TASK 1

library("quantmod")
###retrieve historical price data for General Electric Co. from Yahoo Finance
getSymbols('GE',src='yahoo', from="2000-01-01", to="2009-12-30")
[1] "GE"
##to see headers of file (OHLCV type)
names(GE)
[1] "GE.Open"     "GE.High"     "GE.Low"      "GE.Close"   
[5] "GE.Volume"   "GE.Adjusted"
##insert Adjusted Close
geAdj = GE$GE.Adjusted["2000-01-01/2000-01-20"]
###compute the max, min and mean values
max(geAdj); min(geAdj); mean(geAdj)
[1] 28.06313
[1] 26.23787
[1] 27.1946
###draw a chart
chartSeries(GE)

###to save data on your disk use
saveRDS(GE,file="GE.rds")

TASK 2

library("quantmod")
symbols=c('^VLIC','AMZN','TWTR','MCD','NFLX')
getSymbols(symbols,src='yahoo',from="2017-11-12",to="2018-11-12")
[1] "VLIC" "AMZN" "TWTR" "MCD"  "NFLX"
#obtain adjusted closed
VLICad = VLIC$VLIC.Adjusted; AMZNad= AMZN$AMZN.Adjusted;
TWTRad=TWTR$TWTR.Adjusted; MCDad = MCD$MCD.Adjusted;
NFLXad = NFLX$NFLX.Adjusted
##compute cumulative sum (cumsum) of daily returns (Delt)
##Remove first term of the series, with [-1,],since cumsum is not defined for it.
VLIC = cumsum((Delt(VLICad)*100)[-1,])
AMZN = cumsum((Delt(AMZNad)*100)[-1,])
TWTR = cumsum((Delt(TWTRad)*100)[-1,])
MCD = cumsum((Delt(MCDad)*100)[-1,])
NFLX = cumsum((Delt(NFLXad)*100)[-1,])
##range of values of the plot
lim = c(min(VLIC,AMZN,TWTR,MCD,NFLX),max(VLIC,AMZN,TWTR,MCD,NFLX))
##the plot
plot(VLIC,main="",ylim=lim,xlab="dates",ylab="% benefits")

lines(AMZN,col="green"); lines(TWTR,col="red")

lines(MCD,col="violet"); lines(NFLX,col="yellow")

legend(x="topleft",cex=0.4,c("VLIC","AMZN","TWTR","MCD","NFLX"),
  lty = 1, col=c("black","green","red","violet","yellow"))

TASK 2C

The cumulative price (thats is percentage change) for VLIC has little variance as % change from previous month when I calculated for over a year. AMZN, TWTR and NFLX are going up however; MCD is really dropping even below VLIC as I calculated using the formula P1-P0/P0, which is basically the change over the previous month. There is lot of variation for AMZN but there is very less variation for VLIC and MCD seems to be struggling a lot.

