If you want to use any of these plots for the presentation, let me know and I’ll make them into high-res .pptx slides (with axes appropriately labeled).

Importing SPSS dataset and converting it to long format

library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0     ✔ purrr   0.2.4
✔ tibble  1.4.2     ✔ dplyr   0.7.4
✔ tidyr   0.8.1     ✔ stringr 1.2.0
✔ readr   1.1.1     ✔ forcats 0.3.0
── Conflicts ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(foreign)
library(afex)
Loading required package: lme4
Loading required package: Matrix

Attaching package: ‘Matrix’

The following object is masked from ‘package:tidyr’:

    expand

************
Welcome to afex. For support visit: http://afex.singmann.science/
- Functions for ANOVAs: aov_car(), aov_ez(), and aov_4()
- Methods for calculating p-values with mixed(): 'KR', 'S', 'LRT', and 'PB'
- 'afex_aov' and 'mixed' objects can be passed to emmeans() for follow-up tests
- NEWS: library('emmeans') now needs to be called explicitly!
- Get and set global package options with: afex_options()
- Set orthogonal sum-to-zero contrasts globally: set_sum_contrasts()
- For example analyses see: browseVignettes("afex")
************

Attaching package: ‘afex’

The following object is masked from ‘package:lme4’:

    lmer
library(emmeans)
NOTE: As of emmeans versions > 1.2.3,
      The 'cld' function will be deprecated in favor of 'CLD'.
      You may use 'cld' only if you have package:multcomp attached.
library(jtools)
library(psych)

Attaching package: ‘psych’

The following objects are masked from ‘package:ggplot2’:

    %+%, alpha
library(bestNormalize)

Check out the dataset

# overview the entire [wide] dataset
# this will look like TOTAL crap in the notebook output (i.e., what you are probably looking at right now)
# from the R console, use view(dfSummary(all.data)) to see a much more readable and attractive output
library(summarytools)
dfSummary(all.data)
unable to identify var names: all.data
Data Frame Summary   
all.data     
N: 240   
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------
No    Variable                                   Stats / Values                        Freqs (% of Valid)    Text Graph                               Valid      Missing   
----- ------------------------------------------ ------------------------------------- --------------------- ---------------------------------------- ---------- ----------
1     egg_n                                      mean (sd) : 0.56 (0.39)               13 distinct val.                        :                      240        0         
      [numeric]                                  min < med < max :                                                             :                      (100%)     (0%)      
                                                 0 < 0.67 < 1                                                :     .           :                                           
                                                 IQR (CV) : 0.67 (0.69)                                      :     :     :     :                                           
                                                                                                             :   . : : . : :   :                                           

2     cond                                       1. BASELINE                           48 (20.0%)            IIIIIIIIIIIIIIII                         240        0         
      [factor]                                   2. DIS                                48 (20.0%)            IIIIIIIIIIIIIIII                         (100%)     (0%)      
                                                 3. FE                                 48 (20.0%)            IIIIIIIIIIIIIIII                                              
                                                 4. NE                                 48 (20.0%)            IIIIIIIIIIIIIIII                                              
                                                 5. SA                                 48 (20.0%)            IIIIIIIIIIIIIIII                                              

3     ID                                         1. 1004                                 5 ( 2.1%)                                                    240        0         
      [factor]                                   2. 1006                                 5 ( 2.1%)                                                    (100%)     (0%)      
                                                 3. 1010                                 5 ( 2.1%)                                                                         
                                                 4. 1011                                 5 ( 2.1%)                                                                         
                                                 5. 1013                                 5 ( 2.1%)                                                                         
                                                 6. 1016                                 5 ( 2.1%)                                                                         
                                                 7. 1017                                 5 ( 2.1%)                                                                         
                                                 8. 1024                                 5 ( 2.1%)                                                                         
                                                 9. 1028                                 5 ( 2.1%)                                                                         
                                                 10. 1031                                5 ( 2.1%)                                                                         
                                                 [ 38 others ]                         190 (79.0%)           IIIIIIIIIIIIIIII                                              

4     egg_b                                      mean (sd) : 0.04 (0.15)               0.00 : 215 (89.6%)    IIIIIIIIIIIIIIII                         240        0         
      [numeric]                                  min < med < max :                     0.20 :   2 ( 0.8%)                                             (100%)     (0%)      
                                                 0 < 0 < 1                             0.25 :   6 ( 2.5%)                                                                  
                                                 IQR (CV) : 0 (3.45)                   0.33 :   7 ( 2.9%)                                                                  
                                                                                       0.33!:   3 ( 1.2%)                                                                  
                                                                                       0.40 :   1 ( 0.4%)                                                                  
                                                                                       0.50 :   1 ( 0.4%)                                                                  
                                                                                       0.67!:   1 ( 0.4%)                                                                  
                                                                                       0.67 :   1 ( 0.4%)                                                                  
                                                                                       1.00 :   3 ( 1.2%)                                                                  
                                                                                       ! rounded                                                                           

5     egg_t                                      mean (sd) : 0.23 (0.34)               13 distinct val.      :                                        240        0         
      [numeric]                                  min < med < max :                                           :                                        (100%)     (0%)      
                                                 0 < 0 < 1                                                   :                                                             
                                                 IQR (CV) : 0.33 (1.48)                                      :                                                             
                                                                                                             :   . :     .     :                                           

6     hrv.msd                                    mean (sd) : 43.5 (22.54)              238 distinct val.       :   .                                  240        0         
      [numeric]                                  min < med < max :                                             : : :                                  (100%)     (0%)      
                                                 9.29 < 40.72 < 122.68                                       : : : : .                                                     
                                                 IQR (CV) : 28.83 (0.52)                                     : : : : :                                                     
                                                                                                             : : : : : : : . .                                             

7     panas_NA                                   mean (sd) : 14.55 (4.99)              24 distinct val.        :                                      240        0         
      [numeric]                                  min < med < max :                                             :                                      (100%)     (0%)      
                                                 9 < 13 < 41                                                   :                                                           
                                                 IQR (CV) : 5 (0.34)                                         . : .                                                         
                                                                                                             : : : .                                                       

8     panas_PA                                   mean (sd) : 19.46 (7.08)              28 distinct val.      :                                        240        0         
      [numeric]                                  min < med < max :                                           : :                                      (100%)     (0%)      
                                                 10 < 18 < 37                                                : : .                                                         
                                                 IQR (CV) : 10 (0.36)                                        : : : .                                                       
                                                                                                             : : : : : .                                                   

9     age                                        mean (sd) : 21.63 (4.52)              11 distinct val.      :                                        215        25        
      [numeric]                                  min < med < max :                                           :                                        (89.58%)   (10.42%)  
                                                 18 < 20 < 36                                                :                                                             
                                                 IQR (CV) : 7 (0.21)                                         :     .                                                       
                                                                                                             : : . :   .                                                   

10    gender                                     1. male                                80 (34.0%)           IIIIIIII                                 235        5         
      [factor]                                   2. female                             155 (66.0%)           IIIIIIIIIIIIIIII                         (97.92%)   (2.08%)   

