Ulziibat Tserenbat
Using Java
cyl.f <- factor(mtcars$cyl)
gear.f <- factor(mtcars$factor)
attach(mtcars)
The following objects are masked from mtcars (pos = 3):
am, carb, cyl, disp, drat, gear,
hp, mpg, qsec, vs, wt
ihist(mpg)
ID:2 Name: "Histogram (mpg)"
ibar(carb)
ID:3 Name: "Barchart (carb)"
iplot(mpg, wt)
ID:4 Name: "Scatterplot (wt vs mpg)"
ibox(mtcars[c("qsec","disp","hp")])
ID:5 Name: "Boxplot (qsec)"
ipcp(mtcars[c("mpg","wt","hp")])
ID:6 Name: "Parallel coord. plot (default)"
GGobi
g <- ggobi(iris)
clustering <- hclust(dist(iris[,1:4]),method="average")
glyph_colour(g[1]) <- cutree(clustering, 3)
g <- ggobi(mtcars)
d <- display(g[1],
"Parallel Coordinates Display")
variables(d)
$`X`
mpg cyl disp hp drat wt qsec vs am
1 2 3 4 5 6 7 8 9
gear carb
10 11
$Y
named numeric(0)
$Z
named numeric(0)
variables(d) <- list(X=8:6)
variables(d) <- list(X=8:1)
variables(d)
$`X`
wt qsec vs drat hp disp cyl mpg
6 7 8 5 4 3 2 1
$Y
named numeric(0)
$Z
named numeric(0)
df <- data.frame(
x=1:2000,
y=sin(1:2000 * pi/20) + runif(2000, max=0.5)
)
g <- ggobi_longitudinal(df[1:100, ])
df_g <- g[1]
for(i in 1:1901) {
df_g[, 2] <- df[i:(i + 99), 2]
}
ggobi_longitudinal(stormtracks, seasday, id)