Universidad Galileo
Introduccion
El dataset de Anscombe sirve para ejemplificar la importancia de graficar los datos.
Anscombre uso este dataset para demostra que las estadisticas puntuales no son suficientes para describir la data.
Esto es una cita.
Descripción del Dataset
Preparacion de la data para la grafica
anscomb_tidy<-
rbind(
data_frame(x=anscombe$x1,y=anscombe$y1,tag="q1"),
data_frame(x=anscombe$x2,y=anscombe$y2,tag="q2"),
data_frame(x=anscombe$x3,y=anscombe$y3,tag="q3"),
data_frame(x=anscombe$x4,y=anscombe$y4,tag="q4"))
Plot
anscomb_tidy %>%
ggplot(aes(x,y) )+
geom_point()+
facet_wrap(~tag,ncol = 2)

Conclusiones
- Las graficas todas tienen las mismas medias.
- Todas tienen las misma desviacion estandar
- Es importante graficar siempre la data
- Los valores atipicos afectan mucho la media poco la mediana
latex
\(f(x)=e^{x}\)
\[F(P)=\int_0^\infty f(t)e^{-Pt}dt\]
\[\begin{align*}
y &= x\\
&= x^2
\end{align*}\]
LS0tCnRpdGxlOiAiRGF0YXNldCBkZSBBbnNjb21iZSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKCmBgYHtyIGxpYnJlcmlhcywgZWNobz1GQUxTRX0KbGlicmFyeShkcGx5cikKbGlicmFyeShnZ3Bsb3QyKQpgYGAKCiFbXShsb2dvLnBuZykKW1VuaXZlcnNpZGFkIEdhbGlsZW9dKGh0dHBzOi8vd3d3LmdhbGlsZW8uZWR1KQoKCiMgSW50cm9kdWNjaW9uCkVsIGRhdGFzZXQgZGUgKkFuc2NvbWJlKiBzaXJ2ZSBwYXJhIGVqZW1wbGlmaWNhciBsYSBpbXBvcnRhbmNpYSBkZSAqKmdyYWZpY2FyKiogbG9zIGRhdG9zLgoKQW5zY29tYnJlIHVzbyBlc3RlIGRhdGFzZXQgcGFyYSBkZW1vc3RyYSBxdWUgbGFzIGVzdGFkaXN0aWNhcyBwdW50dWFsZXMgbm8gc29uIHN1ZmljaWVudGVzIHBhcmEgZGVzY3JpYmlyIGxhIGRhdGEuCgogICAgIEVzdG8gZXMgdW5hIGNpdGEuCgojIERlc2NyaXBjacOzbiBkZWwgRGF0YXNldAoKYGBge3IgZXhwbG9yYWNpb24sZWNobz1GQUxTRX0KaGVhZChhbnNjb21iZSkKYGBgCgoKIyMgdGFibGEgZGUgbWVkaWEgZGVsIGN1YXJ0ZXRvIGRlIGFuc2NvbWJlCgp8Kiplc3RhZGlzdGljbyoqIHwgJHhfMSQgfCAkeF8yJCB8ICR4XzMkIHwgJHhfNCQgfAp8IC0tLS0tLS0tLS0tLS0tIHwgOi0tLS0tOiB8IDotLS0tLTogfCA6LS0tLS06IHwgOi0tLS0tOnwKfCBNZWRpYXMgICAgICAgICB8YHIgbWVhbihhbnNjb21iZSR4MSlgfCBgciBtZWFuKGFuc2NvbWJlJHgyKWB8