11    hrs_ate                                    mean (sd) : 9.61 (4.43)               16 distinct val.              :                                240        0         
      [numeric]                                  min < med < max :                                           :     . :                                (100%)     (0%)      
                                                 2 < 10.5 < 20                                               :     : : .                                                   
                                                 IQR (CV) : 6.25 (0.46)                                      :     : : :                                                   
                                                                                                             : : : : : : : . .                                             

12    hrs_coff                                   mean (sd) : 10.72 (12.22)             12 distinct val.      :                                        100        140       
      [numeric]                                  min < med < max :                                           :                                        (41.67%)   (58.33%)  
                                                 0 < 4 < 48                                                  :                                                             
                                                 IQR (CV) : 16.5 (1.14)                                      :     . :                                                     
                                                                                                             : .   : :         .                                           

13    hrs_soda                                   mean (sd) : 11.93 (8.05)              0.00 : 15 (20.0%)     IIIIIIIIIIIIIIII                         75         165       
      [numeric]                                  min < med < max :                     3.00 :  5 ( 6.7%)     IIIII                                    (31.25%)   (68.75%)  
                                                 0 < 12 < 26                           10.00 :  5 ( 6.7%)    IIIII                                                         
                                                 IQR (CV) : 13 (0.67)                  12.00 : 15 (20.0%)    IIIIIIIIIIIIIIII                                              
                                                                                       14.00 :  5 ( 6.7%)    IIIII                                                         
                                                                                       15.00 : 10 (13.3%)    IIIIIIIIII                                                    
                                                                                       16.00 :  5 ( 6.7%)    IIIII                                                         
                                                                                       20.00 :  5 ( 6.7%)    IIIII                                                         
                                                                                       24.00 :  5 ( 6.7%)    IIIII                                                         
                                                                                       26.00 :  5 ( 6.7%)    IIIII                                                         

14    hrs_tea                                    mean (sd) : 8.46 (11.07)              0.00 : 25 (38.5%)     IIIIIIIIIIIIIIII                         65         175       
      [numeric]                                  min < med < max :                     2.00 :  5 ( 7.7%)     III                                      (27.08%)   (72.92%)  
                                                 0 < 3 < 40                            3.00 :  5 ( 7.7%)     III                                                           
                                                 IQR (CV) : 12 (1.31)                  10.00 :  5 ( 7.7%)    III                                                           
                                                                                       11.00 :  5 ( 7.7%)    III                                                           
                                                                                       12.00 :  5 ( 7.7%)    III                                                           
                                                                                       14.00 :  5 ( 7.7%)    III                                                           
                                                                                       18.00 :  5 ( 7.7%)    III                                                           
                                                                                       40.00 :  5 ( 7.7%)    III                                                           

15    race_cat                                   1. "prefer not to answer"              5 ( 2.1%)                                                     235        5         
      [factor]                                   2. Asian-American, Asian              60 (25.5%)            IIIIIIIIII                               (97.92%)   (2.08%)   
                                                 3. African-American                   10 ( 4.3%)            I                                                             
                                                 4. Caucasian/White                    90 (38.3%)            IIIIIIIIIIIIIIII                                              
                                                 5. Hispanic/Latin@                    35 (14.9%)            IIIIII                                                        
                                                 6. Other (see specifier)              35 (14.9%)            IIIIII                                                        

16    tot_AIM_NegativeIntensity.b                mean (sd) : 19.29 (4.56)              16 distinct val.            . : .                              240        0         
      [numeric]                                  min < med < max :                                             .   : : :                              (100%)     (0%)      
                                                 9 < 20 < 34                                                   :   : : :                                                   
                                                 IQR (CV) : 6 (0.24)                                           : . : : :                                                   
                                                                                                             : : : : : : . :   .                                           

17    tot_AIM_NegativeIntensity.w                mean (sd) : 33.06 (7.01)              24 distinct val.            :                                  240        0         
      [numeric]                                  min < med < max :                                                 : .                                (100%)     (0%)      
                                                 19 < 33 < 49                                                    . : :                                                     
                                                 IQR (CV) : 9.25 (0.21)                                        : : : : .                                                   
                                                                                                             . : : : : : .                                                 

18    tot_AIM_NegativeReactivity.b               mean (sd) : 23.67 (4.73)              19 distinct val.              :                                240        0         
      [numeric]                                  min < med < max :                                                 . :                                (100%)     (0%)      
                                                 14 < 23 < 36                                                    . : : :   .                                               
                                                 IQR (CV) : 6.25 (0.2)                                       : . : : : : : :                                               
                                                                                                             : : : : : : : :   .                                           

19    tot_AIM_NegativeReactivity.w               mean (sd) : 23.38 (5.04)              16 distinct val.            : : . : .                          240        0         
      [numeric]                                  min < med < max :                                                 : : : : :                          (100%)     (0%)      
                                                 13 < 23.5 < 34                                              : :   : : : : :                                               
                                                 IQR (CV) : 7 (0.22)                                         : : . : : : : : : .                                           
                                                                                                             : : : : : : : : : :                                           

20    tot_AIM_PositiveAffect.b                   mean (sd) : 59.02 (10.25)             29 distinct val.          :                                    240        0         
      [numeric]                                  min < med < max :                                               :   .                                (100%)     (0%)      
                                                 40 < 57 < 85                                                    : . :                                                     
                                                 IQR (CV) : 13 (0.17)                                        . . : : : . .                                                 
                                                                                                             : : : : : : : . :                                             

21    tot_AIM_PositiveAffect.w                   mean (sd) : 67.35 (11.74)             32 distinct val.          :                                    240        0         
      [numeric]                                  min < med < max :                                               : .                                  (100%)     (0%)      
                                                 47 < 65 < 97                                                .   : : . :                                                   
                                                 IQR (CV) : 13.5 (0.17)                                      : . : : : : . .                                               
                                                                                                             : : : : : : : : . :                                           

22    tot_AIM_Serenity.w                         mean (sd) : 22.79 (5.26)              21 distinct val.              : . .                            240        0         
      [numeric]                                  min < med < max :                                           :       : : :                            (100%)     (0%)      
                                                 13 < 23 < 34                                                :   . . : : : .                                               
                                                 IQR (CV) : 7 (0.23)                                         : : : : : : : : :                                             
                                                                                                             : : : : : : : : : :                                           

23    tot_BFI_Extraversion                       mean (sd) : 3.19 (0.8)                22 distinct val.          : .                                  240        0         
      [numeric]                                  min < med < max :                                               : : : .                              (100%)     (0%)      
                                                 1.5 < 3.25 < 4.38                                           .   : : : :                                                   
                                                 IQR (CV) : 1.25 (0.25)                                      : : : : : :                                                   
                                                                                                             : : : : : :                                                   

24    tot_BFI_Neuroticism                        mean (sd) : 2.99 (0.84)               24 distinct val.            :                                  240        0         
      [numeric]                                  min < med < max :                                                 : :                                (100%)     (0%)      
                                                 1.25 < 2.94 < 4.62                                              : : :                                                     
                                                 IQR (CV) : 1.25 (0.28)                                        . : : : . :                                                 
                                                                                                             : : : : : : : .                                               

25    tot_bisbas_BAS.Drive                       mean (sd) : 11.56 (2.14)              5.00 :  5 ( 2.1%)     I                                        240        0         
      [numeric]                                  min < med < max :                     8.00 : 15 ( 6.2%)     IIII                                     (100%)     (0%)      
                                                 5 < 12 < 15                           9.00 : 25 (10.4%)     IIIIIIII                                                      
                                                 IQR (CV) : 2.25 (0.19)                10.00 : 15 ( 6.2%)    IIII                                                          
                                                                                       11.00 : 50 (20.8%)    IIIIIIIIIIIIIIII                                              
                                                                                       12.00 : 50 (20.8%)    IIIIIIIIIIIIIIII                                              
                                                                                       13.00 : 40 (16.7%)    IIIIIIIIIIII                                                  
                                                                                       14.00 : 15 ( 6.2%)    IIII                                                          
                                                                                       15.00 : 25 (10.4%)    IIIIIIII                                                      

26    tot_bisbas_BAS.Fun                         mean (sd) : 12.27 (2.26)              8.00 : 10 ( 4.2%)     III                                      240        0         
      [numeric]                                  min < med < max :                     9.00 : 20 ( 8.3%)     IIIIIII                                  (100%)     (0%)      
                                                 8 < 12 < 16                           10.00 : 25 (10.4%)    IIIIIIII                                                      
                                                 IQR (CV) : 3 (0.18)                   11.00 : 45 (18.8%)    IIIIIIIIIIIIIIII                                              
                                                                                       12.00 : 30 (12.5%)    IIIIIIIIII                                                    
                                                                                       13.00 : 30 (12.5%)    IIIIIIIIII                                                    
                                                                                       14.00 : 35 (14.6%)    IIIIIIIIIIII                                                  
                                                                                       15.00 : 20 ( 8.3%)    IIIIIII                                                       
                                                                                       16.00 : 25 (10.4%)    IIIIIIII                                                      

27    tot_bisbas_BAS.Reward                      mean (sd) : 16.52 (1.86)              12.00 :  5 ( 2.1%)    I                                        240        0         
      [numeric]                                  min < med < max :                     13.00 : 10 ( 4.2%)    III                                      (100%)     (0%)      
                                                 12 < 17 < 20                          14.00 : 20 ( 8.3%)    IIIIIII                                                       
                                                 IQR (CV) : 3 (0.11)                   15.00 : 35 (14.6%)    IIIIIIIIIIII                                                  
                                                                                       16.00 : 45 (18.8%)    IIIIIIIIIIIIIIII                                              
                                                                                       17.00 : 45 (18.8%)    IIIIIIIIIIIIIIII                                              
                                                                                       18.00 : 45 (18.8%)    IIIIIIIIIIIIIIII                                              
                                                                                       19.00 : 25 (10.4%)    IIIIIIII                                                      
                                                                                       20.00 : 10 ( 4.2%)    III                                                           

28    tot_bisbas_BIS.Total                       mean (sd) : 21 (3.95)                 16 distinct val.                  :                            240        0         
      [numeric]                                  min < med < max :                                                       :                            (100%)     (0%)      
                                                 8 < 21 < 28                                                           . :   .                                             
                                                 IQR (CV) : 4 (0.19)                                                 . : : . :                                             
                                                                                                             .   . . : : : : : :                                           

29    tot_DERS_Awareness                         mean (sd) : 15.25 (4.01)              16 distinct val.              :                                240        0         
      [numeric]                                  min < med < max :                                               .   :                                (100%)     (0%)      
                                                 6 < 15 < 28                                                     : : : .                                                   
                                                 IQR (CV) : 6 (0.26)                                             : : : : :                                                 
                                                                                                             . : : : : : : .   .                                           

30    tot_DERS_Clarity                           mean (sd) : 13.92 (4.65)              15 distinct val.        :     . . :                            240        0         
      [numeric]                                  min < med < max :                                             :     : : : :                          (100%)     (0%)      
                                                 5 < 14.5 < 22                                                 : :   : : : :                                               
                                                 IQR (CV) : 8 (0.33)                                           : : : : : : : :                                             
                                                                                                             . : : : : : : : :                                             

31    tot_DERS_Goals                             mean (sd) : 16.46 (4.11)              17 distinct val.            . .   . :                          240        0         
      [numeric]                                  min < med < max :                                                 : : . : :                          (100%)     (0%)      
                                                 6 < 17 < 25                                                       : : : : :                                               
                                                 IQR (CV) : 7 (0.25)                                             . : : : : : .                                             
                                                                                                             :   : : : : : : : .                                           

32    tot_DERS_Impulse                           mean (sd) : 14.46 (6.59)              20 distinct val.      :                                        240        0         
      [numeric]                                  min < med < max :                                           :                                        (100%)     (0%)      
                                                 6 < 13.5 < 29                                               :                                                             
                                                 IQR (CV) : 12 (0.46)                                        : :   : :   :                                                 
                                                                                                             : : : : : . : . : .                                           

33    tot_DERS_Nonacceptance                     mean (sd) : 14.96 (6.71)              18 distinct val.      :                                        240        0         
      [numeric]                                  min < med < max :                                           :                                        (100%)     (0%)      
                                                 6 < 16 < 28                                                 :         .                                                   
                                                 IQR (CV) : 12 (0.45)                                        :     . : : : :                                               
                                                                                                             : : . : : : : :   :                                           

34    tot_DERS_Strategies                        mean (sd) : 20.79 (7.03)              23 distinct val.            :                                  240        0         
      [numeric]                                  min < med < max :                                                 : :                                (100%)     (0%)      
                                                 8 < 21 < 34                                                   :   : :                                                     
                                                 IQR (CV) : 12 (0.34)                                        : : : : :                                                     
                                                                                                             : : : : : :                                                   

35    tot_DERS_Total                             mean (sd) : 95.83 (21.24)             38 distinct val.                  :                            240        0         
      [numeric]                                  min < med < max :                                                   . : :                            (100%)     (0%)      
                                                 38 < 96.5 < 136                                                   : : : : . .                                             
                                                 IQR (CV) : 28.75 (0.22)                                           : : : : : : :                                           
                                                                                                             . . . : : : : : : :                                           

36    tot_ERQ_Reappraisal                        mean (sd) : 27.42 (8.42)              25 distinct val.              :                                240        0         
      [numeric]                                  min < med < max :                                                   :                                (100%)     (0%)      
                                                 6 < 28 < 42                                                       : : . .                                                 
                                                 IQR (CV) : 11.25 (0.31)                                       . . : : : :                                                 
                                                                                                             . : : : : : : :                                               

