For Lab Assignment 4, you are going to conduct a correlation and simple linear regression. We will also be building off of previous R experience to help us graphically display the results.

There are several datasets that are included with R. These datasets are easy to practice with, so we will use them here. I am going to show two examples. Each one will include me running a correlation, simple linear regression, and a scatterplot. You do not need to run this code.

First, I am going to use the mtcars dataset to look for an association between miles per gallon (mpg) and weight (wt) of cars.

# I want to take a look at the dataset
summary(mtcars)
      mpg             cyl             disp             hp             drat      
 Min.   :10.40   Min.   :4.000   Min.   : 71.1   Min.   : 52.0   Min.   :2.760  
 1st Qu.:15.43   1st Qu.:4.000   1st Qu.:120.8   1st Qu.: 96.5   1st Qu.:3.080  
 Median :19.20   Median :6.000   Median :196.3   Median :123.0   Median :3.695  
 Mean   :20.09   Mean   :6.188   Mean   :230.7   Mean   :146.7   Mean   :3.597  
 3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0   3rd Qu.:180.0   3rd Qu.:3.920  
 Max.   :33.90   Max.   :8.000   Max.   :472.0   Max.   :335.0   Max.   :4.930  
       wt             qsec             vs               am              gear      
 Min.   :1.513   Min.   :14.50   Min.   :0.0000   Min.   :0.0000   Min.   :3.000  
 1st Qu.:2.581   1st Qu.:16.89   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:3.000  
 Median :3.325   Median :17.71   Median :0.0000   Median :0.0000   Median :4.000  
 Mean   :3.217   Mean   :17.85   Mean   :0.4375   Mean   :0.4062   Mean   :3.688  
 3rd Qu.:3.610   3rd Qu.:18.90   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:4.000  
 Max.   :5.424   Max.   :22.90   Max.   :1.0000   Max.   :1.0000   Max.   :5.000  
      carb      
 Min.   :1.000  
 1st Qu.:2.000  
 Median :2.000  
 Mean   :2.812  
 3rd Qu.:4.000  
 Max.   :8.000  

I can see that the dataset has several quantitative variables. I can also see some basic descriptive statistics for these variables.

# conducting a correlation 
cor.test(mtcars$wt, mtcars$mpg)

    Pearson's product-moment correlation

data:  mtcars$wt and mtcars$mpg
t = -9.559, df = 30, p-value = 1.294e-10
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.9338264 -0.7440872
sample estimates:
       cor 
-0.8676594 

The default option is a Pearson correlation, which is what I wanted. I can see the 95% confidence intervals. I can also see that r = -.868. This is a strong negative correlation. I can reject the null hypothesis because (a) the confidence intervals do not include zero and (b) the p-value is below .05.

R uses scientific notation for very small numbers. In this case, p = 1.294e-10 = 1.294 × 10-10 = 0.0000000001294.

The results make intuitive sense, as we would expect heavier cars to have fewer miles per gallon.

# conducting a simple linear regression 
summary(lm(mtcars$mpg ~ mtcars$wt))

Call:
lm(formula = mtcars$mpg ~ mtcars$wt)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.5432 -2.3647 -0.1252  1.4096  6.8727 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  37.2851     1.8776  19.858  < 2e-16 ***
mtcars$wt    -5.3445     0.5591  -9.559 1.29e-10 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared:  0.7528,    Adjusted R-squared:  0.7446 
F-statistic: 91.38 on 1 and 30 DF,  p-value: 1.294e-10

The results of the simple linear regression agree with the correlation. More specifically, we can see that we got the same p-value for slope and the correlation. We see R-squared reported at the bottom as Multiple R-squared. In this case, we see that r2 = .753.

I will make a scatterplot to visualize the relationship.

# creating a simple scatterplot 
plot(x=mtcars$wt, y=mtcars$mpg)

Of course, R makes it pretty easy to customize our plots. Let’s make a prettier graph.

