.1 | 14022 | 273322 | 14074 | 288405 | 4.0 | 79 | 0.55 | 0.83 | 0.12 | 0.09 | 0.08 | 0.07 |
1938 | 15.8 | 13158 | 225014 | 13223 | 244819 | 4.0 | 79 | 0.46 | 0.83 | 0.10 | 0.04 | 0.06 | 0.04 |
1939 | 16.2 | 13913 | 250599 | 13978 | 267033 | 4.0 | 79 | 0.49 | 0.83 | 0.12 | 0.06 | 0.08 | 0.05 |
1940 | 16.5 | 14514 | 268297 | 14566 | 284493 | 4.0 | 79 | 0.51 | 0.83 | 0.13 | 0.08 | 0.09 | 0.06 |
1941 | 15.8 | 17110 | 299116 | 17170 | 318620 | 10.0 | 81 | 0.46 | 0.85 | 0.19 | 0.12 | 0.13 | 0.09 |
1942 | 13.4 | 20378 | 298940 | 20409 | 313408 | 19.0 | 88 | 0.30 | 0.93 | 0.27 | 0.11 | 0.17 | 0.08 |
1943 | 12.3 | 23939 | 307491 | 24056 | 334310 | 19.0 | 88 | 0.23 | 0.93 | 0.35 | 0.12 | 0.23 | 0.10 |
1944 | 11.3 | 23907 | 278806 | 24054 | 302802 | 23.0 | 94 | 0.16 | 1.00 | 0.35 | 0.09 | 0.23 | 0.08 |
1945 | 12.5 | 23261 | 286694 | 23664 | 335157 | 23.0 | 94 | 0.24 | 1.00 | 0.33 | 0.10 | 0.22 | 0.10 |
1946 | 13.3 | 23229 | 306550 | 23879 | 361922 | 20.0 | 91 | 0.29 | 0.97 | 0.33 | 0.12 | 0.23 | 0.12 |
1947 | 12.0 | 22638 | 275693 | 23027 | 309539 | 20.0 | 91 | 0.21 | 0.97 | 0.32 | 0.09 | 0.21 | 0.08 |
1948 | 12.2 | 22962 | 288725 | 23304 | 321851 | 20.0 | 91 | 0.22 | 0.97 | 0.33 | 0.10 | 0.22 | 0.09 |
1949 | 11.7 | 22758 | 276930 | 22988 | 302334 | 20.0 | 91 | 0.19 | 0.97 | 0.32 | 0.09 | 0.21 | 0.08 |
1950 | 12.8 | 24454 | 310272 | 24812 | 361209 | 20.0 | 91 | 0.26 | 0.97 | 0.36 | 0.13 | 0.24 | 0.12 |
1951 | 11.8 | 25434 | 295983 | 25793 | 341205 | 20.4 | 91 | 0.19 | 0.97 | 0.38 | 0.11 | 0.26 | 0.10 |
1952 | 10.8 | 26469 | 283361 | 26756 | 320404 | 22.2 | 92 | 0.13 | 0.98 | 0.41 | 0.10 | 0.27 | 0.09 |
1953 | 9.9 | 27856 | 275443 | 28084 | 305561 | 22.2 | 92 | 0.07 | 0.98 | 0.44 | 0.09 | 0.29 | 0.08 |
1954 | 10.8 | 27424 | 281371 | 27774 | 331996 | 20.0 | 91 | 0.13 | 0.97 | 0.43 | 0.10 | 0.29 | 0.10 |
1955 | 11.1 | 29377 | 293986 | 29849 | 367375 | 20.0 | 91 | 0.15 | 0.97 | 0.48 | 0.11 | 0.32 | 0.12 |
1956 | 10.7 | 30935 | 306110 | 31395 | 371326 | 20.0 | 91 | 0.12 | 0.97 | 0.51 | 0.12 | 0.34 | 0.12 |
1957 | 10.2 | 31112 | 303952 | 31456 | 352220 | 20.0 | 91 | 0.09 | 0.97 | 0.52 | 0.12 | 0.34 | 0.11 |
1958 | 10.2 | 30208 | 289775 | 30649 | 344869 | 20.0 | 91 | 0.09 | 0.97 | 0.49 | 0.11 | 0.33 | 0.11 |
1959 | 10.7 | 32055 | 304217 | 32660 | 385286 | 20.0 | 91 | 0.12 | 0.97 | 0.54 | 0.12 | 0.36 | 0.13 |
1960 | 10.0 | 32556 | 293896 | 33017 | 364581 | 20.0 | 91 | 0.08 | 0.97 | 0.55 | 0.11 | 0.37 | 0.12 |