37    tot_ERQ_Suppression                        mean (sd) : 15.71 (5.68)              20 distinct val.              :                                240        0         
      [numeric]                                  min < med < max :                                                   :                                (100%)     (0%)      
                                                 4 < 16 < 28                                                     : . : .   . .                                             
                                                 IQR (CV) : 7.5 (0.36)                                       .   : : : : . : :                                             
                                                                                                             : : : : : : : : : .                                           

38    tot_ERS_Intensity                          mean (sd) : 9.75 (6.25)               19 distinct val.      . . . .   :   .                          240        0         
      [numeric]                                  min < med < max :                                           : : : :   :   :   .                      (100%)     (0%)      
                                                 0 < 9 < 22                                                  : : : :   :   :   :                                           
                                                 IQR (CV) : 10.25 (0.64)                                     : : : : : : : :   :                                           
                                                                                                             : : : : : : : :   :                                           

39    tot_ERS_Persistence                        mean (sd) : 5.94 (3.65)               15 distinct val.      : .                                      240        0         
      [numeric]                                  min < med < max :                                           : : : : :                                (100%)     (0%)      
                                                 0 < 5.5 < 14                                                : : : : :                                                     
                                                 IQR (CV) : 6 (0.61)                                         : : : : : .                                                   
                                                                                                             : : : : : : :                                                 

40    tot_ERS_Sensitivity                        mean (sd) : 12.46 (7.74)              24 distinct val.        :                                      240        0         
      [numeric]                                  min < med < max :                                           : :   :                                  (100%)     (0%)      
                                                 0 < 10.5 < 30                                               : :   : .                                                     
                                                 IQR (CV) : 13.25 (0.62)                                     : : : : :                                                     
                                                                                                             : : : : : :                                                   

41    tot_IUS_Negativity                         mean (sd) : 27.73 (9.39)              23 distinct val.      :                                        240        0         
      [numeric]                                  min < med < max :                                           : :                                      (100%)     (0%)      
                                                 16 < 25 < 46                                                : :     :                                                     
                                                 IQR (CV) : 17 (0.34)                                        : :   : :                                                     
                                                                                                             : : : : : : .                                                 

42    tot_IUS_Total                              mean (sd) : 56.35 (17.9)              32 distinct val.      .   :           .                        240        0         
      [numeric]                                  min < med < max :                                           : : :           :                        (100%)     (0%)      
                                                 30 < 53 < 88                                                : : :       . . :                                             
                                                 IQR (CV) : 34.25 (0.32)                                     : : : : : : : : : :                                           
                                                                                                             : : : : : : : : : :                                           

43    tot_ius_Unfair                             mean (sd) : 28.62 (9.17)              27 distinct val.        :                                      240        0         
      [numeric]                                  min < med < max :                                             : : . . :                              (100%)     (0%)      
                                                 12 < 27.5 < 45                                                : : : : : :                                                 
                                                 IQR (CV) : 15.75 (0.32)                                       : : : : : :                                                 
                                                                                                             : : : : : : :                                                 

44    tot_MASQ_AnhedonicDepression               mean (sd) : 63.23 (12.72)             34 distinct val.              : . .                            240        0         
      [numeric]                                  min < med < max :                                                 : : : :                            (100%)     (0%)      
                                                 34 < 63 < 90                                                      : : : :   :                                             
                                                 IQR (CV) : 14.5 (0.2)                                             : : : : . :                                             
                                                                                                             : : : : : : : : : :                                           

45    tot_MASQ_AnxiousArousal                    mean (sd) : 26.06 (8.2)               21 distinct val.      :                                        240        0         
      [numeric]                                  min < med < max :                                           :                                        (100%)     (0%)      
                                                 17 < 24 < 48                                                : : :                                                         
                                                 IQR (CV) : 10.25 (0.31)                                     : : :                                                         
                                                                                                             : : : . : : .                                                 

46    tot_MASQ_GeneralDistressAnxiety            mean (sd) : 20.08 (7.39)              24 distinct val.      : .                                      240        0         
      [numeric]                                  min < med < max :                                           : :                                      (100%)     (0%)      
                                                 11 < 18 < 41                                                : : :                                                         
                                                 IQR (CV) : 9.25 (0.37)                                      : : : .                                                       
                                                                                                             : : : : . . .                                                 

47    tot_MASQ_GeneralDistressDepression         mean (sd) : 23.83 (9.47)              24 distinct val.        :                                      240        0         
      [numeric]                                  min < med < max :                                             :                                      (100%)     (0%)      
                                                 13 < 19 < 50                                                  :                                                           
                                                 IQR (CV) : 13.25 (0.4)                                      . :                                                           
                                                                                                             : : : . : :   .                                               

48    tot_PANAS_Trait.NA                         mean (sd) : 23.33 (6.48)              20 distinct val.        . :                                    240        0         
      [numeric]                                  min < med < max :                                             : : .                                  (100%)     (0%)      
                                                 12 < 23.5 < 38                                              . : : :                                                       
                                                 IQR (CV) : 7.25 (0.28)                                      : : : : :                                                     
                                                                                                             : : : : : :                                                   

49    tot_PANAS_Trait.PA                         mean (sd) : 32.06 (5.6)               19 distinct val.          . :                                  240        0         
      [numeric]                                  min < med < max :                                               : :                                  (100%)     (0%)      
                                                 15 < 32 < 45                                                    : : .                                                     
                                                 IQR (CV) : 6.5 (0.17)                                           : : :                                                     
                                                                                                             . : : : : :                                                   

50    tot_PSWQ_Total                             mean (sd) : 48.02 (13.38)             29 distinct val.            :                                  240        0         
      [numeric]                                  min < med < max :                                                 :                                  (100%)     (0%)      
                                                 16 < 46 < 79                                                      : . .                                                   
                                                 IQR (CV) : 18.5 (0.28)                                            : : : :   .                                             
                                                                                                             . . . : : : : : : .                                           

51    tot_RPA_Dampening                          mean (sd) : 14.79 (5.37)              19 distinct val.      :                                        240        0         
      [numeric]                                  min < med < max :                                           :                                        (100%)     (0%)      
                                                 8 < 13.5 < 29                                               : . .                                                         
                                                 IQR (CV) : 9 (0.36)                                         : : :   : :                                                   
                                                                                                             : : : : : : : : . .                                           

52    tot_RPA_EmotionFocus                       mean (sd) : 13.27 (3.03)              13 distinct val.            :                                  240        0         
      [numeric]                                  min < med < max :                                               : :                                  (100%)     (0%)      
                                                 6 < 13 < 20                                                     : : : :                                                   
                                                 IQR (CV) : 4 (0.23)                                         . . : : : :                                                   
                                                                                                             : : : : : : .                                                 

53    tot_RPA_SelfFocus                          mean (sd) : 10.08 (2.59)              11 distinct val.                  :                            240        0         
      [numeric]                                  min < med < max :                                           .   .   :   :                            (100%)     (0%)      
                                                 5 < 10 < 16                                                 :   :   : . :                                                 
                                                 IQR (CV) : 4 (0.26)                                         :   : : : : : :                                               
                                                                                                             :   : : : : : : . :                                           

