metaheuristics <- c("GDE3", "NSGA-II", "NSGA-III", "myCellDE", "myMOCell", "mySPEA2")
heuristics <- c("SIAA", "ScaF", "SchF")
algorithms <- c("GDE3", "NSGA-II", "NSGA-III", "SIAA", "ScaF", "SchF", "myCellDE", "myMOCell", "mySPEA2")
instances <- c("CyberShake_100.xml", "Inspiral_100.xml", "Montage_100.xml", "Sipht_100.xml")
seeds <- seq(1, 30)
cs <- read.csv("2.analysis/metrics_CyberShake_100.xml.csv") %>%
filter(algorithm %in% metaheuristics) %>%
mutate(algorithm=str_replace(algorithm, "my", "")) %>%
mutate(indifferentAlgorithms=str_replace_all(indifferentAlgorithms, "my", ""))
## Warning: package 'bindrcpp' was built under R version 3.4.4
li <- read.csv("2.analysis/metrics_Inspiral_100.xml.csv") %>%
filter(algorithm %in% metaheuristics) %>%
mutate(algorithm=str_replace(algorithm, "my", "")) %>%
mutate(indifferentAlgorithms=str_replace_all(indifferentAlgorithms, "my", ""))
mo <- read.csv("2.analysis/metrics_Montage_100.xml.csv") %>%
filter(algorithm %in% metaheuristics) %>%
mutate(algorithm=str_replace(algorithm, "my", "")) %>%
mutate(indifferentAlgorithms=str_replace_all(indifferentAlgorithms, "my", ""))
si <- read.csv("2.analysis/metrics_Sipht_100.xml.csv") %>%
filter(algorithm %in% metaheuristics) %>%
mutate(algorithm=str_replace(algorithm, "my", "")) %>%
mutate(indifferentAlgorithms=str_replace_all(indifferentAlgorithms, "my", ""))
csBest <- cs %>%
filter(indicator=="Hypervolume" | indicator=="ThreadTime" | indicator=="WallTime") %>%
select(algorithm, median, indicator) %>%
spread(indicator, "median") %>%
arrange(desc(Hypervolume)) %>%
head(1) %>%
bind_cols(instance="CyberShake_100.xml", .)
liBest <- li %>%
filter(indicator=="Hypervolume" | indicator=="ThreadTime" | indicator=="WallTime") %>%
select(algorithm, median, indicator) %>%
spread(indicator, "median") %>%
arrange(desc(Hypervolume)) %>%
head(1) %>%
bind_cols(instance="Inspiral_100.xml", .)
moBest <- mo %>%
filter(indicator=="Hypervolume" | indicator=="ThreadTime" | indicator=="WallTime") %>%
select(algorithm, median, indicator) %>%
spread(indicator, "median") %>%
arrange(desc(Hypervolume)) %>%
head(1) %>%
bind_cols(instance="Montage_100.xml", .)
siBest <- si %>%
filter(indicator=="Hypervolume" | indicator=="ThreadTime" | indicator=="WallTime") %>%
select(algorithm, median, indicator) %>%
spread(indicator, "median") %>%
arrange(desc(Hypervolume)) %>%
head(1) %>%
bind_cols(instance="Sipht_100.xml", .)
results <- bind_rows(csBest, liBest, moBest, siBest)
results
## # A tibble: 4 x 5
## instance algorithm Hypervolume ThreadTime WallTime
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 CyberShake_100.xml CellDE 0.842 1.09e12 1173169.
## 2 Inspiral_100.xml CellDE 0.904 8.34e11 905060.
## 3 Montage_100.xml GDE3 0.984 8.30e11 926637.
## 4 Sipht_100.xml CellDE 0.891 9.42e11 1017405.
Results are grouped by instance and sorted by hypervolume (best first).