IGByIG1lYW4oYW5zY29tYmUkeDMpYHxgciBtZWFuKGFuc2NvbWJlJHg0KWB8CnwgRGVzdmlhY2lvbiAgICAgICAgfGByIHNkKGFuc2NvbWJlJHgxKWB8IGByIHNkKGFuc2NvbWJlJHgyKWB8IGByIHNkKGFuc2NvbWJlJHgzKWB8YHIgc2QoYW5zY29tYmUkeDQpYHwKfCBNZWRpYW5hcyAgICAgICAgfGByIG1lZGlhbihhbnNjb21iZSR4MSlgfCBgciBtZWRpYW4oYW5zY29tYmUkeDIpYHwgYHIgbWVkaWFuKGFuc2NvbWJlJHgzKWB8YHIgbWVkaWFuKGFuc2NvbWJlJHg0KWB8Cgp8Kiplc3RhZGlzdGljbyoqIHwgJHlfMSQgfCAkeV8yJCB8ICR5XzMkIHwgJHlfNCQgfAp8IDotLS0tLS0tLS0tLS0tLTogfCA6LS0tLS06IHwgOi0tLS0tOiB8IDotLS0tLTogfCA6LS0tLS06IHwKfCBNZWRpYXMgICAgICAgICB8YHIgbWVhbihhbnNjb21iZSR5MSlgfCBgciBtZWFuKGFuc2NvbWJlJHkyKWB8IGByIG1lYW4oYW5zY29tYmUkeDMpYHxgciBtZWFuKGFuc2NvbWJlJHk0KWB8CnwgRGVzdmlhY2lvbiAgICAgICAgfGByIHNkKGFuc2NvbWJlJHkxKWB8IGByIHNkKGFuc2NvbWJlJHkyKWB8IGByIHNkKGFuc2NvbWJlJHkzKWB8YHIgc2QoYW5zY29tYmUkeTQpYHwKfCBNZWRpYW5hcyAgICAgICAgfGByIG1lZGlhbihhbnNjb21iZSR5MSlgfCBgciBtZWRpYW4oYW5zY29tYmUkeTIpYHwgYHIgbWVkaWFuKGFuc2NvbWJlJHkzKWB8YHIgbWVkaWFuKGFuc2NvbWJlJHk0KWB8CgoKIyMgUHJlcGFyYWNpb24gZGUgbGEgZGF0YSBwYXJhIGxhIGdyYWZpY2EKCmBgYHtyfQphbnNjb21iX3RpZHk8LQpyYmluZCgKZGF0YV9mcmFtZSh4PWFuc2NvbWJlJHgxLHk9YW5zY29tYmUkeTEsdGFnPSJxMSIpLApkYXRhX2ZyYW1lKHg9YW5zY29tYmUkeDIseT1hbnNjb21iZSR5Mix0YWc9InEyIiksCmRhdGFfZnJhbWUoeD1hbnNjb21iZSR4Myx5PWFuc2NvbWJlJHkzLHRhZz0icTMiKSwKZGF0YV9mcmFtZSh4PWFuc2NvbWJlJHg0LHk9YW5zY29tYmUkeTQsdGFnPSJxNCIpKQoKYGBgCgoKCgojIyMgUGxvdAoKCgoKYGBge3J9CmFuc2NvbWJfdGlkeSAlPiUgCiAgICAgZ2dwbG90KGFlcyh4LHkpICkrCiAgICAgZ2VvbV9wb2ludCgpKwogICAgIGZhY2V0X3dyYXAofnRhZyxuY29sID0gMikKYGBgCgojQ29uY2x1c2lvbmVzCgoxLiBMYXMgZ3JhZmljYXMgdG9kYXMgdGllbmVuIGxhcyBtaXNtYXMgbWVkaWFzLgoyLiBUb2RhcyB0aWVuZW4gbGFzIG1pc21hIGRlc3ZpYWNpb24gZXN0YW5kYXIKCiogRXMgaW1wb3J0YW50ZSBncmFmaWNhciBzaWVtcHJlIGxhIGRhdGEKKiBMb3MgdmFsb3JlcyBhdGlwaWNvcyBhZmVjdGFuIG11Y2hvIGxhIG1lZGlhIHBvY28gbGEgbWVkaWFuYQoKCiNsYXRleAoKJGYoeCk9ZV57eH0kCgokJEYoUCk9XGludF8wXlxpbmZ0eSBmKHQpZV57LVB0fWR0JCQKCgokJFxiZWdpbnthbGlnbip9CnkgJj0geFxcIAogJj0geF4yClxlbmR7YWxpZ24qfSQkCgoKCgoK