# creating a prettier scatterplot 
plot(x=mtcars$wt, y=mtcars$mpg, xlab="Weight", ylab="Miles per Gallon", main="My Graph")
abline(lm(mtcars$mpg~mtcars$wt), col="red") # adds a regression line

Next, I am going to run the same code as above but for a different problem. I will use the iris dataset to look for an association between the length (Petal.Length) and width (Petal.Width) of a flower petal.

# I want to take a look at the dataset
summary(iris)
  Sepal.Length    Sepal.Width     Petal.Length    Petal.Width          Species  
 Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100   setosa    :50  
 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300   versicolor:50  
 Median :5.800   Median :3.000   Median :4.350   Median :1.300   virginica :50  
 Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199                  
 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800                  
 Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500                  

I can see that the dataset has several quantitative variables and a categorical variable (Species). I can also see some basic descriptive statistics for these variables.

# conducting a correlation 
cor.test(iris$Petal.Length, iris$Petal.Width)

    Pearson's product-moment correlation

data:  iris$Petal.Length and iris$Petal.Width
t = 43.387, df = 148, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.9490525 0.9729853
sample estimates:
      cor 
0.9628654 

I can see that r = 963. This is a very strong correlation. I can reject the null hypothesis because (a) the confidence intervals do not include zero and (b) the p-value is below .05. These results also make intuitive sense, as we would expect longer petals to be wider.

# conducting a simple linear regression 
summary(lm(iris$Petal.Width ~ iris$Petal.Length)) # response variable ~ explanatory variable

Call:
lm(formula = iris$Petal.Width ~ iris$Petal.Length)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.56515 -0.12358 -0.01898  0.13288  0.64272 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)       -0.363076   0.039762  -9.131  4.7e-16 ***
iris$Petal.Length  0.415755   0.009582  43.387  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2065 on 148 degrees of freedom
Multiple R-squared:  0.9271,    Adjusted R-squared:  0.9266 
F-statistic:  1882 on 1 and 148 DF,  p-value: < 2.2e-16

As will always be the case, the results of the simple linear regression agree with the correlation. More specifically, we can see that we got the same p-value for slope and the correlation. We see R-squared reported at the bottom as Multiple R-squared. In this case, we see that r2 = .927.

Now I will create a nice plot to go with my results.

# creating a scatterplot 
plot(x=iris$Petal.Length, y=iris$Petal.Width, xlab="Length", ylab="Width", main="Iris")
abline(lm(iris$Petal.Width~iris$Petal.Length), col="black") # adds a regression line

For your assignment, you will conduct a correlation and simple linear regression and create a scatterplot to visualize your results. You wil be using the women dataset. You can view the dataset and see the columns by running the code summary(women). Please submit your assignment on Tartan by midnight on Wednesday, November 21.

Directions:

  1. Conduct a correlation analysis to look for an association between women’s heigh and weight.

  2. What decision can we make regarding the null hypothesis? Explain how you came to this conclusion.

  3. Conduct a simple linear regression. Explain the results of the regression. Be sure to discuss the significance of the slope, the coefficient of correlation, and our general conclusions in plain English.

  4. Create a scatterplot. Your plot should be customized and contain a regression line.

  5. Paste your R code. I do not need to see the results of the tests, only the code that you used to generate the results.