indicators <- metrics %>%
filter(indicator %in% c("Hypervolume", "AdditiveEpsilonIndicator", "InvertedGenerationalDistance")) %>%
mutate(algorithm=str_replace(algorithm, "my", "")) %>%
mutate(indifferentAlgorithms=str_replace_all(indifferentAlgorithms, "my", "")) %>%
select(-min, -max, -indifferentAlgorithms) %>%
mutate(instance=str_replace(instance, "_100.xml", "")) %>%
group_by(instance, indicator) %>%
spread(indicator, median) %>%
arrange(instance, algorithm)
# write latex table
indtable <- indicators %>%
select(Instance=instance, Algorithm=algorithm, HV=Hypervolume, AEI=AdditiveEpsilonIndicator, IGD=InvertedGenerationalDistance) %>%
mutate(HV=round(HV, digits = 3)) %>%
mutate(AEI=round(AEI, digits = 3)) %>%
mutate(IGD=round(IGD, digits = 3))
write.table(indtable, file = "scripts/R/tables/indicator-rows.tex", sep = " & ", row.names = FALSE, quote = FALSE, eol = " \\tabularnewline\n")
amount <- 9
indicators %>%
filter(row_number() <= amount) %>%
arrange(instance, desc(Hypervolume))
## # A tibble: 36 x 5
## # Groups: instance [4]
## instance algorithm AdditiveEpsilonIn~ Hypervolume InvertedGeneration~
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 CyberShake CellDE 0.145 0.842 0.276
## 2 CyberShake ScaF 0.130 0.826 0.401
## 3 CyberShake SIAA 0.127 0.825 0.400
## 4 CyberShake GDE3 0.173 0.814 0.180
## 5 CyberShake SchF 0.149 0.810 0.402
## 6 CyberShake NSGA-III 0.208 0.707 0.371
## 7 CyberShake MOCell 0.202 0.694 0.370
## 8 CyberShake NSGA-II 0.259 0.578 0.436
## 9 CyberShake SPEA2 0.299 0.559 0.466
## 10 Inspiral SIAA 0.0534 0.929 0.185
## # ... with 26 more rows
amount <- 9
# hypervolume
hv <- metrics %>%
filter(indicator == "Hypervolume") %>%
mutate(algorithm=str_replace(algorithm, "my", "")) %>%
mutate(indifferentAlgorithms=str_replace_all(indifferentAlgorithms, "my", "")) %>%
mutate(indifferentAlgorithms=str_replace_all(indifferentAlgorithms, "\\[", "\\{")) %>%
mutate(indifferentAlgorithms=str_replace_all(indifferentAlgorithms, "\\]", "\\}")) %>%
mutate(indifferentAlgorithms=str_replace_all(indifferentAlgorithms, ";", ",")) %>%
mutate(instance=str_replace(instance, "_100.xml", "")) %>%
group_by(instance) %>%
arrange(instance, desc(median))
# write latex table
hvtable <- hv %>%
ungroup() %>%
mutate(Median=round(median, digits = 3)) %>%
mutate(Min=round(min, digits = 3)) %>%
mutate(Max=round(max, digits = 3)) %>%
select(Instance=instance, Algorithm=algorithm, Median, Min, Max, IndifferentAlgorithms=indifferentAlgorithms) %>%
group_by(Instance)
write.table(hvtable, file = "scripts/R/tables/hypervolume-rows.tex", sep = " & ", row.names = FALSE, quote = FALSE, eol = " \\tabularnewline\n")
amount <- 9
hv %>%
filter(row_number() <= amount)
## # A tibble: 36 x 7
## # Groups: instance [4]
## instance algorithm indicator median min max indifferentAlgorit~
## <chr> <chr> <fct> <dbl> <dbl> <dbl> <chr>
## 1 CyberShake CellDE Hypervolume 0.842 0.743 0.915 {SIAA, ScaF, SchF,~
## 2 CyberShake ScaF Hypervolume 0.826 0.767 0.904 {SIAA, CellDE, Sch~
## 3 CyberShake SIAA Hypervolume 0.825 0.774 0.895 {ScaF, CellDE, Sch~
## 4 CyberShake GDE3 Hypervolume 0.814 0.739 0.955 {SIAA, ScaF, CellD~
## 5 CyberShake SchF Hypervolume 0.810 0.753 0.916 {SIAA, ScaF, CellD~
## 6 CyberShake NSGA-III Hypervolume 0.707 0.506 0.864 {MOCell}
## 7 CyberShake MOCell Hypervolume 0.694 0.512 0.825 {NSGA-III}
## 8 CyberShake NSGA-II Hypervolume 0.578 0.290 0.743 {SPEA2}
## 9 CyberShake SPEA2 Hypervolume 0.559 0.342 0.665 {NSGA-II}
## 10 Inspiral SIAA Hypervolume 0.929 0.908 0.953 {}
## # ... with 26 more rows
Best performing algorithm: GDE3
Note: CellDE has no significant differences with GDE3 in the Inspiral_100 instance
ggplot(data = hv %>% arrange(desc(median)), aes(x=algorithm, y=median, color=algorithm, fill=algorithm, aplha=0.2)) +
geom_bar(stat="identity") +
facet_wrap(~instance, nrow = 2) +