54    tot_RS_Brooding                            mean (sd) : 10.42 (2.8)               12 distinct val.            :                                  240        0         
      [numeric]                                  min < med < max :                                                 :     .                            (100%)     (0%)      
                                                 5 < 10 < 16                                                 :     : : : :                                                 
                                                 IQR (CV) : 3.25 (0.27)                                      : :   : : : : : : :                                           
                                                                                                             : : : : : : : : : :                                           

55    tot_SPSRQ_Punishment                       mean (sd) : 12.31 (5.65)              18 distinct val.                :                              240        0         
      [numeric]                                  min < med < max :                                                     :   : .                        (100%)     (0%)      
                                                 1 < 12.5 < 21                                                 : :   : :   : : :                                           
                                                 IQR (CV) : 9.25 (0.46)                                        : : . : :   : : :                                           
                                                                                                             : : : : : : . : : :                                           

56    tot_SPSRQ_Reward                           mean (sd) : 12.46 (4.63)              16 distinct val.        :       . :                            240        0         
      [numeric]                                  min < med < max :                                             :     : : :                            (100%)     (0%)      
                                                 4 < 13.5 < 22                                               : :     : : :                                                 
                                                 IQR (CV) : 8 (0.37)                                         : : : : : : :                                                 
                                                                                                             : : : : : : :   :                                             

57    tot_STAI_Trait                             mean (sd) : 43.81 (9.25)              23 distinct val.          :                                    240        0         
      [numeric]                                  min < med < max :                                               :                                    (100%)     (0%)      
                                                 26 < 40 < 63                                                    :       .                                                 
                                                 IQR (CV) : 14 (0.21)                                            : .   . :                                                 
                                                                                                             : : : : : : : .                                               

58    tot_TEPS_Anticipatory                      mean (sd) : 4.55 (0.64)               22 distinct val.              :                                240        0         
      [numeric]                                  min < med < max :                                                   :                                (100%)     (0%)      
                                                 2.7 < 4.7 < 5.7                                                   : : .                                                   
                                                 IQR (CV) : 0.75 (0.14)                                          : : : :                                                   
                                                                                                             . . : : : : .                                                 

59    tot_TEPS_Consummatory                      mean (sd) : 4.73 (0.86)               20 distinct val.          :                                    240        0         
      [numeric]                                  min < med < max :                                               :   . :                              (100%)     (0%)      
                                                 3 < 4.75 < 6                                                .   :   : :                                                   
                                                 IQR (CV) : 1.38 (0.18)                                      : : : . : :                                                   
                                                                                                             : : : : : :                                                   

60    tot_TPQ_HarmAvoidance                      mean (sd) : 17.46 (7.07)              26 distinct val.          : : :                                240        0         
      [numeric]                                  min < med < max :                                               : : :                                (100%)     (0%)      
                                                 4 < 18 < 30                                                   . : : : :                                                   
                                                 IQR (CV) : 11.25 (0.4)                                        : : : : :                                                   
                                                                                                             : : : : : :                                                   

61    tot_TPQ_HarmAvoidance.fatigability         mean (sd) : 5.5 (2.91)                11 distinct val.          . . .         :                      240        0         
      [numeric]                                  min < med < max :                                               : : :         :                      (100%)     (0%)      
                                                 0 < 5 < 10                                                    . : : :     :   :                                           
                                                 IQR (CV) : 5 (0.53)                                         : : : : : :   :   :                                           
                                                                                                             : : : : : : : : : :                                           

62    tot_TPQ_HarmAvoidance.shyness              mean (sd) : 3.6 (2.17)                0.00 : 20 ( 8.3%)     IIIII                                    240        0         
      [numeric]                                  min < med < max :                     1.00 : 15 ( 6.2%)     IIII                                     (100%)     (0%)      
                                                 0 < 3 < 7                             2.00 : 60 (25.0%)     IIIIIIIIIIIIIIII                                              
                                                 IQR (CV) : 3.25 (0.6)                 3.00 : 30 (12.5%)     IIIIIIII                                                      
                                                                                       4.00 : 30 (12.5%)     IIIIIIII                                                      
                                                                                       5.00 : 25 (10.4%)     IIIIII                                                        
                                                                                       6.00 : 25 (10.4%)     IIIIII                                                        
                                                                                       7.00 : 35 (14.6%)     IIIIIIIII                                                     

63    tot_TPQ_HarmAvoidance.uncertainty          mean (sd) : 3.42 (1.92)               0.00 : 10 ( 4.2%)     III                                      240        0         
      [numeric]                                  min < med < max :                     1.00 : 45 (18.8%)     IIIIIIIIIIIIIIII                         (100%)     (0%)      
                                                 0 < 3 < 7                             2.00 : 25 (10.4%)     IIIIIIII                                                      
                                                 IQR (CV) : 3 (0.56)                   3.00 : 45 (18.8%)     IIIIIIIIIIIIIIII                                              
                                                                                       4.00 : 35 (14.6%)     IIIIIIIIIIII                                                  
                                                                                       5.00 : 40 (16.7%)     IIIIIIIIIIIIII                                                
                                                                                       6.00 : 30 (12.5%)     IIIIIIIIII                                                    
                                                                                       7.00 : 10 ( 4.2%)     III                                                           

64    tot_TPQ_HarmAvoidance.worry                mean (sd) : 4.94 (2.48)               0.00 : 10 ( 4.2%)     III                                      240        0         
      [numeric]                                  min < med < max :                     1.00 : 20 ( 8.3%)     IIIIIII                                  (100%)     (0%)      
                                                 0 < 5 < 9                             2.00 : 20 ( 8.3%)     IIIIIII                                                       
                                                 IQR (CV) : 4 (0.5)                    3.00 : 15 ( 6.2%)     IIIII                                                         
                                                                                       4.00 : 35 (14.6%)     IIIIIIIIIIII                                                  
                                                                                       5.00 : 25 (10.4%)     IIIIIIII                                                      
                                                                                       6.00 : 45 (18.8%)     IIIIIIIIIIIIIIII                                              
                                                                                       7.00 : 25 (10.4%)     IIIIIIII                                                      
                                                                                       8.00 : 35 (14.6%)     IIIIIIIIIIII                                                  
                                                                                       9.00 : 10 ( 4.2%)     III                                                           

65    tot_TPQ_NoveltySeeking                     mean (sd) : 17.33 (4.53)              18 distinct val.              :                                240        0         
      [numeric]                                  min < med < max :                                                   :   .                            (100%)     (0%)      
                                                 7 < 17.5 < 26                                                     . : : : : .                                             
                                                 IQR (CV) : 6.25 (0.26)                                          : : : : : : :                                             
                                                                                                             . : : : : : : : : :                                           