1961 | 10.6 | 32944 | 296658 | 33585 | 395920 | 20.0 | 91 | 0.12 | 0.97 | 0.56 | 0.11 | 0.38 | 0.14 |
1962 | 9.9 | 34170 | 305130 | 34622 | 378722 | 20.0 | 91 | 0.07 | 0.97 | 0.59 | 0.12 | 0.39 | 0.13 |
1963 | 9.9 | 35069 | 308637 | 35584 | 387792 | 20.0 | 91 | 0.07 | 0.97 | 0.61 | 0.13 | 0.41 | 0.14 |
1964 | 10.5 | 36817 | 317838 | 37254 | 431727 | 16.0 | 77 | 0.11 | 0.80 | 0.65 | 0.14 | 0.43 | 0.17 |
1965 | 10.9 | 38307 | 332694 | 38892 | 470635 | 14.0 | 70 | 0.13 | 0.72 | 0.68 | 0.15 | 0.46 | 0.19 |
1966 | 10.2 | 39871 | 360476 | 40754 | 457045 | 14.0 | 70 | 0.09 | 0.72 | 0.72 | 0.18 | 0.49 | 0.19 |
1967 | 10.7 | 40814 | 371751 | 41963 | 499727 | 14.0 | 70 | 0.12 | 0.72 | 0.74 | 0.19 | 0.50 | 0.22 |
1968 | 11.2 | 42185 | 380590 | 43570 | 544745 | 14.0 | 70 | 0.16 | 0.72 | 0.77 | 0.20 | 0.53 | 0.25 |
1969 | 10.3 | 42958 | 370686 | 43950 | 502405 | 14.0 | 70 | 0.10 | 0.72 | 0.79 | 0.19 | 0.53 | 0.22 |
1970 | 9.0 | 43294 | 362789 | 43936 | 431511 | 14.0 | 70 | 0.01 | 0.72 | 0.80 | 0.18 | 0.53 | 0.17 |
1971 | 9.4 | 43184 | 360977 | 44061 | 452522 | 14.0 | 70 | 0.04 | 0.72 | 0.79 | 0.18 | 0.54 | 0.18 |
1972 | 9.6 | 44990 | 374403 | 46087 | 486631 | 14.0 | 70 | 0.05 | 0.72 | 0.84 | 0.20 | 0.57 | 0.21 |
1973 | 9.2 | 45931 | 381584 | 47057 | 469905 | 14.0 | 70 | 0.02 | 0.72 | 0.86 | 0.20 | 0.58 | 0.19 |
1974 | 9.1 | 44371 | 388401 | 45201 | 449199 | 14.0 | 70 | 0.02 | 0.72 | 0.82 | 0.21 | 0.55 | 0.18 |
1975 | 8.9 | 42085 | 362588 | 42909 | 413610 | 14.0 | 70 | 0.00 | 0.72 | 0.77 | 0.18 | 0.52 | 0.15 |
1976 | 8.9 | 43152 | 365894 | 44186 | 425294 | 14.0 | 70 | 0.00 | 0.72 | 0.79 | 0.19 | 0.54 | 0.16 |
1977 | 9.0 | 43575 | 369990 | 44585 | 437883 | 0.0 | 70 | 0.01 | 0.72 | 0.80 | 0.19 | 0.54 | 0.17 |
1978 | 8.9 | 44364 | 379460 | 45473 | 442543 | 0.0 | 70 | 0.01 | 0.72 | 0.82 | 0.20 | 0.56 | 0.17 |
1979 | 10.0 | 44282 | 382886 | 45471 | 497835 | 0.0 | 70 | 0.07 | 0.72 | 0.82 | 0.20 | 0.56 | 0.21 |
1980 | 10.0 | 43028 | 379322 | 44081 | 486026 | 0.0 | 70 | 0.08 | 0.72 | 0.79 | 0.20 | 0.54 | 0.21 |
1981 | 10.0 | 42726 | 369118 | 43592 | 480418 | 0.0 | 70 | 0.08 | 0.72 | 0.78 | 0.19 | 0.53 | 0.20 |
1982 | 10.8 | 41704 | 378121 | 42453 | 508639 | 0.0 | 50 | 0.13 | 0.49 | 0.76 | 0.20 | 0.51 | 0.22 |
1983 | 11.6 | 41201 | 383440 | 42320 | 547378 | 0.0 | 50 | 0.18 | 0.49 | 0.75 | 0.21 | 0.51 | 0.25 |
1984 | 12.0 | 42450 | 409880 | 43584 | 587797 | 0.0 | 50 | 0.21 | 0.49 | 0.78 | 0.23 | 0.53 | 0.28 |
