load('/Users/milin/分控模型验证/COD实验数据.RData')
library(tidyverse)
Ucus <- cod_df_shiyan1 %>% group_by(variant,state) %>% summarise(n = n())
Ucus <- Ucus %>% filter(state=='pay success')
Ucus
## # A tibble: 4 x 3
## # Groups: variant [4]
## variant state n
## <int> <chr> <int>
## 1 0 pay success 18137
## 2 1 pay success 18091
## 3 2 pay success 19412
## 4 3 pay success 19192
可以看出单量差别不是很大
对照组人员COD下单次数不合常理
Ucus <- cod_df_shiyan1 %>% group_by(variant,user_id,state) %>% summarise(n = n())
Ucusbig1 <- Ucus %>% filter(n!=1)
DT::datatable(Ucus)
DT::datatable(Ucusbig1)
我们可以看到对照组的COD人员下了非常多的订单.在对照组中,有0.1276135的人下了2单及以上。约有3%的人下3单及以上,这3%的人,占比单量为13%。去除掉这3%的数据,再进行分析
require(Hmisc)
Ucus_1 <- Ucus %>% filter((variant %in% c(0,1) &state=='pay success'&n<=2)|(variant %in% c(2,3)))
Ucus_1g <- Ucus_1 %>% group_by(variant,state) %>% summarise(n=sum(n)) %>% ungroup()
Ucus_1g <- Ucus_1g %>% filter(state=='pay success')
Ucus_1g
## # A tibble: 4 x 3
## variant state n
## <int> <chr> <int>
## 1 0 pay success 15916
## 2 1 pay success 15755
## 3 2 pay success 19412
## 4 3 pay success 19192
可以看到实验组有更多的单量
Ucus2 <- cod_df_shiyan1 %>% filter(user_id %in% Ucus_1$user_id) %>% group_by(variant,current_status) %>% summarise(n = n())
Ucus2 <- Ucus2 %>% filter(current_status=='delivered')
data.frame(Ucus2$variant,Ucus2$n/Ucus_1g$n)
## Ucus2.variant Ucus2.n.Ucus_1g.n
## 1 0 0.6878613
## 2 1 0.6852428
## 3 2 0.6708737
## 4 3 0.6675177