theme(legend.position = "bottom", axis.text.x = element_text(angle = 90, hjust = 1)) +
guides(alpha = FALSE, color = FALSE)
ggsave("scripts/R/images/hypervolume.eps", last_plot(), device = "eps")
## Saving 7 x 5 in image
quality <- metrics %>%
filter(indicator %in% c("Hypervolume", "AdditiveEpsilonIndicator", "InvertedGenerationalDistance")) %>%
mutate(algorithm=str_replace(algorithm, "my", "")) %>%
mutate(indifferentAlgorithms=str_replace_all(indifferentAlgorithms, "my", "")) %>%
mutate(instance=str_replace(instance, "_100.xml", "")) %>%
group_by(instance) %>%
arrange(instance, desc(median))
ggplot(data = quality, aes(x=algorithm, y=median, color=algorithm, fill=algorithm, aplha=0.2)) +
geom_bar(stat="identity") +
facet_grid(indicator~instance, scales = "free_y") +
theme(legend.position = "bottom", axis.text.x = element_text(angle = 90, hjust = 1)) +
guides(alpha = FALSE, color = FALSE)
ggsave("scripts/R/images/indicators.eps", last_plot(), device = "eps")
## Saving 7 x 5 in image
hv %>% filter(indifferentAlgorithms == "[]") %>%
group_by(instance) %>%
arrange(instance, desc(median))
## # A tibble: 0 x 7
## # Groups: instance [0]
## # ... with 7 variables: instance <chr>, algorithm <chr>, indicator <fct>,
## # median <dbl>, min <dbl>, max <dbl>, indifferentAlgorithms <chr>
ggplot(data = referenceFronts, aes(x = makespan, y = cost, width = makespan_sd, height = cost_sd, alpha = 0, color = I("blue"))) + geom_tile() +
#geom_line() +
theme(legend.position = "bottom") +
guides(alpha = FALSE, color = FALSE) +
facet_wrap(~instance, ncol = 2, scales = "free")
The 60 solutions that minimize makespan/max(makespan) + cost/max(cost) are selected.
plotReferenceFronts("CyberShake_100.xml")
plotReferenceFronts("Inspiral_100.xml")
plotReferenceFronts("Montage_100.xml")
plotReferenceFronts("Sipht_100.xml")
ggparcoord(data = referenceFronts, columns = 2:5, groupColumn = "instance", scale = "uniminmax")
# facet_wrap(~instance, ncol = 2)
ref <- referenceFronts %>% filter(instance == "CyberShake_100.xml")
ggparcoord(data = ref, columns = 2:5, scale = "uniminmax") + ggtitle(ref$instance)
ref <- referenceFronts %>% filter(instance == "Inspiral_100.xml")
ggparcoord(data = ref, columns = 2:5, scale = "uniminmax") + ggtitle(ref$instance)
ref <- referenceFronts %>% filter(instance == "Montage_100.xml")
ggparcoord(data = ref, columns = 2:5, scale = "uniminmax") + ggtitle(ref$instance)
ref <- referenceFronts %>% filter(instance == "Sipht_100.xml")
ggparcoord(data = ref, columns = 2:5, scale = "uniminmax") + ggtitle(ref$instance)
For this section only the following algorithms are considered:
plotAlgorithmFronts <- function(selectedInstance) {
referenceFronts <- referenceFronts %>%
filter(instance == selectedInstance) %>%
# arrange(makespan/max(makespan) + cost/max(cost)) %>%
top_n(n = 30, wt = -(makespan/max(makespan)))
algorithmFronts <- algorithmFronts %>%
# filter(algorithm=="GDE3" | algorithm=="myCellDE" | algorithm=="SIAA" | algorithm=="SchF" | algorithm=="ScaF") %>%
filter(instance == selectedInstance) %>%
group_by(algorithm) %>%
top_n(n = 10, wt = -(makespan/max(makespan)))
#arrange(makespan/max(makespan) + cost/max(cost)) %>%
#head(60)
ggplot(data = referenceFronts, aes(x = makespan, y = cost, width = makespan_sd, height = cost_sd, alpha = 0.2)) +
geom_tile(aes(color = "Reference set"), fill = NA) +
geom_point(aes(color = "Reference set", shape = "Reference set")) +
geom_tile(data=algorithmFronts, aes(color = algorithm), fill = NA) + # reference
geom_point(data=algorithmFronts, aes(color = algorithm, shape = "Algorithm")) +
facet_wrap(~algorithm, ncol = 2) +#, scales = "free"
ggtitle(selectedInstance) +
theme(legend.position = "bottom") +
guides(alpha = FALSE) #, color = FALSE
#facet_wrap(~instance, ncol = 4, scales = "free")
}
Reference sets are plotted in blue.