66    tot_TPQ_NoveltySeeking.disorderliness      mean (sd) : 4.73 (1.79)               0.00 :  5 ( 2.1%)     I                                        240        0         
      [numeric]                                  min < med < max :                     2.00 :  5 ( 2.1%)     I                                        (100%)     (0%)      
                                                 0 < 4 < 9                             3.00 : 50 (20.8%)     IIIIIIIIIII                                                   
                                                 IQR (CV) : 2.25 (0.38)                4.00 : 70 (29.2%)     IIIIIIIIIIIIIIII                                              
                                                                                       5.00 : 30 (12.5%)     IIIIII                                                        
                                                                                       6.00 : 45 (18.8%)     IIIIIIIIII                                                    
                                                                                       7.00 : 10 ( 4.2%)     II                                                            
                                                                                       8.00 : 20 ( 8.3%)     IIII                                                          
                                                                                       9.00 :  5 ( 2.1%)     I                                                             

67    tot_TPQ_NoveltySeeking.extravagance        mean (sd) : 3.46 (1.56)               0.00 : 10 ( 4.2%)     II                                       240        0         
      [numeric]                                  min < med < max :                     1.00 : 20 ( 8.3%)     IIII                                     (100%)     (0%)      
                                                 0 < 4 < 6                             2.00 : 35 (14.6%)     IIIIIII                                                       
                                                 IQR (CV) : 2 (0.45)                   3.00 : 40 (16.7%)     IIIIIIII                                                      
                                                                                       4.00 : 80 (33.3%)     IIIIIIIIIIIIIIII                                              
                                                                                       5.00 : 30 (12.5%)     IIIIII                                                        
                                                                                       6.00 : 25 (10.4%)     IIIII                                                         

68    tot_TPQ_NoveltySeeking.impulsiveness       mean (sd) : 4.69 (1.96)               0.00 :  5 ( 2.1%)     I                                        240        0         
      [numeric]                                  min < med < max :                     1.00 : 15 ( 6.2%)     IIII                                     (100%)     (0%)      
                                                 0 < 5 < 8                             2.00 : 10 ( 4.2%)     II                                                            
                                                 IQR (CV) : 3.25 (0.42)                3.00 : 40 (16.7%)     IIIIIIIIIII                                                   
                                                                                       4.00 : 35 (14.6%)     IIIIIIIIII                                                    
                                                                                       5.00 : 45 (18.8%)     IIIIIIIIIIIII                                                 
                                                                                       6.00 : 30 (12.5%)     IIIIIIII                                                      
                                                                                       7.00 : 55 (22.9%)     IIIIIIIIIIIIIIII                                              
                                                                                       8.00 :  5 ( 2.1%)     I                                                             

69    tot_TPQ_NovelySeeking.excitability         mean (sd) : 4.46 (1.83)               1.00 : 15 ( 6.2%)     IIII                                     240        0         
      [numeric]                                  min < med < max :                     2.00 : 20 ( 8.3%)     IIIII                                    (100%)     (0%)      
                                                 1 < 4 < 8                             3.00 : 30 (12.5%)     IIIIIIII                                                      
                                                 IQR (CV) : 2 (0.41)                   4.00 : 60 (25.0%)     IIIIIIIIIIIIIIII                                              
                                                                                       5.00 : 60 (25.0%)     IIIIIIIIIIIIIIII                                              
                                                                                       6.00 : 25 (10.4%)     IIIIII                                                        
                                                                                       7.00 :  5 ( 2.1%)     I                                                             
                                                                                       8.00 : 25 (10.4%)     IIIIII                                                        

70    tot_TPQ_RewardDependence                   mean (sd) : 13.38 (4.84)              20 distinct val.                :                              240        0         
      [numeric]                                  min < med < max :                                                     :                              (100%)     (0%)      
                                                 3 < 14 < 24                                                       . : :   .                                               
                                                 IQR (CV) : 5.5 (0.36)                                       . : : : : : . : :                                             
                                                                                                             : : : : : : : : : :                                           

71    tot_TPQ_RewardDependence.attachment        mean (sd) : 5.06 (2.74)               11 distinct val.          : .   :                              240        0         
      [numeric]                                  min < med < max :                                           .   : :   :   .                          (100%)     (0%)      
                                                 0 < 5 < 10                                                  : : : : : : : :                                               
                                                 IQR (CV) : 4 (0.54)                                         : : : : : : : : : :                                           
                                                                                                             : : : : : : : : : :                                           

72    tot_TPQ_RewardDependence.dependence        mean (sd) : 2.62 (1.2)                0.00 : 10 ( 4.2%)     II                                       240        0         
      [numeric]                                  min < med < max :                     1.00 : 35 (14.6%)     IIIIIII                                  (100%)     (0%)      
                                                 0 < 3 < 5                             2.00 : 60 (25.0%)     IIIIIIIIIIII                                                  
                                                 IQR (CV) : 1.25 (0.46)                3.00 : 75 (31.2%)     IIIIIIIIIIIIIIII                                              
                                                                                       4.00 : 50 (20.8%)     IIIIIIIIII                                                    
                                                                                       5.00 : 10 ( 4.2%)     II                                                            

73    tot_TPQ_RewardDependence.persistence       mean (sd) : 3.94 (2.07)               0.00 :  5 ( 2.1%)     II                                       240        0         
      [numeric]                                  min < med < max :                     1.00 : 35 (14.6%)     IIIIIIIIIIIIII                           (100%)     (0%)      
                                                 0 < 4 < 7                             2.00 : 25 (10.4%)     IIIIIIIIII                                                    
                                                 IQR (CV) : 4 (0.53)                   3.00 : 40 (16.7%)     IIIIIIIIIIIIIIII                                              
                                                                                       4.00 : 40 (16.7%)     IIIIIIIIIIIIIIII                                              
                                                                                       5.00 : 30 (12.5%)     IIIIIIIIIIII                                                  
                                                                                       6.00 : 25 (10.4%)     IIIIIIIIII                                                    
                                                                                       7.00 : 40 (16.7%)     IIIIIIIIIIIIIIII                                              

74    tot_TPQ_RewardDependence.sentimentality    mean (sd) : 1.75 (1.5)                0.00 : 65 (27.1%)     IIIIIIIIIIIIIIII                         240        0         
      [numeric]                                  min < med < max :                     1.00 : 55 (22.9%)     IIIIIIIIIIIII                            (100%)     (0%)      
                                                 0 < 1.5 < 5                           2.00 : 45 (18.8%)     IIIIIIIIIII                                                   
                                                 IQR (CV) : 3 (0.85)                   3.00 : 30 (12.5%)     IIIIIII                                                       
                                                                                       4.00 : 40 (16.7%)     IIIIIIIII                                                     
                                                                                       5.00 :  5 ( 2.1%)     I                                                             

75    tot_VIS_Total                              mean (sd) : 56.62 (19.08)             28 distinct val.                        :                      240        0         
      [numeric]                                  min < med < max :                                                             :                      (100%)     (0%)      
                                                 18 < 64.5 < 75                                                                :                                           
                                                 IQR (CV) : 28.5 (0.34)                                      .             . : :                                           
                                                                                                             : : : . . . : : : :                                           

