a. Find a 95% confidence interval for the average price for light tuna in water. Interpret this interval. That is, what does the “95%” refere to?
## [1] "Éste conjunto de datos tiene las siguientes características: media: 0.896429, desviación estándar es: 0.399531 y grados de libertad de 13.000000"
Los valores críticos en un test de dos colas con \(\alpha=0.5\) y 13 grados de libertad son \(\pm 2.160 \therefore\) \[\mu \pm2.160\bigg(\frac{0.399}{\sqrt{14}}\bigg)\] El intervalo con un nivel de confianza de 95% es: 0.6660921 a 1.126765
Lo que significa que los valores que queden dentro del intervalo mencionado representan la media poblacional \(\mu\) adecuadamente en un 95%.
b. Find a 95% confidence interval for the average price for white tuna in oil. how does the width of this interval compare to the width of the interval in part a? Can you explain why?
## [1] "Para el conjunto de datos de este problema media = 1.225000, desviación estándar = 0.033166 y grados de libertad = 3.000000"
Un intervalo de confianza de dos colas con distribución \(t\) con \(\alpha = 0.05\) y 3 grados de libertad es \(\pm3.182 \therefore\)
\[\mu \pm3.182\bigg(\frac{0.0332}{\sqrt{4}}\bigg)\]
El intervalo de confianza con 95% de confianza y 3 grados de libertad se encuentra entre los valores 1.1722325 y 1.2777675
c. Find 95% confidence intervals for the other two samples (white tuna in water and light tuna in oil). Plot the four treatment means and their standard errors in a two-dimensional plot similar to Figure 8.5, What kind of broad comparisons can you make about the four treatments?
White tuna in Water
## [1] "White Tuna in Water, media = 1.280000, desviación estándar= 0.135119, grados de libertad: 7.000000."
Un intervalo de confianza de dos colas con distribución \(t\) con \(\alpha = 0.05\) y 7 grados de libertad es \(\pm2.365 \therefore\)
\[\mu \pm2.365\bigg(\frac{0.135}{\sqrt{8}}\bigg)\] El intervalo de confianza con 95% de confianza y 7 grados de libertad se encuentra entre los valores 1.1670197 y 1.3929803
Light Tuna in Oil
## [1] "Light Tuna in Oil, media = 1.147273, desviación estándar= 0.678544, grados de libertad: 10.000000."
Un intervalo de confianza de dos colas con distribución \(t\) con \(\alpha = 0.05\) y 10 grados de libertad es \(\pm2.228 \therefore\)
\[\mu \pm2.228\bigg(\frac{0.678}{\sqrt{11}}\bigg)\] El intervalo de confianza con 95% de confianza y 10 grados de libertad se encuentra entre los valores 0.6914491 y 1.6030963
a. interpret the accompanying MINITAB printouts for the one-sample test and estimation procedures:
El resultado mostrado en la imagen proviene de un test de dos colas de un conjunto de datos con \(n=27\), se indican los valores de la media y la desviación estándar (los datos tienden a estar cercanos entre sí), la prueba se realizó con un intervalo de confianza del 95% y un \(\alpha = 0.05\). Los valores mínimos y máximos para \(\mu\) son 0.9867 y 1.1178.
b. Verify the calculated values of t and the upper and lower confidence limits.
## [1] "Aplicando las fórmulas con R se obtienen los siguientes resultados: media: 1.052222, desviación estándar: 0.165653, valor de t: 1.640000"
Para corroborar los valores mínimo y máximo dentro del intervalo de confianza de 95% utilizamos la siguiente fórmula, usando 26 grados de libertad: \[\mu \pm t_{.025}\bigg(\frac{s}{\sqrt{n}}\bigg) = 1\pm 2.056 \bigg(\frac{0.166}{\sqrt{27}}\bigg)\]
## [1] "Los valores correspondientes a éste ejercicio con un intervalo de confianza de 95 por ciento y de dos colas son 0.986540 como mínimo y 1.117905 como máximo, que corresponden a lo mostrado por el output de MINITAB."
col <- c(148,303,262,278,305,304,315,284,227,225,300,174,275,220,306,240,209,229,260,184,368,253,261,221,242,139,169,239,247,282,203,170,254,178,311,249,254,222,204,271,265,212,273,250,276,229,255,299,256,248)
meanCol <- mean(col)
sdCol <- sd(col)
nCol <- length(col)
\[\overline{x}\pm z_{\alpha/2}\bigg(\frac{s}{\sqrt{n}}\bigg)\]
\[246.96 \pm \bigg(1.960*\frac{46.82}{\sqrt{50}}\bigg)\] \[246.96 \pm 12.97784\]
El intervalo de confianza con los valores de colesterol es: 233.98216 y 259.93784.
a. Do the two sample variances indicate that the assumption of a common population variance is reasonable? Las varianzas son marcadamente distintas, considero que no fortalecen el asumir que una varianza común para la población es razonable.
b. What is the observed value of the test statistic? If this is a two-tailed test, what is the p-value associated with the test?
El valor observado del estadístico es \(t=0.365\), siendo un test de dos colas se está utilizando un intervalo de confianza del 95% con 11 grados de libertad. Con un valor \(p=0.05\).
c. What is the pooled estimate \(s^2\) of the population variance?
