7.5

library(vcdExtra)
## Loading required package: vcd
## Loading required package: grid
## Loading required package: gnm
data("Caesar",package = "vcdExtra")
Caesar.df <- as.data.frame(Caesar)
Caesar.df$Infect <- as.numeric(Caesar.df$Infection %in% c("Type 1","Type 2"))
Caesar.df$Infect
##  [1] 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
str(Caesar.df)
## 'data.frame':    24 obs. of  6 variables:
##  $ Infection  : Factor w/ 3 levels "Type 1","Type 2",..: 1 2 3 1 2 3 1 2 3 1 ...
##  $ Risk       : Factor w/ 2 levels "Yes","No": 1 1 1 2 2 2 1 1 1 2 ...
##  $ Antibiotics: Factor w/ 2 levels "Yes","No": 1 1 1 1 1 1 2 2 2 2 ...
##  $ Planned    : Factor w/ 2 levels "Yes","No": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Freq       : num  0 1 17 0 1 1 11 17 30 4 ...
##  $ Infect     : num  1 1 0 1 1 0 1 1 0 1 ...

a

Caesar.df$Antibiotics=relevel(x = Caesar.df$Antibiotics,ref = "No")
Caesar.df$Planned=relevel(x = Caesar.df$Planned,ref = "No")
Caesar.df$Risk=relevel(x = Caesar.df$Risk,ref = "No")
str(Caesar.df)
## 'data.frame':    24 obs. of  6 variables:
##  $ Infection  : Factor w/ 3 levels "Type 1","Type 2",..: 1 2 3 1 2 3 1 2 3 1 ...
##  $ Risk       : Factor w/ 2 levels "No","Yes": 2 2 2 1 1 1 2 2 2 1 ...
##  $ Antibiotics: Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 1 1 1 1 ...
##  $ Planned    : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Freq       : num  0 1 17 0 1 1 11 17 30 4 ...
##  $ Infect     : num  1 1 0 1 1 0 1 1 0 1 ...
(Caesar.logitmodel= glm(Infect ~ Risk + Antibiotics + Planned, weights = Freq, data= Caesar.df, family = "binomial" ))
## 
## Call:  glm(formula = Infect ~ Risk + Antibiotics + Planned, family = "binomial", 
##     data = Caesar.df, weights = Freq)
## 
## Coefficients:
##    (Intercept)         RiskYes  AntibioticsYes      PlannedYes  
##        -0.7935          1.8270         -3.0011         -0.9064  
## 
## Degrees of Freedom: 16 Total (i.e. Null);  13 Residual
## Null Deviance:       300.9 
## Residual Deviance: 236.4     AIC: 244.4

b

summary(Caesar.logitmodel)
## 
## Call:
## glm(formula = Infect ~ Risk + Antibiotics + Planned, family = "binomial", 
##     data = Caesar.df, weights = Freq)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -6.7471  -0.4426   0.0000   3.2338   5.4201  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -0.7935     0.4785  -1.658   0.0972 .  
## RiskYes          1.8270     0.4364   4.186 2.84e-05 ***
## AntibioticsYes  -3.0011     0.4593  -6.535 6.37e-11 ***
## PlannedYes      -0.9064     0.4084  -2.219   0.0265 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 300.85  on 16  degrees of freedom
## Residual deviance: 236.36  on 13  degrees of freedom
## AIC: 244.36
## 
## Number of Fisher Scoring iterations: 6
anova(Caesar.logitmodel,test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: Infect
## 
## Terms added sequentially (first to last)
## 
## 
##             Df Deviance Resid. Df Resid. Dev Pr(>Chi)    
## NULL                           16     300.85             
## Risk         1    4.104        15     296.75  0.04278 *  
## Antibiotics  1   55.163        14     241.59 1.11e-13 ***
## Planned      1    5.230        13     236.36  0.02220 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

c

(effectoninfection <- exp(coef(Caesar.logitmodel)) - 1)
##    (Intercept)        RiskYes AntibioticsYes     PlannedYes 
##     -0.5477367      5.2151576     -0.9502659     -0.5960215
(effectoninfection2<- paste(round(100*effectoninfection, 2), "%", sep=""))
## [1] "-54.77%" "521.52%" "-95.03%" "-59.6%"

d

library(effects)
## Loading required package: carData
## 
## Attaching package: 'carData'
## The following object is masked from 'package:vcdExtra':
## 
##     Burt
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
plot(Caesar.logitmodel)

Caesar.Separated=update(Caesar.logitmodel, . ~ . + Risk:Antibiotics)
plot(allEffects(Caesar.Separated))

```