# Load packages
library(rtweet)
library(tidyverse)
# Twitter authentication
create_token(
app = "Farizah Twitter Text Mining",
consumer_key = consumer_key,
consumer_secret = consumer_secret,
access_token = access_token,
access_secret = access_secret)
## <Token>
## <oauth_endpoint>
## request: https://api.twitter.com/oauth/request_token
## authorize: https://api.twitter.com/oauth/authenticate
## access: https://api.twitter.com/oauth/access_token
## <oauth_app> Farizah Twitter Text Mining
## key: Qdg01ZfaYnNkmFeBYZ8ZYj45F
## secret: <hidden>
## <credentials> oauth_token, oauth_token_secret
## ---
# Retrieve tweets bukalapak
tweets <- search_tweets("bukalapak", n = 30000, tweet_mode="extended")
## Searching for tweets...
## This may take a few seconds...
## Finished collecting tweets!
tweets <- distinct(tweets, text, .keep_all=TRUE)
## plot time series of tweets
ts_plot(tweets, "3 hours") +
theme_minimal() +
theme(plot.title = ggplot2::element_text(face = "bold")) +
labs(
x = NULL, y = NULL,
title = "Frequency of Bukalapak Twitter statuses from past 9 days",
subtitle = "Twitter status (tweet) counts aggregated using three-hour intervals",
caption = "\nSource: Data collected from Twitter's REST API via rtweet"
)
Berdasarkan gambar “Frequency of Bukalapak Twitter Statuses from past 9 days” dapat diketahui bahwa dari rentang tanggal 2 November 2018 sampai 12 November 2018, frekuensi tweet terbanyak ada pada rentang tanggal 11 November 2018 hingga 12 November 2018 yaitu melebihi 125 tweet. Pada rentang tanggal 9 November 2018 hingga 10 November juga mencapai 125 tweet.
tail(tweets, 20)
library(tm)
## Loading required package: NLP
##
## Attaching package: 'NLP'
## The following object is masked from 'package:ggplot2':
##
## annotate
# build a corpus, and specify the source to be character vectors
myCorpus <- Corpus(VectorSource(tweets$text))
# convert to lower case
myCorpus <- tm_map(myCorpus, content_transformer(tolower))
## Warning in tm_map.SimpleCorpus(myCorpus, content_transformer(tolower)):
## transformation drops documents
# remove URLs
removeURL <- function(x) gsub("http[^[:space:]]*", "", x)
myCorpus <- tm_map(myCorpus, content_transformer(removeURL))
## Warning in tm_map.SimpleCorpus(myCorpus, content_transformer(removeURL)):
## transformation drops documents
# remove anything other than English letters or space
removeNumPunct <- function(x) gsub("[^[:alpha:][:space:]]*", "", x)
myCorpus <- tm_map(myCorpus, content_transformer(removeNumPunct))
## Warning in tm_map.SimpleCorpus(myCorpus,
## content_transformer(removeNumPunct)): transformation drops documents
# remove stopwords
myStopwords <- c(setdiff(stopwords('english'), c("r", "big")), "use", "see", "used", "via", "amp", "bukalapak")
stopwords_id <- read.table('stopwords-id.txt', header = FALSE)
myStopwords <- c(myStopwords, as.matrix(stopwords_id$V1), "hi", "yg", "ya", "yuk")
myCorpus <- tm_map(myCorpus, removeWords, myStopwords)
## Warning in tm_map.SimpleCorpus(myCorpus, removeWords, myStopwords):
## transformation drops documents
# remove extra whitespace
myCorpus <- tm_map(myCorpus, stripWhitespace)
## Warning in tm_map.SimpleCorpus(myCorpus, stripWhitespace): transformation
## drops documents
# keep a copy for stem completion later
myCorpusCopy <- myCorpus
tdm <- TermDocumentMatrix(myCorpus, control = list(wordLengths = c(1, Inf)))
tdm
## <<TermDocumentMatrix (terms: 14428, documents: 6025)>>
## Non-/sparse entries: 71689/86857011
## Sparsity : 100%
## Maximal term length: 59
## Weighting : term frequency (tf)
freq.terms <- findFreqTerms(tdm, lowfreq = 20)
freq.terms[1:50]
## [1] "ceo" "kasih" "tau" "bahan"
## [5] "ikuti" "kali" "kerja" "november"
## [9] "pelapak" "rumah" "sukses" "belanja"
## [13] "d" "lupa" "malam" "nih"
## [17] "promo" "beli" "hadiah" "klik"
## [21] "meningkatkan" "paket" "transaksi" "aja"
## [25] "besok" "bingung" "cashback" "diskon"
## [29] "gadget" "langsung" "loh" "nggak"
## [33] "nya" "rp" "tunggu" "udah"
## [37] "selamat" "bukatalks" "kota" "membantu"
## [41] "indonesia" "salah" "banget" "deh"
## [45] "gratis" "menarik" "super" "hemat"
## [49] "kebutuhan" "mudah"
term.freq <- rowSums(as.matrix(tdm))
term.freq <- subset(term.freq, term.freq >= 150)
df <- data.frame(term = names(term.freq), freq = term.freq)
ggplot(df, aes(x=reorder(term,freq), y=freq)) + geom_bar(stat="identity") +
xlab("Terms") + ylab("Count") + coord_flip() +
theme(axis.text=element_text(size=7))
Gambar di atas merupakan bar chart untuk Bukalapak. Dapat diketahui bahwa kata terbanyak adalah bukabantuan, transaksi, tokopedia, mohon, shopee. Dari frekuensi terbanyak tersebut muncul brand e-commerce yang lain seperti tokopedia dan shopee, hal ini menandakan adanya persaingan antara beberapa e-commerce tersebut.
library(wordcloud)
## Loading required package: RColorBrewer
m <- as.matrix(tdm)
# calculate the frequency of words and sort it by frequency
word.freq <- sort(rowSums(m), decreasing = T)
# colors
pal <- brewer.pal(9, "BuGn")[-(1:4)]
wordcloud(words = names(word.freq), freq = word.freq, min.freq = 100,
random.order = F, colors = pal)
Gambar di atas merupakan wordcloud untuk bukalapak. Wordcloud dengan font terbesar menunjukkan kata terbanyak.