library(tidyverse)
#> -- Attaching packages ------------------------------------------------------------------------------------------------------- tidyverse 1.2.1 --
#> v ggplot2 3.1.0 v purrr 0.2.5
#> v tibble 1.4.2 v dplyr 0.7.7
#> v tidyr 0.8.2 v stringr 1.3.1
#> v readr 1.1.1 v forcats 0.3.0
#> -- Conflicts ---------------------------------------------------------------------------------------------------------- tidyverse_conflicts() --
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
library(ggplot2)
This is a dataset i’ve been playing with as I learn beta regression
data("GasolineYield", package = "betareg")
GasolineYield <- as_tibble(GasolineYield)
GasolineYield
#> # A tibble: 32 x 6
#> yield gravity pressure temp10 temp batch
#> * <dbl> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 0.122 50.8 8.6 190 205 1
#> 2 0.223 50.8 8.6 190 275 1
#> 3 0.347 50.8 8.6 190 345 1
#> 4 0.457 50.8 8.6 190 407 1
#> 5 0.08 40.8 3.5 210 218 2
#> 6 0.131 40.8 3.5 210 273 2
#> 7 0.266 40.8 3.5 210 347 2
#> 8 0.074 40 6.1 217 212 3
#> 9 0.182 40 6.1 217 272 3
#> 10 0.304 40 6.1 217 340 3
#> # ... with 22 more rows
GasolineYield %>%
ggplot() +
aes(x = temp, y = yield, color = factor(batch)) +
geom_point(size = 3) +
labs(color = "batch")
This is a dataset of eyetracking data with the proportions of looks to a named image over time. It’s a good example of where a nonlinear model would be useful.
data("ci", package = "bdots")
ci <- as_tibble(ci)
ci
#> # A tibble: 108,216 x 5
#> protocol Subject Time Fixations LookType
#> <fct> <int> <int> <dbl> <fct>
#> 1 NH 36 0 0 Cohort
#> 2 NH 36 4 0 Cohort
#> 3 NH 36 8 0 Cohort
#> 4 NH 36 12 0 Cohort
#> 5 NH 36 16 0 Cohort
#> 6 NH 36 20 0 Cohort
#> 7 NH 36 24 0 Cohort
#> 8 NH 36 28 0 Cohort
#> 9 NH 36 32 0 Cohort
#> 10 NH 36 36 0 Cohort
#> # ... with 108,206 more rows
ci %>%
filter(LookType == "Target") %>%
ggplot() +
aes(x = Time, y = Fixations) +
geom_line(aes(group = Subject)) +
facet_wrap("protocol")