plotAlgorithmFronts("CyberShake_100.xml")
plotAlgorithmFronts("Inspiral_100.xml")
plotAlgorithmFronts("Montage_100.xml")
plotAlgorithmFronts("Sipht_100.xml")
selectedAlgorithms <- c("GDE3", "myCellDE", "SIAA", "ScaF", "SchF")
#selectedAlgorithms <- c("myCellDE", "SIAA", "ScaF", "SchF")
alg <- algorithmFronts %>%
filter(algorithm %in% selectedAlgorithms) %>%
mutate(algorithm=str_replace(algorithm, "my", "")) %>%
filter(instance == "CyberShake_100.xml") %>%
mutate(instance=str_replace(instance, "_100.xml", ""))
p1 <- ggparcoord(data = alg, columns = 3:6, groupColumn=1, scale = "uniminmax") +
ggtitle(alg$instance) +
theme(legend.position="bottom")
alg <- algorithmFronts %>%
filter(algorithm %in% selectedAlgorithms) %>%
mutate(algorithm=str_replace(algorithm, "my", "")) %>%
filter(instance == "Inspiral_100.xml") %>%
mutate(instance=str_replace(instance, "_100.xml", ""))
p2 <- ggparcoord(data = alg, columns = 3:6, groupColumn=1, scale = "uniminmax") +
ggtitle(alg$instance) +
theme(legend.position="bottom")
alg <- algorithmFronts %>%
filter(algorithm %in% selectedAlgorithms) %>%
mutate(algorithm=str_replace(algorithm, "my", "")) %>%
filter(instance == "Montage_100.xml") %>%
mutate(instance=str_replace(instance, "_100.xml", ""))
p3 <- ggparcoord(data = alg, columns = 3:6, groupColumn=1, scale = "uniminmax") +
ggtitle(alg$instance) +
theme(legend.position="bottom")
print(min(alg$cost_sd))
## [1] 0
print(max(alg$cost_sd))
## [1] 0.2226688
alg <- algorithmFronts %>%
filter(algorithm %in% selectedAlgorithms) %>%
mutate(algorithm=str_replace(algorithm, "my", "")) %>%
filter(instance == "Sipht_100.xml") %>%
mutate(instance=str_replace(instance, "_100.xml", ""))
p4 <- ggparcoord(data = alg, columns = 3:6, groupColumn=1, scale = "uniminmax") +
ggtitle(alg$instance) +
theme(legend.position = "bottom")
p1
p2
p3
p4
g <- arrangeGrob(p1, p2, p3, p4, ncol = 2)
ggsave("scripts/R/images/parallel-coordinates.eps", g, device = "eps", width = 10, height = 8, dpi = 150, units = "in")
# single fronts
# combinations <- expand.grid(algorithm=selectedAlgorithms, instance=instances, seed=seeds) %>% filter(!(algorithm == "SIAA" & instance == "Sipht_100.xml" & (seed == 4 | seed == 28)))
combinations <- expand.grid(algorithm=selectedAlgorithms, instance=instances, seed=seeds) %>% filter(!(algorithm == "GDE3" & instance == "Sipht_100.xml" & (seed == 10 | seed == 19 | seed == 30)))
singleFronts <- bind_rows(apply(combinations, 1, loadSingleFront))
singleFrontsVMsGathered <- singleFronts %>%
gather("instanceType", "amount", 4:11)
singleFrontsBidsGathered <- singleFronts %>%
mutate(c3.2xlarge_b = ifelse(c3.2xlarge_s > 0, c3.2xlarge_b, -1)) %>% # set level to -1 if no spot vms
mutate(m3.2xlarge_b = ifelse(m3.2xlarge_s > 0, m3.2xlarge_b, -1)) %>%
mutate(m3.medium_b = ifelse(m3.medium_s > 0, m3.medium_b, -1)) %>%
mutate(r3.xlarge_b = ifelse(r3.xlarge_s > 0, r3.xlarge_b, -1)) %>%
gather("instanceType", "level", 12:15)
# fill = str_split(instanceType, "_")[[1]][2] == "od")
ggplot(singleFrontsVMsGathered %>% filter(amount > 0) %>% filter(), aes(x = amount, fill = instanceType)) +
geom_histogram(bins = 10) +
facet_wrap(~algorithm, scales = "free") +
