After some data munging, I have made some graphs with ggplot to explore the data.
I’ve put a compilation of the 2018 data on Github to facilitate a little visualisation
data <- readr::read_csv("https://raw.githubusercontent.com/brennanpincardiff/tg_data_working/master/TDOR_for_R_20181113.csv")
## Parsed with column specification:
## cols(
## Name = col_character(),
## Age = col_integer(),
## Photo = col_character(),
## `Photo source` = col_character(),
## Date = col_date(format = ""),
## `TGEU ref` = col_character(),
## Location = col_character(),
## Country = col_character(),
## Latitude = col_double(),
## Longitude = col_double(),
## `Cause of death` = col_character(),
## Description = col_character(),
## Permalink = col_character(),
## Age_high = col_integer()
## )
Deaths across the year
library(ggplot2)
ggplot(data, aes(Date)) + geom_bar() +
ggtitle("Deaths across the year")
Deaths by age
ggplot(data, aes(Age)) + geom_bar() +
ggtitle("Deaths by age")
## Warning: Removed 101 rows containing non-finite values (stat_count).
Deaths by country
ggplot2::ggplot(data, aes(Country)) + geom_bar() +
ggtitle("Deaths by country") +
theme(axis.text.x = element_text(angle=45, hjust=1))