76    tot_aftervid.AMUSE_PANAS_State.PA          mean (sd) : 21.69 (7.35)              23 distinct val.      :   .                                    240        0         
      [numeric]                                  min < med < max :                                           :   :                                    (100%)     (0%)      
                                                 11 < 22 < 41                                                : . : :                                                       
                                                 IQR (CV) : 11.5 (0.34)                                      : : : : .                                                     
                                                                                                             : : : : : . .                                                 

77    tot_aftervid.AMUSE_PANAS_State.NA          mean (sd) : 12.23 (2.56)              10.00 : 60 (25.0%)    IIIIIIIIIIIIIIII                         240        0         
      [numeric]                                  min < med < max :                     11.00 : 45 (18.8%)    IIIIIIIIIIII                             (100%)     (0%)      
                                                 10 < 12 < 25                          12.00 : 55 (22.9%)    IIIIIIIIIIIIII                                                
                                                 IQR (CV) : 2.25 (0.21)                13.00 : 40 (16.7%)    IIIIIIIIII                                                    
                                                                                       14.00 : 10 ( 4.2%)    II                                                            
                                                                                       15.00 : 10 ( 4.2%)    II                                                            
                                                                                       16.00 : 10 ( 4.2%)    II                                                            
                                                                                       17.00 :  5 ( 2.1%)    I                                                             
                                                                                       25.00 :  5 ( 2.1%)    I                                                             

78    tot_aftervid.DISGUST_PANAS_State.PA        mean (sd) : 17.85 (6.66)              18 distinct val.      :                                        240        0         
      [numeric]                                  min < med < max :                                           :                                        (100%)     (0%)      
                                                 10 < 16 < 37                                                : :                                                           
                                                 IQR (CV) : 8 (0.37)                                         : : .                                                         
                                                                                                             : : : . .                                                     

79    tot_aftervid.DISGUST_PANAS_State.NA        mean (sd) : 15.79 (6.21)              16 distinct val.      :                                        240        0         
      [numeric]                                  min < med < max :                                           :                                        (100%)     (0%)      
                                                 10 < 14 < 41                                                : .                                                           
                                                 IQR (CV) : 7 (0.39)                                         : :                                                           
                                                                                                             : : .                                                         

80    tot_aftervid.FEAR_PANAS_State.PA           mean (sd) : 21.19 (6.47)              20 distinct val.        :                                      240        0         
      [numeric]                                  min < med < max :                                             : :                                    (100%)     (0%)      
                                                 11 < 19.5 < 36                                              . : :     .   .                                               
                                                 IQR (CV) : 9.5 (0.31)                                       : : : : : : . : .                                             
                                                                                                             : : : : : : : : : .                                           

81    tot_aftervid.FEAR_PANAS_State.NA           mean (sd) : 15.69 (5.13)              18 distinct val.      : .                                      240        0         
      [numeric]                                  min < med < max :                                           : :                                      (100%)     (0%)      
                                                 10 < 14 < 31                                                : :                                                           
                                                 IQR (CV) : 5.25 (0.33)                                      : : : .                                                       
                                                                                                             : : : : : : . . . .                                           

82    tot_aftervid.NEUTRAL_PANAS_State.PA        mean (sd) : 14.85 (5.48)              14 distinct val.      :                                        240        0         
      [numeric]                                  min < med < max :                                           : .                                      (100%)     (0%)      
                                                 10 < 14 < 35                                                : :                                                           
                                                 IQR (CV) : 6.25 (0.37)                                      : : . .                                                       
                                                                                                             : : : :   . . .   .                                           

83    tot_aftervid.NEUTRAL_PANAS_State.NA        mean (sd) : 12.4 (3.43)               13 distinct val.      :                                        240        0         
      [numeric]                                  min < med < max :                                           :                                        (100%)     (0%)      
                                                 9 < 11 < 24                                                 : :                                                           
                                                 IQR (CV) : 3 (0.28)                                         : : .                                                         
                                                                                                             : : : . :     .                                               

84    tot_aftervid.SAD_PANAS_State.PA            mean (sd) : 17.71 (5.02)              17 distinct val.        .   :                                  240        0         
      [numeric]                                  min < med < max :                                             :   :                                  (100%)     (0%)      
                                                 10 < 17.5 < 35                                                :   :                                                       
                                                 IQR (CV) : 6 (0.28)                                           : : :                                                       
                                                                                                             : : : : : .   .   .                                           

85    tot_aftervid.SAD_PANAS_State.NA            mean (sd) : 15.15 (5.06)              16 distinct val.        :                                      240        0         
      [numeric]                                  min < med < max :                                           : :                                      (100%)     (0%)      
                                                 10 < 13.5 < 34                                              : : .                                                         
                                                 IQR (CV) : 4 (0.33)                                         : : :                                                         
                                                                                                             : : : : . .   . . .                                           

86    tot_PANAS_State.PA                         mean (sd) : 25.71 (6.33)              22 distinct val.            : :                                240        0         
      [numeric]                                  min < med < max :                                                 : :   :     :                      (100%)     (0%)      
                                                 14 < 25 < 37                                                :   . : : . :     :                                           
                                                 IQR (CV) : 8.5 (0.25)                                       :   : : : : : : : :                                           
                                                                                                             : . : : : : : : : :                                           

87    tot_PANAS_State.NA                         mean (sd) : 13.73 (3.71)              11 distinct val.      :                                        240        0         
      [numeric]                                  min < med < max :                                           :                                        (100%)     (0%)      
                                                 10 < 12.5 < 32                                              :                                                             
                                                 IQR (CV) : 3 (0.27)                                         : . .                                                         
                                                                                                             : : : :                                                       

88    cen_tot_SPSRQ_Punishment                   mean (sd) : 0 (5.65)                  18 distinct val.                :                              240        0         
      [numeric]                                  min < med < max :                                                     :   : .                        (100%)     (0%)      
                                                 -11.31 < 0.19 < 8.69                                          : :   : :   : : :                                           
                                                 IQR (CV) : 9.25 (Inf)                                         : : . : :   : : :                                           
                                                                                                             : : : : : : . : : :                                           

89    cen_tot_SPSRQ_Reward                       mean (sd) : 0 (4.63)                  16 distinct val.                  . :                          240        0         
      [numeric]                                  min < med < max :                                               :       : :                          (100%)     (0%)      
                                                 -8.46 < 1.04 < 9.54                                           : : :   : : :                                               
                                                 IQR (CV) : 8 (-7819215259437784)                            . : : : : : : :                                               
                                                                                                             : : : : : : : :   :                                           

90    cen_tot_BIS                                mean (sd) : 0 (3.95)                  16 distinct val.                  :                            240        0         
      [numeric]                                  min < med < max :                                                       :                            (100%)     (0%)      
                                                 -13 < 0 < 7                                                           . :   .                                             
                                                 IQR (CV) : 4 (Inf)                                                  . : : . :                                             
                                                                                                             .   . . : : : : : :                                           