theme(legend.position="bottom")
ggsave("scripts/R/images/vms-algorithm.eps", last_plot(), device = "eps")
## Saving 7 x 5 in image
ggplot(singleFrontsVMsGathered %>% filter(amount > 0) %>% arrange(algorithm), aes(x = amount, color = instanceType)) +
geom_freqpoly(bins = 10) +
facet_wrap(~algorithm, scales = "free") +
theme(legend.position="bottom")
ggsave("scripts/R/images/vms-algorithm-poly.eps", last_plot(), device = "eps")
## Saving 7 x 5 in image
ggplot(singleFrontsVMsGathered %>% filter(amount > 0), aes(x = amount, fill = algorithm)) +
geom_histogram(bins = 20) +
facet_wrap(~instance, scales = "free") +
theme(legend.position="bottom")
ggsave("scripts/R/images/vms-instance.eps", last_plot(), device = "eps")
## Saving 7 x 5 in image
ggplot(singleFrontsVMsGathered %>% filter(amount > 0), aes(x = amount, color = algorithm)) +
geom_freqpoly(bins = 30) +
facet_wrap(~instance, scales = "free") +
theme(legend.position="bottom")
ggsave("scripts/R/images/vms-instance-poly.eps", last_plot(), device = "eps")
## Saving 7 x 5 in image
# fill = str_split(instanceType, "_")[[1]][2] == "od")
ggplot(singleFrontsBidsGathered %>% filter(level >= 0 & level <= 10), aes(x = level, fill = instanceType)) +
geom_histogram(bins = 11) +
facet_wrap(~algorithm, scales = "free_y") +
theme(legend.position="bottom")
ggsave("scripts/R/images/bids-algorithm.eps", last_plot(), device = "eps", width = 10, height = 6, dpi = 150, units = "in")
ggplot(singleFrontsBidsGathered %>% filter(level >= 0 & level <= 10) %>% arrange(algorithm), aes(x = level, color = instanceType)) +
geom_freqpoly(bins = 11) +
facet_wrap(~algorithm, scales = "free") +
theme(legend.position="bottom")
ggsave("scripts/R/images/bids-algorithm-poly.eps", last_plot(), device = "eps", width = 10, height = 6, dpi = 150, units = "in")
#min(singleFrontsBidsGathered$c3.2xlarge_b)
#max(singleFrontsBidsGathered$c3.2xlarge_b)
These plots consider the solutions of all of the studied algorithms.
bidCorrectedSingleFronts <- singleFronts %>%
mutate(c3.2xlarge_b = ifelse(c3.2xlarge_s > 0, c3.2xlarge_b, NA)) %>% # set level to NA if no spot vms
mutate(m3.2xlarge_b = ifelse(m3.2xlarge_s > 0, m3.2xlarge_b, NA)) %>%
mutate(m3.medium_b = ifelse(m3.medium_s > 0, m3.medium_b, NA)) %>%
mutate(r3.xlarge_b = ifelse(r3.xlarge_s > 0, r3.xlarge_b, NA))
method <- "spearman"
continuous <- TRUE
if (continuous) {
p1 <- plotCorrelationMatrix(bidCorrectedSingleFronts, "CyberShake_100.xml", method)
p2 <- plotCorrelationMatrix(bidCorrectedSingleFronts, "Inspiral_100.xml", method)
p3 <- plotCorrelationMatrix(bidCorrectedSingleFronts, "Montage_100.xml", method)
p4 <- plotCorrelationMatrix(bidCorrectedSingleFronts, "Sipht_100.xml", method)
} else {
p1 <- plotDiscretizedCorrelationMatrix(bidCorrectedSingleFronts, "CyberShake_100.xml", method)
p2 <- plotDiscretizedCorrelationMatrix(bidCorrectedSingleFronts, "Inspiral_100.xml", method)
p3 <- plotDiscretizedCorrelationMatrix(bidCorrectedSingleFronts, "Montage_100.xml", method)
p4 <- plotDiscretizedCorrelationMatrix(bidCorrectedSingleFronts, "Sipht_100.xml", method)
}
p1
p2
p3
p4
g <- arrangeGrob(p1, p2, p3, p4, ncol = 2)
