sjt.xtab(enem_2015$TP_SEXO,
enem_2015$grp, show.col.prc = TRUE)
## Argument `include.values` is deprecated. Please use `values` instead.
## Argument `include.non.labelled` is deprecated. Please use `non.labelled` instead.
## Argument `include.values` is deprecated. Please use `values` instead.
## Argument `include.non.labelled` is deprecated. Please use `non.labelled` instead.
## Argument `include.values` is deprecated. Please use `values` instead.
## Argument `include.non.labelled` is deprecated. Please use `non.labelled` instead.
Sexo | grp | Total | |
---|---|---|---|
0 | 1 | ||
Feminino |
318585 58.6Â % |
3485 61.7Â % |
322070 58.6Â % |
Masculino |
225017 41.4Â % |
2166 38.3Â % |
227183 41.4Â % |
Total |
543602 100Â % |
5651 100Â % |
549253 100Â % |
χ2=21.525 · df=1 · φ=0.006 · p=0.000 |
sjt.xtab(enem_2015$TP_DEPENDENCIA_ADM_ESC,
enem_2015$grp, show.col.prc = TRUE)
## Argument `include.values` is deprecated. Please use `values` instead.
## Argument `include.non.labelled` is deprecated. Please use `non.labelled` instead.
## Argument `include.values` is deprecated. Please use `values` instead.
## Argument `include.non.labelled` is deprecated. Please use `non.labelled` instead.
## Argument `include.values` is deprecated. Please use `values` instead.
## Argument `include.non.labelled` is deprecated. Please use `non.labelled` instead.
Dependência administrativa (Escola) |
grp | Total | |
---|---|---|---|
0 | 1 | ||
Federal |
3188 2.3Â % |
11 0.9Â % |
3199 2.3Â % |
Estadual |
107049 77Â % |
1081 88.6Â % |
108130 77.1Â % |
Municipal |
1312 0.9Â % |
14 1.1Â % |
1326 0.9Â % |
Privada |
27493 19.8Â % |
114 9.3Â % |
27607 19.7Â % |
Total |
139042 100Â % |
1220 100Â % |
140262 100Â % |
χ2=98.792 · df=3 · Cramer’s V=0.027 · p=0.000 |
MEDIA_NU_NOTA_MT <- tapply(enem_2015$NU_NOTA_MT, enem_2015$TP_SEXO, mean)
enem_2015$MEDIA_NU_NOTA_MT <- ifelse(enem_2015$TP_SEXO==0, MEDIA_NU_NOTA_MT[1], MEDIA_NU_NOTA_MT[2])
enem_2015 %>%
ggplot(aes(x= NU_NOTA_MT, y = ..count../sum(..count..)*100)) +
ggtitle("Dos alunos que acertaram os itens dificeis, existe diferença entre os sexos?") +
geom_histogram(fill = "blue", alpha = 0.5) +
xlab("Nota") +
ylab("Proporção (%)") +
scale_x_continuous(limits=c(250,1000))+
scale_y_continuous(limits=c(0,8), breaks = 1:8)+
#geom_vline(aes(xintercept = MEDIA_NU_NOTA_MT[2], xintercept = MEDIA_NU_NOTA_MT[1]), linetype = 3)+
facet_grid(. ~ TP_SEXO, labeller = labeller(TP_SEXO = labels))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 544 rows containing non-finite values (stat_bin).
## Warning: Removed 2 rows containing missing values (geom_bar).
enem_2015 %>%
ggplot(aes(x= NU_NOTA_MT, y = NU_IDADE, color = NU_NOTA_MT)) +
geom_point()+
scale_color_gradientn(colours =brewer.pal(7, "Paired"))+
labs(title = "Qual a relação entre nota e idade?", color = "Nota")+
xlab("Nota") +
ylab("Idade")
## Warning: Removed 4 rows containing missing values (geom_point).
enem_2015 %>%
ggplot(aes(x=NU_NOTA_MT, y=mt_scores))+
ggtitle("Quem acertou os itens mais difÃceis tirou maior nota?")+
geom_point(aes(y=NU_NOTA_MT, x=c1_meas3, color=acrt_dif2), alpha = 1/44)+
scale_x_continuous(
breaks = seq(-4,4,1),
limits = c(-4,4))+
scale_y_continuous(
breaks = seq(250, 1000, 50),
limits = c(250, 1000))+
scale_colour_gradient(
low = "red",
high = "blue")+
geom_smooth(method = "lm", se = FALSE)+
geom_hline(yintercept = describe(enem_2015$NU_NOTA_MT)$mean)+
geom_vline(xintercept = describe(enem_2015$c1_meas3)$mean)
## Warning: Removed 549253 rows containing non-finite values (stat_smooth).
## Warning: Removed 564 rows containing missing values (geom_point).