Ulziibat Tserenbat

Using Java

cyl.f <- factor(mtcars$cyl)
gear.f <- factor(mtcars$factor) 
attach(mtcars) 
The following objects are masked from mtcars (pos = 3):

    am, carb, cyl, disp, drat, gear,
    hp, mpg, qsec, vs, wt
ihist(mpg)
ID:2 Name: "Histogram (mpg)"
ibar(carb)
ID:3 Name: "Barchart (carb)"
iplot(mpg, wt)
ID:4 Name: "Scatterplot (wt vs mpg)"
ibox(mtcars[c("qsec","disp","hp")])
ID:5 Name: "Boxplot (qsec)"
ipcp(mtcars[c("mpg","wt","hp")])
ID:6 Name: "Parallel coord. plot (default)"

GGobi

g <- ggobi(iris)
clustering <- hclust(dist(iris[,1:4]),method="average")
glyph_colour(g[1]) <- cutree(clustering, 3)
g <- ggobi(mtcars)
d <- display(g[1],
"Parallel Coordinates Display")
variables(d)
$`X`
 mpg  cyl disp   hp drat   wt qsec   vs   am 
   1    2    3    4    5    6    7    8    9 
gear carb 
  10   11 

$Y
named numeric(0)

$Z
named numeric(0)
variables(d) <- list(X=8:6)
variables(d) <- list(X=8:1)
variables(d)
$`X`
  wt qsec   vs drat   hp disp  cyl  mpg 
   6    7    8    5    4    3    2    1 

$Y
named numeric(0)

$Z
named numeric(0)
df <- data.frame(
x=1:2000,
y=sin(1:2000 * pi/20) + runif(2000, max=0.5)
)
g <- ggobi_longitudinal(df[1:100, ])
df_g <- g[1]
for(i in 1:1901) {
df_g[, 2] <- df[i:(i + 99), 2]
}
ggobi_longitudinal(stormtracks, seasday, id)
LS0tDQp0aXRsZTogIkhvbWVXb3JrIDciDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KVWx6aWliYXQgVHNlcmVuYmF0DQoNClVzaW5nIEphdmENCg0KYGBge3J9DQpjeWwuZiA8LSBmYWN0b3IobXRjYXJzJGN5bCkNCmdlYXIuZiA8LSBmYWN0b3IobXRjYXJzJGZhY3RvcikgDQphdHRhY2gobXRjYXJzKSANCmloaXN0KG1wZykNCmBgYA0KDQpgYGB7cn0NCmliYXIoY2FyYikNCmBgYA0KDQpgYGB7cn0NCmlwbG90KG1wZywgd3QpDQpgYGANCg0KYGBge3J9DQppYm94KG10Y2Fyc1tjKCJxc2VjIiwiZGlzcCIsImhwIildKQ0KYGBgDQoNCmBgYHtyfQ0KaXBjcChtdGNhcnNbYygibXBnIiwid3QiLCJocCIpXSkNCmBgYA0KDQpHR29iaQ0KDQpgYGB7cn0NCmcgPC0gZ2dvYmkoaXJpcykNCmNsdXN0ZXJpbmcgPC0gaGNsdXN0KGRpc3QoaXJpc1ssMTo0XSksbWV0aG9kPSJhdmVyYWdlIikNCmdseXBoX2NvbG91cihnWzFdKSA8LSBjdXRyZWUoY2x1c3RlcmluZywgMykNCmcgPC0gZ2dvYmkobXRjYXJzKQ0KZCA8LSBkaXNwbGF5KGdbMV0sDQoiUGFyYWxsZWwgQ29vcmRpbmF0ZXMgRGlzcGxheSIpDQp2YXJpYWJsZXMoZCkNCmBgYA0KDQpgYGB7cn0NCnZhcmlhYmxlcyhkKSA8LSBsaXN0KFg9ODo2KQ0KdmFyaWFibGVzKGQpIDwtIGxpc3QoWD04OjEpDQp2YXJpYWJsZXMoZCkNCmBgYA0KDQpgYGB7cn0NCmRmIDwtIGRhdGEuZnJhbWUoDQp4PTE6MjAwMCwNCnk9c2luKDE6MjAwMCAqIHBpLzIwKSArIHJ1bmlmKDIwMDAsIG1heD0wLjUpDQopDQpnIDwtIGdnb2JpX2xvbmdpdHVkaW5hbChkZlsxOjEwMCwgXSkNCmRmX2cgPC0gZ1sxXQ0KZm9yKGkgaW4gMToxOTAxKSB7DQpkZl9nWywgMl0gPC0gZGZbaTooaSArIDk5KSwgMl0NCn0NCmdnb2JpX2xvbmdpdHVkaW5hbChzdG9ybXRyYWNrcywgc2Vhc2RheSwgaWQpDQpgYGANCg0KDQoNCg==