ggsave("scripts/R/images/raw-correlations.eps", g, device = "eps", width = 10, height = 8.5, dpi = 150, units = "in")
modifiedVariableSingleFronts <- singleFronts %>%
mutate(c3.2xlarge_SR = c3.2xlarge_s / (c3.2xlarge_s + c3.2xlarge_od + 1)) %>%
mutate(m3.2xlarge_SR = m3.2xlarge_s / (m3.2xlarge_s + m3.2xlarge_od + 1)) %>%
mutate(m3.medium_SR = m3.medium_s / (m3.medium_s + m3.medium_od + 1)) %>%
mutate(r3.xlarge_SR = r3.xlarge_s / (r3.xlarge_s + r3.xlarge_od + 1)) %>%
# mutate(c3.2xlarge_BR = c3.2xlarge_s / (c3.2xlarge_b + 1)) %>%
# mutate(m3.2xlarge_BR = m3.2xlarge_s / (m3.2xlarge_b + 1)) %>%
# mutate(m3.medium_BR = m3.medium_s / (m3.medium_b + 1)) %>%
# mutate(r3.xlarge_BR = r3.xlarge_s / (r3.xlarge_b + 1)) %>%
select(-ends_with('_od'), -ends_with('_s'), ends_with('_b'), ends_with('_SR'), makespan, makespan_sd, cost, cost_sd)
method <- "spearman"
if (continuous) {
p1 <- plotCorrelationMatrix(modifiedVariableSingleFronts, "CyberShake_100.xml", method)
p2 <- plotCorrelationMatrix(modifiedVariableSingleFronts, "Inspiral_100.xml", method)
p3 <- plotCorrelationMatrix(modifiedVariableSingleFronts, "Montage_100.xml", method)
p4 <- plotCorrelationMatrix(modifiedVariableSingleFronts, "Sipht_100.xml", method)
} else {
p1 <- plotDiscretizedCorrelationMatrix(modifiedVariableSingleFronts, "CyberShake_100.xml", method)
p2 <- plotDiscretizedCorrelationMatrix(modifiedVariableSingleFronts, "Inspiral_100.xml", method)
p3 <- plotDiscretizedCorrelationMatrix(modifiedVariableSingleFronts, "Montage_100.xml", method)
p4 <- plotDiscretizedCorrelationMatrix(modifiedVariableSingleFronts, "Sipht_100.xml", method)
}
p1
p2
p3
p4
g <- arrangeGrob(p1, p2, p3, p4, ncol = 2)
ggsave("scripts/R/images/mod-correlations.eps", g, device = "eps", width = 10, height = 8.5, dpi = 150, units = "in")
plotPairPlots <- function(data, selectedInstance, method) {
p <- ggpairs(data %>% filter(instance == selectedInstance) %>% select(algorithm, makespan, makespan_sd, cost, cost_sd),
aes(color = algorithm, alpha = 0.2),
upper = list(continuous = wrap('cor', method = method)),
lower = list(continuous = 'cor')) +
ggtitle(str_split(selectedInstance, "_")[[1]])
return(p)
}
method <- "spearman"
plotPairPlots(modifiedVariableSingleFronts, "CyberShake_100.xml", method)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
plotPairPlots(modifiedVariableSingleFronts, "Inspiral_100.xml", method)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
plotPairPlots(modifiedVariableSingleFronts, "Montage_100.xml", method)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
plotPairPlots(modifiedVariableSingleFronts, "Sipht_100.xml", method)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# ggpairs(modifiedVariableSingleFronts %>% filter(instance == "CyberShake_100.xml") %>% select(-instance, -seed), aes(color = algorithm))
# ggpairs(modifiedVariableSingleFronts %>% filter(instance == "Inspiral_100.xml") %>% select(-instance, -seed), aes(color = algorithm))
# ggpairs(modifiedVariableSingleFronts %>% filter(instance == "Montage_100.xml") %>% select(-instance, -seed), aes(color = algorithm))
# ggpairs(modifiedVariableSingleFronts %>% filter(instance == "Sipht_100.xml") %>% select(-instance, -seed), aes(color = algorithm))