First, getting an idea of the attributes in cars, then plotting out the values with the linear regression. After that, getting a summary of the errors and p-value before looking at both the shape of the residuals and how well they conform to a normal distribution.
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
plot(cars)
cars.lm<-lm(cars$dist ~ cars$speed)
cars.lm
##
## Call:
## lm(formula = cars$dist ~ cars$speed)
##
## Coefficients:
## (Intercept) cars$speed
## -17.579 3.932
abline(cars.lm)
summary(cars.lm)
##
## Call:
## lm(formula = cars$dist ~ cars$speed)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29.069 -9.525 -2.272 9.215 43.201
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.5791 6.7584 -2.601 0.0123 *
## cars$speed 3.9324 0.4155 9.464 1.49e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
plot(fitted(cars.lm),resid(cars.lm))
qqnorm(resid(cars.lm))
Because it’s difficult to really see the shape from a QQ plot, I did a second one to look at the plot with a line for the normal distribution added.
qqnorm(resid(cars.lm))
qqline(resid(cars.lm))