In a 5v4 matchup how likely is it that the player with more dice will win?
First let’s get the pdf’s for max roll for 1<=rolls<=5
pdf = pdfMaxRoll()
pdf
We can visualize this data as such:
plot(pdf[,6],col=5,type="l",xlab="Max Roll",ylab="P(occurence)")
for(i in 2:5)
lines(pdf[,i],col=i-1)
legend(1,0.6,1:5,text.col=1:5,title="# Rolls")

We also have the expected value for Max Roll for each 1<=rolls<=5
ev = expMaxRoll()
ev
[1] 3.500000 4.472222 4.958333 5.244599 5.430941
Now let’s plot these expected values
plot(ev,type='l',xlab='Dice Rolls',ylab='Expected Maximum Roll')

The first calculation we want to do is \(P([Max Roll | 5 rolls] > [Max Roll | 4 rolls])\).
We should split this up into independent sub-probabilities, namely:
- \(P(Max|5 = 6)*P(Max|4 < 6)\)
- \(P(Max|5 = 5)*P(Max|4 < 5)\)
- \(P(Max|5 = 4)*P(Max|4 < 4)\)
- \(P(Max|5 = 3)*P(Max|4 < 3)\)
- \(P(Max|5 = 2)*P(Max|4 < 2)\)
We can get the required probabilities simply by looking at our PDF table
pdf
So the first calculation is
pdf[6,6]*sum(pdf[1:5,5])
[1] 0.2884464
We can automate to do all the calculations
total = 0
for(i in 6:2)
total = total + pdf[i,6]*sum(pdf[1:i-1,5])
total
[1] 0.3484327
The probability of a tie would be \(P(Max|5 = Max|4) = P(Max|5 = 6)*P(Max|4 = 6) + P(Max|5 = 5)*P(Max|4 = 5) + ...\) , which we can calculate with
sum(pdf[1:6,6]*pdf[1:6,5])
[1] 0.4015745
So the probability of \(P(Max|5 < Max|4)\) would be
1-.4015745-.3484327
[1] 0.2499928
So, in a 5v4 the player with the extra die has a 34.8% chance of winning, 25.0% chance of losing, and 40.2% chance of tying on the max roll.
When we move on to \(P([2nd Highest Roll | 5 rolls] > [2nd Highest Roll | 4 rolls])\) the issue we run into is that the possible values for the 2nd highest roll are affected by the value for the max roll. This makes solving this very non-trivial.
LS0tDQp0aXRsZTogIjEuMiBDYWxjdWxhdGluZyBNYXggUm9sbCBQcm9iYWJpbGl0aWVzIGZvciA1djQiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpJbiBhIDV2NCBtYXRjaHVwIGhvdyBsaWtlbHkgaXMgaXQgdGhhdCB0aGUgcGxheWVyIHdpdGggbW9yZSBkaWNlIHdpbGwgd2luPw0KDQpGaXJzdCBsZXQncyBnZXQgdGhlIHBkZidzIGZvciBtYXggcm9sbCBmb3IgMTw9cm9sbHM8PTUNCmBgYHtyfQ0KcGRmID0gcGRmTWF4Um9sbCgpDQpwZGYNCmBgYA0KDQpXZSBjYW4gdmlzdWFsaXplIHRoaXMgZGF0YSBhcyBzdWNoOg0KYGBge3J9DQpwbG90KHBkZlssNl0sY29sPTUsdHlwZT0ibCIseGxhYj0iTWF4IFJvbGwiLHlsYWI9IlAob2NjdXJlbmNlKSIpDQpmb3IoaSBpbiAyOjUpDQogIGxpbmVzKHBkZlssaV0sY29sPWktMSkNCmxlZ2VuZCgxLDAuNiwxOjUsdGV4dC5jb2w9MTo1LHRpdGxlPSIjIFJvbGxzIikNCmBgYA0KDQpXZSBhbHNvIGhhdmUgdGhlIGV4cGVjdGVkIHZhbHVlIGZvciBNYXggUm9sbCBmb3IgZWFjaCAxPD1yb2xsczw9NQ0KDQpgYGB7cn0NCmV2ID0gZXhwTWF4Um9sbCgpDQpldg0KYGBgDQoNCk5vdyBsZXQncyBwbG90IHRoZXNlIGV4cGVjdGVkIHZhbHVlcw0KYGBge3J9DQpwbG90KGV2LHR5cGU9J2wnLHhsYWI9J0RpY2UgUm9sbHMnLHlsYWI9J0V4cGVjdGVkIE1heGltdW0gUm9sbCcpDQpgYGANCg0KVGhlIGZpcnN0IGNhbGN1bGF0aW9uIHdlIHdhbnQgdG8gZG8gaXMgJFAoW01heCBSb2xsIHwgNSByb2xsc10gPiBbTWF4IFJvbGwgfCA0IHJvbGxzXSkkLg0KDQpXZSBzaG91bGQgc3BsaXQgdGhpcyB1cCBpbnRvIGluZGVwZW5kZW50IHN1Yi1wcm9iYWJpbGl0aWVzLCBuYW1lbHk6DQoNCi0gJFAoTWF4fDUgPSA2KSpQKE1heHw0IDwgNikkDQotICRQKE1heHw1ID0gNSkqUChNYXh8NCA8IDUpJA0KLSAkUChNYXh8NSA9IDQpKlAoTWF4fDQgPCA0KSQNCi0gJFAoTWF4fDUgPSAzKSpQKE1heHw0IDwgMykkDQotICRQKE1heHw1ID0gMikqUChNYXh8NCA8IDIpJA0KDQpXZSBjYW4gZ2V0IHRoZSByZXF1aXJlZCBwcm9iYWJpbGl0aWVzIHNpbXBseSBieSBsb29raW5nIGF0IG91ciBQREYgdGFibGUNCmBgYHtyfQ0KcGRmDQpgYGANCg0KU28gdGhlIGZpcnN0IGNhbGN1bGF0aW9uIGlzIA0KYGBge3J9DQpwZGZbNiw2XSpzdW0ocGRmWzE6NSw1XSkNCmBgYA0KDQpXZSBjYW4gYXV0b21hdGUgdG8gZG8gYWxsIHRoZSBjYWxjdWxhdGlvbnMNCmBgYHtyfQ0KdG90YWwgPSAwDQpmb3IoaSBpbiA2OjIpDQogIHRvdGFsID0gdG90YWwgKyBwZGZbaSw2XSpzdW0ocGRmWzE6aS0xLDVdKQ0KdG90YWwNCmBgYA0KDQpUaGUgcHJvYmFiaWxpdHkgb2YgYSB0aWUgd291bGQgYmUgJFAoTWF4fDUgPSBNYXh8NCkgPSBQKE1heHw1ID0gNikqUChNYXh8NCA9IDYpICsgUChNYXh8NSA9IDUpKlAoTWF4fDQgPSA1KSArIC4uLiQgLCB3aGljaCB3ZSBjYW4gY2FsY3VsYXRlIHdpdGgNCmBgYHtyfQ0Kc3VtKHBkZlsxOjYsNl0qcGRmWzE6Niw1XSkNCg0KYGBgDQpTbyB0aGUgcHJvYmFiaWxpdHkgb2YgJFAoTWF4fDUgPCBNYXh8NCkkIHdvdWxkIGJlDQpgYGB7cn0NCjEtLjQwMTU3NDUtLjM0ODQzMjcNCmBgYA0KU28sIGluIGEgNXY0IHRoZSBwbGF5ZXIgd2l0aCB0aGUgZXh0cmEgZGllIGhhcyBhICoqMzQuOCUqKiBjaGFuY2Ugb2Ygd2lubmluZywgKioyNS4wJSoqIGNoYW5jZSBvZiBsb3NpbmcsIGFuZCAqKjQwLjIlKiogY2hhbmNlIG9mIHR5aW5nIG9uIHRoZSAqKm1heCByb2xsKiouIA0KDQpXaGVuIHdlIG1vdmUgb24gdG8gJFAoWzJuZCBIaWdoZXN0IFJvbGwgfCA1IHJvbGxzXSA+IFsybmQgSGlnaGVzdCBSb2xsIHwgNCByb2xsc10pJCB0aGUgaXNzdWUgd2UgcnVuIGludG8gaXMgdGhhdCB0aGUgcG9zc2libGUgdmFsdWVzIGZvciB0aGUgMm5kIGhpZ2hlc3Qgcm9sbCBhcmUgYWZmZWN0ZWQgYnkgdGhlIHZhbHVlIGZvciB0aGUgbWF4IHJvbGwuIFRoaXMgbWFrZXMgc29sdmluZyB0aGlzIHZlcnkgbm9uLXRyaXZpYWwuDQo=