Pooled estimate of the population variance: \(s^2=3.524\)
d. Use the information in the printout to construct a 95% confidence interval for the difference in the population means. Does this interval confirm your conclusions in part d?
\[(\mu_2-\mu_1) \pm 2.201\bigg(\frac{\sqrt{3.524}}{\sqrt{12}}\bigg)\]
\[-0.381 \pm 2.201*0.5419102\] El intervalo de confianza se encuentra entre los valores -1.5737444 y 0.8117444.
a. Use an appropriate method to test for a significant difference in the average titanium contents using the two different methods. Éste problema se presenta para ser resuelto por una aproximación de diferencia de medias entre poblaciones pareadas (el método 1 y método 2 están relacionados) así como un intervalo de confianza con 2 colas. Dado que el cociente entre varianzas de los dos métodos es igual a ``
Por lo que se procede con el siguiente análisis:
method1<-c(.011,.013,.013,.010,.013,.013,.015,.011,.014,.012)
method2<-c(.011,.016,.013,.012,.015,.012,.017,.013,.014,.015)
result <- t.test(method1, method2, paired = FALSE, alternative = "two.sided")
result
##
## Welch Two Sample t-test
##
## data: method1 and method2
## t = -1.6767, df = 17.003, p-value = 0.1119
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.0029357463 0.0003357463
## sample estimates:
## mean of x mean of y
## 0.0125 0.0138
El resultado ofrece evidencia para NO rechazar la hipótesis nula y decir que la diferencia en las medias es igual. Los datos no son estadísticamente significativos.
b. Determine a 95% confidence interval estimate for \((\mu_1-\mu_2)\). Does your interval estimate substantiate your conclusion in part a Explain.
El intervalo de confianza ya está provisto por el sofwtare y va de -0.0029357 a 3.357462910^{-4}.
Para éste conjunto de datos t = -1.676741 ubicándose por arriba del punto de corte para el intervalo de confianza para la cola inferior de la gráfica, por lo tanto se concluye en NO rechazar \(H_0\), arribando a la misma conclusión que en el inciso anterior.
a. Explain why this is a paired-difference experiment and give reasons why the pairing should be useful in increasing information on the difference between the mean reaction times to prohibitive and permissive traffic signs.
b. Use the Excel printout to determine wether there is a significant difference in mean reaction times to prohibitive and permissive traffic signs. Use the p-value approach.
dye1 <- c(10,12,9,8,15,12,9,10,15)
dye2 <- c(8,11,10,6,12,13,9,8,13)
t.test(dye1,dye2,paired = FALSE, alternative = "two.sided")
##
## Welch Two Sample t-test
##
## data: dye1 and dye2
## t = 0.93865, df = 15.963, p-value = 0.3619
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.398779 3.621002
## sample estimates:
## mean of x mean of y
## 11.11111 10.00000
Dados los resultados de éste análisis NO se rechaza \(H_0\).
a. Calculate the sample variance, \(s^2\).
\[s^2 = \frac{\sum(x_i-\overline{x})^2}{n-1}\]
sample <- c(1.4,3.6,1.7,2.0,3.3,2.8,2.9)
var(sample)
## [1] 0.6990476
b. Construct a 95% confidence interval for the population variance, \(\sigma^2\)
\[\frac{(n-1)s^2}{\chi^2_{\alpha/2}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}\] Donde: \[\chi^2=\frac{(n-1)s^2}{\sigma^2}\] Los valores en la distribución \(\chi^2\) para un \(\alpha=0.5\) son:
qchisq(c(.025,.975),df=6, lower.tail=TRUE)
## [1] 1.237344 14.449375
Por lo tanto el intervalo de confianza resultante es:
c(
((7-1)*sd(sample)^2)/qchisq(c(.025),df=6, lower.tail=FALSE),
((7-1)*sd(sample)^2)/qchisq(c(.975),df=6, lower.tail=FALSE))
## [1] 0.2902745 3.3897484
c. Test \(H_0: \sigma^2=0.8\) versus \(H_1: \sigma^2 \neq 0.8\) using \(\alpha=0.5\). State your conclusions. Puntos críticos:
\[\chi^2=\frac{6*0.699}{0.8}\]
6*var(sample)/.8
## [1] 5.242857
Dado el resultado del parámetro de interes se toma la decisión de NO rechazar \(H_0\).
d. What is the approximate p-value for the test in part c?
pchisq(5.2425, df = 6, lower.tail = FALSE)
## [1] 0.5131081
a. Does the data indicate that there is a difference in the variability in the number of passes completed for the two quarterbacks? Use \(alpha=0.01\)
br <- c(19,19,34,12,27,18,21,15,27,22,26,21,7,25,19)
ar <- c(16,19,17,17,30,18,20,22,21,23,22,15)
meanBr <- mean(br)
meanAr <- mean(ar)
varBr <- var(br)
varAr <- var(ar)
var.test(br,ar,alternative = "greater")
##
## F test to compare two variances
##
## data: br and ar
## F = 2.6611, num df = 14, denom df = 11, p-value = 0.05483
## alternative hypothesis: true ratio of variances is greater than 1
## 95 percent confidence interval:
## 0.9716719 Inf
## sample estimates:
## ratio of variances
## 2.661068
El cosiente de las varianzas es 2.6610675. Por lo que podemos avanzar asumiendo varianzas similares.
b. If you were going to test for a difference in the two population means, would it be appropriate to use the two-sample t-test that assumes equal variances? Explain
Dado el resultado en la prueba F, podemos concluir que no hay evidencia significativa de que haya una diferencia entre las varianzas de los dos conjuntos de datos.