TASK 3

Problem 1.3.8

Problem 1.3.8

Problem 1.3.9

Problem 1.3.9

LS0tCnRpdGxlOiAiRklOQzYyMSBXaW50ZXIgMjAxOCBsYWIwMSIKYXV0aG9yOiAiVGl0aWxvcGUgT2x1dGF5byIKZGF0ZTogIjExLTE0LTIwMTgiCm91dHB1dDogaHRtbF9ub3RlYm9vawoKLS0tCgojIyNUQVNLIDEKCmBgYHtyfQpsaWJyYXJ5KCJxdWFudG1vZCIpCiMjI3JldHJpZXZlIGhpc3RvcmljYWwgcHJpY2UgZGF0YSBmb3IgR2VuZXJhbCBFbGVjdHJpYyBDby4gZnJvbSBZYWhvbyBGaW5hbmNlCmdldFN5bWJvbHMoJ0dFJyxzcmM9J3lhaG9vJywgZnJvbT0iMjAwMC0wMS0wMSIsIHRvPSIyMDA5LTEyLTMwIikKIyN0byBzZWUgaGVhZGVycyBvZiBmaWxlIChPSExDViB0eXBlKQpuYW1lcyhHRSkKIyNpbnNlcnQgQWRqdXN0ZWQgQ2xvc2UKZ2VBZGogPSBHRSRHRS5BZGp1c3RlZFsiMjAwMC0wMS0wMS8yMDAwLTAxLTIwIl0KIyMjY29tcHV0ZSB0aGUgbWF4LCBtaW4gYW5kIG1lYW4gdmFsdWVzCm1heChnZUFkaik7IG1pbihnZUFkaik7IG1lYW4oZ2VBZGopCiMjI2RyYXcgYSBjaGFydApjaGFydFNlcmllcyhHRSkKIyMjdG8gc2F2ZSBkYXRhIG9uIHlvdXIgZGlzayB1c2UKc2F2ZVJEUyhHRSxmaWxlPSJHRS5yZHMiKQpgYGAKCgojIyMjVEFTSyAyCgpgYGB7cn0KbGlicmFyeSgicXVhbnRtb2QiKQpzeW1ib2xzPWMoJ15WTElDJywnQU1aTicsJ1RXVFInLCdNQ0QnLCdORkxYJykKZ2V0U3ltYm9scyhzeW1ib2xzLHNyYz0neWFob28nLGZyb209IjIwMTctMTEtMTIiLHRvPSIyMDE4LTExLTEyIikKI29idGFpbiBhZGp1c3RlZCBjbG9zZWQKVkxJQ2FkID0gVkxJQyRWTElDLkFkanVzdGVkOyBBTVpOYWQ9IEFNWk4kQU1aTi5BZGp1c3RlZDsKVFdUUmFkPVRXVFIkVFdUUi5BZGp1c3RlZDsgTUNEYWQgPSBNQ0QkTUNELkFkanVzdGVkOwpORkxYYWQgPSBORkxYJE5GTFguQWRqdXN0ZWQKIyNjb21wdXRlIGN1bXVsYXRpdmUgc3VtIChjdW1zdW0pIG9mIGRhaWx5IHJldHVybnMgKERlbHQpCiMjUmVtb3ZlIGZpcnN0IHRlcm0gb2YgdGhlIHNlcmllcywgd2l0aCBbLTEsXSxzaW5jZSBjdW1zdW0gaXMgbm90IGRlZmluZWQgZm9yIGl0LgpWTElDID0gY3Vtc3VtKChEZWx0KFZMSUNhZCkqMTAwKVstMSxdKQpBTVpOID0gY3Vtc3VtKChEZWx0KEFNWk5hZCkqMTAwKVstMSxdKQpUV1RSID0gY3Vtc3VtKChEZWx0KFRXVFJhZCkqMTAwKVstMSxdKQpNQ0QgPSBjdW1zdW0oKERlbHQoTUNEYWQpKjEwMClbLTEsXSkKTkZMWCA9IGN1bXN1bSgoRGVsdChORkxYYWQpKjEwMClbLTEsXSkKCiMjcmFuZ2Ugb2YgdmFsdWVzIG9mIHRoZSBwbG90CmxpbSA9IGMobWluKFZMSUMsQU1aTixUV1RSLE1DRCxORkxYKSxtYXgoVkxJQyxBTVpOLFRXVFIsTUNELE5GTFgpKQojI3RoZSBwbG90CnBsb3QoVkxJQyxtYWluPSIiLHlsaW09bGltLHhsYWI9ImRhdGVzIix5bGFiPSIlIGJlbmVmaXRzIikKbGluZXMoQU1aTixjb2w9ImdyZWVuIik7IGxpbmVzKFRXVFIsY29sPSJyZWQiKQpsaW5lcyhNQ0QsY29sPSJ2aW9sZXQiKTsgbGluZXMoTkZMWCxjb2w9InllbGxvdyIpCmxlZ2VuZCh4PSJ0b3BsZWZ0IixjZXg9MC40LGMoIlZMSUMiLCJBTVpOIiwiVFdUUiIsIk1DRCIsIk5GTFgiKSwKICBsdHkgPSAxLCBjb2w9YygiYmxhY2siLCJncmVlbiIsInJlZCIsInZpb2xldCIsInllbGxvdyIpKQoKYGBgCgpUQVNLIDJDCgpUaGUgY3VtdWxhdGl2ZSBwcmljZSAodGhhdHMgaXMgcGVyY2VudGFnZSBjaGFuZ2UpIGZvciBWTElDIGhhcyBsaXR0bGUgdmFyaWFuY2UgYXMgJSBjaGFuZ2UgZnJvbSBwcmV2aW91cyBtb250aCB3aGVuIEkgY2FsY3VsYXRlZCBmb3Igb3ZlciBhIHllYXIuIEFNWk4sIFRXVFIgYW5kIE5GTFggYXJlIGdvaW5nIHVwIGhvd2V2ZXI7IE1DRCBpcyByZWFsbHkgZHJvcHBpbmcgZXZlbiBiZWxvdyBWTElDIGFzIEkgY2FsY3VsYXRlZCB1c2luZyB0aGUgZm9ybXVsYSBQMS1QMC9QMCwgd2hpY2ggaXMgYmFzaWNhbGx5IHRoZSBjaGFuZ2Ugb3ZlciB0aGUgcHJldmlvdXMgbW9udGguIFRoZXJlIGlzIGxvdCBvZiB2YXJpYXRpb24gZm9yIEFNWk4gYnV0IHRoZXJlIGlzIHZlcnkgbGVzcyB2YXJpYXRpb24gZm9yIFZMSUMgYW5kIE1DRCBzZWVtcyB0byBiZSBzdHJ1Z2dsaW5nIGEgbG90LiAKClRBU0sgMwoKIVtQcm9ibGVtIDEuMy44XSgvdXNlcnMvdGl0aWxvcGVvbHV0YXlvL2Rlc2t0b3AvUmZpbGVzL1NjcmVlbnNob3QucG5nKQoKIVtQcm9ibGVtIDEuMy45XSgvdXNlcnMvdGl0aWxvcGVvbHV0YXlvL2Rlc2t0b3AvUmZpbGVzL3Byb2JsZW0zYi5wbmcpCgoKCuKBqQoKCgo=