LS0tCnRpdGxlOiAnU1RBMTIwIExhYiBBc3NpZ25tZW50ICM0JwpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazogZGVmYXVsdAogIGh0bWxfZG9jdW1lbnQ6IGRlZmF1bHQKICBwZGZfZG9jdW1lbnQ6IGRlZmF1bHQKLS0tCgpGb3IgTGFiIEFzc2lnbm1lbnQgNCwgeW91IGFyZSBnb2luZyB0byBjb25kdWN0IGEgY29ycmVsYXRpb24gYW5kIHNpbXBsZSBsaW5lYXIgcmVncmVzc2lvbi4gV2Ugd2lsbCBhbHNvIGJlIGJ1aWxkaW5nIG9mZiBvZiBwcmV2aW91cyBSIGV4cGVyaWVuY2UgdG8gaGVscCB1cyBncmFwaGljYWxseSBkaXNwbGF5IHRoZSByZXN1bHRzLgoKVGhlcmUgYXJlIHNldmVyYWwgZGF0YXNldHMgdGhhdCBhcmUgaW5jbHVkZWQgd2l0aCBSLiBUaGVzZSBkYXRhc2V0cyBhcmUgZWFzeSB0byBwcmFjdGljZSB3aXRoLCBzbyB3ZSB3aWxsIHVzZSB0aGVtIGhlcmUuIF9fSSBhbSBnb2luZyB0byBzaG93IHR3byBleGFtcGxlcy4gRWFjaCBvbmUgd2lsbCBpbmNsdWRlIG1lIHJ1bm5pbmcgYSBjb3JyZWxhdGlvbiwgc2ltcGxlIGxpbmVhciByZWdyZXNzaW9uLCBhbmQgYSBzY2F0dGVycGxvdC4gWW91IGRvIG5vdCBuZWVkIHRvIHJ1biB0aGlzIGNvZGUuX18KCkZpcnN0LCBJIGFtIGdvaW5nIHRvIHVzZSB0aGUgbXRjYXJzIGRhdGFzZXQgdG8gbG9vayBmb3IgYW4gYXNzb2NpYXRpb24gYmV0d2VlbiBtaWxlcyBwZXIgZ2FsbG9uIChtcGcpIGFuZCB3ZWlnaHQgKHd0KSBvZiBjYXJzLiAgCgpgYGB7ciwgZWNobz1UUlVFLCB3YXJuaW5nPUZBTFNFfQojIEkgd2FudCB0byB0YWtlIGEgbG9vayBhdCB0aGUgZGF0YXNldApzdW1tYXJ5KG10Y2FycykKYGBgCgpJIGNhbiBzZWUgdGhhdCB0aGUgZGF0YXNldCBoYXMgc2V2ZXJhbCBxdWFudGl0YXRpdmUgdmFyaWFibGVzLiBJIGNhbiBhbHNvIHNlZSBzb21lIGJhc2ljIGRlc2NyaXB0aXZlIHN0YXRpc3RpY3MgZm9yIHRoZXNlIHZhcmlhYmxlcy4gCgpgYGB7ciwgZWNobz1UUlVFLCB3YXJuaW5nPUZBTFNFfQojIGNvbmR1Y3RpbmcgYSBjb3JyZWxhdGlvbiAKY29yLnRlc3QobXRjYXJzJHd0LCBtdGNhcnMkbXBnKQpgYGAKClRoZSBkZWZhdWx0IG9wdGlvbiBpcyBhIFBlYXJzb24gY29ycmVsYXRpb24sIHdoaWNoIGlzIHdoYXQgSSB3YW50ZWQuIEkgY2FuIHNlZSB0aGUgOTUlIGNvbmZpZGVuY2UgaW50ZXJ2YWxzLiBJIGNhbiBhbHNvIHNlZSB0aGF0IHIgPSAtLjg2OC4gVGhpcyBpcyBhIHN0cm9uZyBuZWdhdGl2ZSBjb3JyZWxhdGlvbi4gSSBjYW4gcmVqZWN0IHRoZSBudWxsIGh5cG90aGVzaXMgYmVjYXVzZSAoYSkgdGhlIGNvbmZpZGVuY2UgaW50ZXJ2YWxzIGRvIG5vdCBpbmNsdWRlIHplcm8gYW5kIChiKSB0aGUgX3BfLXZhbHVlIGlzIGJlbG93IC4wNS4gCgpSIHVzZXMgc2NpZW50aWZpYyBub3RhdGlvbiBmb3IgdmVyeSBzbWFsbCBudW1iZXJzLiBJbiB0aGlzIGNhc2UsIF9wXyA9IDEuMjk0ZS0xMCA9IAoxLjI5NCDDlyAxMF4tMTBeID0gMC4wMDAwMDAwMDAxMjk0LgoKVGhlIHJlc3VsdHMgbWFrZSBpbnR1aXRpdmUgc2Vuc2UsIGFzIHdlIHdvdWxkIGV4cGVjdCBoZWF2aWVyIGNhcnMgdG8gaGF2ZSBmZXdlciBtaWxlcyBwZXIgZ2FsbG9uLgoKYGBge3IsIGVjaG89VFJVRSwgd2FybmluZz1GQUxTRX0KIyBjb25kdWN0aW5nIGEgc2ltcGxlIGxpbmVhciByZWdyZXNzaW9uIApzdW1tYXJ5KGxtKG10Y2FycyRtcGcgfiBtdGNhcnMkd3QpKSAjIHJlc3BvbnNlIHZhcmlhYmxlIH4gZXhwbGFuYXRvcnkgdmFyaWFibGUKYGBgCgpUaGUgcmVzdWx0cyBvZiB0aGUgc2ltcGxlIGxpbmVhciByZWdyZXNzaW9uIGFncmVlIHdpdGggdGhlIGNvcnJlbGF0aW9uLiBNb3JlIHNwZWNpZmljYWxseSwgd2UgY2FuIHNlZSB0aGF0IHdlIGdvdCB0aGUgc2FtZSBfcF8tdmFsdWUgZm9yIHNsb3BlIGFuZCB0aGUgY29ycmVsYXRpb24uIFdlIHNlZSBSLXNxdWFyZWQgcmVwb3J0ZWQgYXQgdGhlIGJvdHRvbSBhcyBNdWx0aXBsZSBSLXNxdWFyZWQuIEluIHRoaXMgY2FzZSwgd2Ugc2VlIHRoYXQgcl4yXiA9IC43NTMuIAoKSSB3aWxsIG1ha2UgYSBzY2F0dGVycGxvdCB0byB2aXN1YWxpemUgdGhlIHJlbGF0aW9uc2hpcC4gCgpgYGB7ciwgZWNobz1UUlVFLCB3YXJuaW5nPUZBTFNFfQojIGNyZWF0aW5nIGEgc2ltcGxlIHNjYXR0ZXJwbG90IApwbG90KHg9bXRjYXJzJHd0LCB5PW10Y2FycyRtcGcpCmBgYAoKT2YgY291cnNlLCBSIG1ha2VzIGl0IHByZXR0eSBlYXN5IHRvIGN1c3RvbWl6ZSBvdXIgcGxvdHMuIExldCdzIG1ha2UgYSBwcmV0dGllciBncmFwaC4gCgpgYGB7ciwgZWNobz1UUlVFLCB3YXJuaW5nPUZBTFNFfQojIGNyZWF0aW5nIGEgcHJldHRpZXIgc2NhdHRlcnBsb3QgCnBsb3QoeD1tdGNhcnMkd3QsIHk9bXRjYXJzJG1wZywgeGxhYj0iV2VpZ2h0IiwgeWxhYj0iTWlsZXMgcGVyIEdhbGxvbiIsIG1haW49Ik15IEdyYXBoIikKYWJsaW5lKGxtKG10Y2FycyRtcGd+bXRjYXJzJHd0KSwgY29sPSJyZWQiKSAjIGFkZHMgYSByZWdyZXNzaW9uIGxpbmUKYGBgCgpOZXh0LCBJIGFtIGdvaW5nIHRvIHJ1biB0aGUgc2FtZSBjb2RlIGFzIGFib3ZlIGJ1dCBmb3IgYSBkaWZmZXJlbnQgcHJvYmxlbS4gSSB3aWxsIHVzZSB0aGUgaXJpcyBkYXRhc2V0IHRvIGxvb2sgZm9yIGFuIGFzc29jaWF0aW9uIGJldHdlZW4gdGhlIGxlbmd0aCAoUGV0YWwuTGVuZ3RoKSBhbmQgd2lkdGggKFBldGFsLldpZHRoKSBvZiBhIGZsb3dlciBwZXRhbC4KCmBgYHtyLCBlY2hvPVRSVUUsIHdhcm5pbmc9RkFMU0V9CiMgSSB3YW50IHRvIHRha2UgYSBsb29rIGF0IHRoZSBkYXRhc2V0CnN1bW1hcnkoaXJpcykKYGBgCgpJIGNhbiBzZWUgdGhhdCB0aGUgZGF0YXNldCBoYXMgc2V2ZXJhbCBxdWFudGl0YXRpdmUgdmFyaWFibGVzIGFuZCBhIGNhdGVnb3JpY2FsIHZhcmlhYmxlIChTcGVjaWVzKS4gSSBjYW4gYWxzbyBzZWUgc29tZSBiYXNpYyBkZXNjcmlwdGl2ZSBzdGF0aXN0aWNzIGZvciB0aGVzZSB2YXJpYWJsZXMuIAoKYGBge3IsIGVjaG89VFJVRSwgd2FybmluZz1GQUxTRX0KIyBjb25kdWN0aW5nIGEgY29ycmVsYXRpb24gCmNvci50ZXN0KGlyaXMkUGV0YWwuTGVuZ3RoLCBpcmlzJFBldGFsLldpZHRoKQpgYGAKCkkgY2FuIHNlZSB0aGF0IHIgPSA5NjMuIFRoaXMgaXMgYSB2ZXJ5IHN0cm9uZyBjb3JyZWxhdGlvbi4gSSBjYW4gcmVqZWN0IHRoZSBudWxsIGh5cG90aGVzaXMgYmVjYXVzZSAoYSkgdGhlIGNvbmZpZGVuY2UgaW50ZXJ2YWxzIGRvIG5vdCBpbmNsdWRlIHplcm8gYW5kIChiKSB0aGUgX3BfLXZhbHVlIGlzIGJlbG93IC4wNS4gVGhlc2UgcmVzdWx0cyBhbHNvIG1ha2UgaW50dWl0aXZlIHNlbnNlLCBhcyB3ZSB3b3VsZCBleHBlY3QgbG9uZ2VyIHBldGFscyB0byBiZSB3aWRlci4KCmBgYHtyLCBlY2hvPVRSVUUsIHdhcm5pbmc9RkFMU0V9CiMgY29uZHVjdGluZyBhIHNpbXBsZSBsaW5lYXIgcmVncmVzc2lvbiAKc3VtbWFyeShsbShpcmlzJFBldGFsLldpZHRoIH4gaXJpcyRQZXRhbC5MZW5ndGgpKSAjIHJlc3BvbnNlIHZhcmlhYmxlIH4gZXhwbGFuYXRvcnkgdmFyaWFibGUKYGBgCgpBcyB3aWxsIGFsd2F5cyBiZSB0aGUgY2FzZSwgdGhlIHJlc3VsdHMgb2YgdGhlIHNpbXBsZSBsaW5lYXIgcmVncmVzc2lvbiBhZ3JlZSB3aXRoIHRoZSBjb3JyZWxhdGlvbi4gTW9yZSBzcGVjaWZpY2FsbHksIHdlIGNhbiBzZWUgdGhhdCB3ZSBnb3QgdGhlIHNhbWUgX3BfLXZhbHVlIGZvciBzbG9wZSBhbmQgdGhlIGNvcnJlbGF0aW9uLiBXZSBzZWUgUi1zcXVhcmVkIHJlcG9ydGVkIGF0IHRoZSBib3R0b20gYXMgTXVsdGlwbGUgUi1zcXVhcmVkLiBJbiB0aGlzIGNhc2UsIHdlIHNlZSB0aGF0IHJeMl4gPSAuOTI3LiAKCk5vdyBJIHdpbGwgY3JlYXRlIGEgbmljZSBwbG90IHRvIGdvIHdpdGggbXkgcmVzdWx0cy4gCmBgYHtyLCBlY2hvPVRSVUUsIHdhcm5pbmc9RkFMU0V9CiMgY3JlYXRpbmcgYSBzY2F0dGVycGxvdCAKcGxvdCh4PWlyaXMkUGV0YWwuTGVuZ3RoLCB5PWlyaXMkUGV0YWwuV2lkdGgsIHhsYWI9Ikxlbmd0aCIsIHlsYWI9IldpZHRoIiwgbWFpbj0iSXJpcyIpCmFibGluZShsbShpcmlzJFBldGFsLldpZHRofmlyaXMkUGV0YWwuTGVuZ3RoKSwgY29sPSJibGFjayIpICMgYWRkcyBhIHJlZ3Jlc3Npb24gbGluZQpgYGAKCkZvciB5b3VyIGFzc2lnbm1lbnQsIHlvdSB3aWxsIGNvbmR1Y3QgYSBjb3JyZWxhdGlvbiBhbmQgc2ltcGxlIGxpbmVhciByZWdyZXNzaW9uIGFuZCBjcmVhdGUgYSBzY2F0dGVycGxvdCB0byB2aXN1YWxpemUgeW91ciByZXN1bHRzLiBZb3Ugd2lsIGJlIHVzaW5nIHRoZSB3b21lbiBkYXRhc2V0LiBZb3UgY2FuIHZpZXcgdGhlIGRhdGFzZXQgYW5kIHNlZSB0aGUgY29sdW1ucyBieSBydW5uaW5nIHRoZSBjb2RlIGBzdW1tYXJ5KHdvbWVuKWAuIF9fUGxlYXNlIHN1Ym1pdCB5b3VyIGFzc2lnbm1lbnQgb24gVGFydGFuIGJ5IG1pZG5pZ2h0IG9uIFdlZG5lc2RheSwgTm92ZW1iZXIgMjEuX18KCl9fRGlyZWN0aW9uczpfXwoKMS4gQ29uZHVjdCBhIGNvcnJlbGF0aW9uIGFuYWx5c2lzIHRvIGxvb2sgZm9yIGFuIGFzc29jaWF0aW9uIGJldHdlZW4gd29tZW4ncyBoZWlnaCBhbmQgd2VpZ2h0LiAKCjIuIFdoYXQgZGVjaXNpb24gY2FuIHdlIG1ha2UgcmVnYXJkaW5nIHRoZSBudWxsIGh5cG90aGVzaXM/IEV4cGxhaW4gaG93IHlvdSBjYW1lIHRvIHRoaXMgY29uY2x1c2lvbi4KCjMuIENvbmR1Y3QgYSBzaW1wbGUgbGluZWFyIHJlZ3Jlc3Npb24uIEV4cGxhaW4gdGhlIHJlc3VsdHMgb2YgdGhlIHJlZ3Jlc3Npb24uIEJlIHN1cmUgdG8gZGlzY3VzcyB0aGUgc2lnbmlmaWNhbmNlIG9mIHRoZSBzbG9wZSwgdGhlIGNvZWZmaWNpZW50IG9mIGNvcnJlbGF0aW9uLCBhbmQgb3VyIGdlbmVyYWwgY29uY2x1c2lvbnMgaW4gcGxhaW4gRW5nbGlzaC4gCgo0LiBDcmVhdGUgYSBzY2F0dGVycGxvdC4gWW91ciBwbG90IHNob3VsZCBiZSBjdXN0b21pemVkIGFuZCBjb250YWluIGEgcmVncmVzc2lvbiBsaW5lLiAKCjUuIFBhc3RlIHlvdXIgUiBjb2RlLiBJIGRvIG5vdCBuZWVkIHRvIHNlZSB0aGUgcmVzdWx0cyBvZiB0aGUgdGVzdHMsIG9ubHkgdGhlIGNvZGUgdGhhdCB5b3UgdXNlZCB0byBnZW5lcmF0ZSB0aGUgcmVzdWx0cy4gIA==