1985 | 12.7 | 43103 | 426912 | 44444 | 638292 | 0.0 | 50 | 0.25 | 0.49 | 0.79 | 0.25 | 0.54 | 0.31 |
1986 | 15.9 | 43664 | 434280 | 45853 | 859329 | 0.0 | 50 | 0.47 | 0.49 | 0.81 | 0.26 | 0.56 | 0.47 |
1987 | 12.7 | 44093 | 525576 | 45378 | 651309 | 11.0 | 38 | 0.25 | 0.36 | 0.82 | 0.36 | 0.56 | 0.32 |
1988 | 15.5 | 45025 | 675816 | 46124 | 837182 | 15.0 | 28 | 0.44 | 0.24 | 0.84 | 0.52 | 0.57 | 0.45 |
1989 | 14.5 | 45171 | 645371 | 46273 | 776056 | 15.0 | 28 | 0.37 | 0.24 | 0.84 | 0.48 | 0.57 | 0.41 |
1990 | 14.3 | 44664 | 659640 | 45501 | 753455 | 15.0 | 28 | 0.36 | 0.24 | 0.83 | 0.50 | 0.56 | 0.39 |
1991 | 13.4 | 43791 | 600573 | 44479 | 679054 | 15.0 | 31 | 0.30 | 0.28 | 0.81 | 0.44 | 0.54 | 0.34 |
1992 | 14.7 | 43498 | 670923 | 44298 | 754008 | 15.0 | 31 | 0.39 | 0.28 | 0.80 | 0.51 | 0.54 | 0.39 |
1993 | 14.2 | 43183 | 628743 | 44128 | 725217 | 15.0 | 31 | 0.36 | 0.28 | 0.79 | 0.47 | 0.54 | 0.37 |
1994 | 14.2 | 43929 | 641361 | 44814 | 736179 | 15.0 | 40 | 0.36 | 0.37 | 0.81 | 0.48 | 0.55 | 0.38 |
1995 | 15.2 | 44839 | 694467 | 45771 | 814364 | 15.0 | 40 | 0.42 | 0.37 | 0.83 | 0.54 | 0.56 | 0.44 |
1996 | 16.7 | 45572 | 740991 | 46763 | 927265 | 15.0 | 40 | 0.52 | 0.37 | 0.85 | 0.59 | 0.58 | 0.52 |
1997 | 18.0 | 47010 | 806585 | 48679 | 1058963 | 15.0 | 40 | 0.61 | 0.37 | 0.88 | 0.66 | 0.61 | 0.61 |
1998 | 19.1 | 48994 | 875753 | 50966 | 1190313 | 15.0 | 40 | 0.68 | 0.37 | 0.93 | 0.73 | 0.64 | 0.70 |
1999 | 20.0 | 50572 | 944647 | 52748 | 1309108 | 15.0 | 40 | 0.74 | 0.37 | 0.97 | 0.80 | 0.67 | 0.79 |
2000 | 21.5 | 51002 | 997302 | 53090 | 1441296 | 15.0 | 40 | 0.84 | 0.37 | 0.98 | 0.86 | 0.67 | 0.88 |
2001 | 18.2 | 50474 | 907581 | 51488 | 1135636 | 15.0 | 39 | 0.62 | 0.37 | 0.96 | 0.76 | 0.65 | 0.66 |
2002 | 16.9 | 48768 | 851276 | 49644 | 997029 | 10.0 | 39 | 0.53 | 0.36 | 0.92 | 0.70 | 0.62 | 0.57 |
2003 | 17.5 | 47972 | 852203 | 48964 | 1030244 | 10.0 | 35 | 0.57 | 0.32 | 0.91 | 0.71 | 0.61 | 0.59 |
2004 | 19.8 | 48619 | 939892 | 50080 | 1220403 | 10.0 | 35 | 0.72 | 0.32 | 0.92 | 0.80 | 0.63 | 0.72 |
2005 | 21.9 | 48882 | 1039424 | 50869 | 1413462 | 10.0 | 35 | 0.87 | 0.32 | 0.93 | 0.91 | 0.64 | 0.86 |
2006 | 22.8 | 49556 | 1081235 | 51600 | 1510669 | 10.0 | 35 | 0.93 | 0.32 | 0.94 | 0.95 | 0.65 | 0.93 |
2007 | 23.5 | 50793 | 1128375 | 53033 | 1613104 | 10.0 | 35 | 0.97 | 0.32 | 0.97 | 1.00 | 0.67 | 1.00 |
2008 | 20.9 | 48396 | 1044050 | 49378 | 1295238 | 10.0 | 35 | 0.80 | 0.32 | 0.92 | 0.91 | 0.62 | 0.78 |
2009 | 18.1 | 46249 | 916534 | 46872 | 1026834 | 10.0 | 35 | 0.61 | 0.32 | 0.87 | 0.77 | 0.58 | 0.59 |
2010 | 19.9 | 46057 | 963920 | 46831 | 1149165 | 10.0 | 35 | 0.73 | 0.32 | 0.86 | 0.82 | 0.58 | 0.67 |
2011 | 19.6 | 45715 | 957818 | 46603 | 1128092 | 10.0 | 35 | 0.72 | 0.32 | 0.85 | 0.82 | 0.57 | 0.66 |
2012 | 22.8 | 46277 | 1065944 | 47237 | 1383327 | 10.0 | 35 | 0.93 | 0.32 | 0.87 | 0.93 | 0.58 | 0.84 |
2013 | 20.0 | 46491 | 971237 | 47559 | 1177528 | 10.0 | 40 | 0.74 | 0.37 | 0.87 | 0.83 | 0.59 | 0.69 |
2014 | 21.5 | 47570 | 1019935 | 48837 | 1325760 | 10.0 | 40 | 0.84 | 0.37 | 0.90 | 0.88 | 0.61 | 0.80 |
2015 | 21.6 | 48964 | 1067960 | 50252 | 1369995 | 10.0 | 40 | 0.84 | 0.37 | 0.93 | 0.94 | 0.63 | 0.83 |
2016 | 20.7 | 48148 | 1030508 | 49522 | 1279678 | 10/0 | 40 | 0.79 | 0.37 | 0.91 | 0.90 | 0.62 | 0.76 |
2017 | 21.5 | 49122 | 1072058 | 51015 | 1380724 | 10.0 | 37 | 0.84 | 0.34 | 0.93 | 0.94 | 0.64 | 0.84 |
M_melt <- melt(data.frame(top_income_tax[c("Year", "P99_100_z", "Marginal_z")]),
id.vars = "Year",
measure.vars = c("P99_100_z", "Marginal_z"),
variable.name = c("Variables"),
value.name = "Values")
str(M_melt)
## 'data.frame': 210 obs. of 3 variables:
## $ Year : int 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 ...
## $ Variables: Factor w/ 2 levels "P99_100_z","Marginal_z": 1 1 1 1 1 1 1 1 1 1 ...
## $ Values : num 0.603 0.617 0.578 0.693 0.589 ...
Rates_melt <- melt(data.frame(top_income_tax[c("Year", "Marginal_z")], Rate_99_z, Rate_1_z),
id.vars = "Year",
measure.vars = c("Marginal_z", "Rate_99_z", "Rate_1_z"),
variable.name = c("Variables"),
value.name = "Values")
str(Rates_melt)
## 'data.frame': 315 obs. of 3 variables:
## $ Year : int 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 ...
## $ Variables: Factor w/ 3 levels "Marginal_z","Rate_99_z",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Values : num 0 0 0 0.092 0.69 ...
Rates_K_melt <- melt(data.frame(top_income_tax[c("Year", "Marginal_z")], Rate_99_K_z, Rate_1_K_z),
id.vars = "Year",
measure.vars = c("Marginal_z", "Rate_99_K_z", "Rate_1_K_z"),
variable.name = c("Variables"),
value.name = "Values")
str(Rates_K_melt)
## 'data.frame': 315 obs. of 3 variables:
## $ Year : int 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 ...
## $ Variables: Factor w/ 3 levels "Marginal_z","Rate_99_K_z",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Values : num 0 0 0 0.092 0.69 ...
save.image(file = "US_top_income_shares_vs_tax_rates_2017.RData")