91    cen_tot_BAS_Rew                            mean (sd) : 0 (1.86)                  -4.52!:  5 ( 2.1%)    I                                        240        0         
      [numeric]                                  min < med < max :                     -3.52!: 10 ( 4.2%)    III                                      (100%)     (0%)      
                                                 -4.52 < 0.48 < 3.48                   -2.52!: 20 ( 8.3%)    IIIIIII                                                       
                                                 IQR (CV) : 3 (1573575695177501)       -1.52!: 35 (14.6%)    IIIIIIIIIIII                                                  
                                                                                       -0.52!: 45 (18.8%)    IIIIIIIIIIIIIIII                                              
                                                                                       0.48!: 45 (18.8%)     IIIIIIIIIIIIIIII                                              
                                                                                       1.48!: 45 (18.8%)     IIIIIIIIIIIIIIII                                              
                                                                                       2.48!: 25 (10.4%)     IIIIIIII                                                      
                                                                                       3.48!: 10 ( 4.2%)     III                                                           
                                                                                       ! rounded                                                                           

92    cen_tot_PSWQ                               mean (sd) : 0 (13.38)                 29 distinct val.            :                                  240        0         
      [numeric]                                  min < med < max :                                                 :                                  (100%)     (0%)      
                                                 -32.02 < -2.02 < 30.98                                            : . .                                                   
                                                 IQR (CV) : 18.5 (-5655205783658562)                               : : : :   .                                             
                                                                                                             . . . : : : : : : .                                           

93    cen_tot_RS_Brooding                        mean (sd) : 0 (2.8)                   12 distinct val.            :                                  240        0         
      [numeric]                                  min < med < max :                                                 :     .                            (100%)     (0%)      
                                                 -5.42 < -0.42 < 5.58                                        :     : : : :                                                 
                                                 IQR (CV) : 3.25 (4725330298614217)                          : :   : : : : : : :                                           
                                                                                                             : : : : : : : : : :                                           

94    cen_age                                                                          All NA's                                                       0          240       
      [numeric]                                                                                                                                       (0%)       (100%)    

95    cen_hrs_ate                                mean (sd) : 0 (4.43)                  16 distinct val.              :                                240        0         
      [numeric]                                  min < med < max :                                                   :                                (100%)     (0%)      
                                                 -7.61 < 0.89 < 10.39                                        .       : : .                                                 
                                                 IQR (CV) : 6.25 (-7470164046795687)                         : :     : : :                                                 
                                                                                                             : : : . : : : : . .                                           

96    med_split_BIS                              1. high                               115 (47.9%)           IIIIIIIIIIIIII                           240        0         
      [factor]                                   2. low                                125 (52.1%)           IIIIIIIIIIIIIIII                         (100%)     (0%)      

97    med_split_BAS_Rew                          1. high                               125 (52.1%)           IIIIIIIIIIIIIIII                         240        0         
      [factor]                                   2. low                                115 (47.9%)           IIIIIIIIIIIIII                           (100%)     (0%)      

98    med_split_PSWQ                             1. high                               115 (47.9%)           IIIIIIIIIIIIII                           240        0         
      [factor]                                   2. low                                125 (52.1%)           IIIIIIIIIIIIIIII                         (100%)     (0%)      

99    med_split_RS_Brood                         1. high                               115 (47.9%)           IIIIIIIIIIIIII                           240        0         
      [factor]                                   2. low                                125 (52.1%)           IIIIIIIIIIIIIIII                         (100%)     (0%)      

100   med_split_BAS_Rew <=                                                             All NA's                                                       0          240       
      as.factor(ifelse(tot_bisbas_BAS.Reward <                                                                                                        (0%)       (100%)    
      median(tot_bisbas_BAS.Reward),                                                                                                                                       
      "low", "high"))                                                                                                                                                      
      [logical]                                                                                                                                                            
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# view(dfSummary(all.data))

The EGG variables look pretty bimodal, which has me kinda worried. I did attempt transformation using the bestNormalize package (picks the transformation that gets your data closest to normal) on egg_n but it didn’t really improve matters - data are still bimodal, as shown below. So I just went with the non-transformed values.

Note missing observations for age, gender, and race.

Transformation

library(bestNormalize)
egg_n_transf <- bestNormalize(all.data$egg_n)
boxcox  did not work;  Error in estimate_boxcox_lambda(x, ...) : x must be positive
Ties in data, Normal distribution not guaranteed

|====================                                                                                                                           | 14% ~0 s remaining     
|=====================================                                                                                                          | 26% ~0 s remaining     
|======================================================                                                                                         | 38% ~0 s remaining     
|=======================================================================                                                                        | 50% ~0 s remaining     
|========================================================================================                                                       | 62% ~0 s remaining     
|=========================================================================================================                                      | 74% ~0 s remaining     
|==========================================================================================================================                     | 86% ~0 s remaining     
|============================================================================================================================================   | 98% ~0 s remaining     
egg_n_transf$x.t
  [1]  0.33372218  0.96190050 -1.21578617 -0.23619932 -0.15665257  0.33372218 -0.75853164 -0.71084801  0.33372218 -0.15665257 -0.06244624 -0.15665257 -0.06244624
 [14] -0.15665257 -0.71084801  0.33372218 -0.06244624 -0.15665257  0.40612970  0.33372218  0.40612970  0.33372218 -0.15665257 -0.15665257 -0.06244624  0.33372218
 [27]  0.40612970  0.33372218  0.96190050  0.96190050 -0.75853164  0.96190050  0.96190050 -0.06244624  0.33372218 -0.53997885 -0.15665257 -0.15665257 -0.71084801
 [40]  0.96190050 -1.21578617 -0.15665257  0.33372218 -0.32822891 -0.71084801 -0.71084801 -0.15665257 -0.23619932 -1.21578617  0.96190050 -1.21578617 -1.21578617
 [53] -1.21578617  0.96190050  0.96190050  0.96190050  0.96190050  0.96190050 -1.21578617  0.96190050  0.96190050 -1.21578617 -1.21578617  0.96190050  0.96190050
 [66] -1.21578617  0.96190050  0.96190050  0.96190050  0.96190050  0.96190050  0.96190050 -1.21578617 -1.21578617  0.96190050  0.96190050 -1.21578617  0.96190050
 [79]  0.96190050  0.96190050  0.96190050  0.96190050  0.96190050 -1.21578617  0.96190050 -1.21578617  0.96190050 -1.21578617 -1.21578617 -1.21578617 -1.21578617
 [92]  0.96190050 -1.21578617 -1.21578617 -1.21578617  0.96190050 -0.53997885  0.02600530 -1.21578617 -1.21578617  0.96190050  0.96190050 -0.32822891 -0.53997885
[105]  0.96190050 -1.21578617 -1.21578617  0.18303344  0.18303344 -0.32822891 -0.32822891  0.96190050 -0.32822891 -0.32822891 -0.53997885  0.18303344 -0.32822891
[118]  0.18303344 -0.32822891  0.96190050 -1.21578617  0.96190050 -0.53997885  0.96190050 -0.32822891  0.96190050 -0.53997885 -0.53997885 -0.53997885  0.96190050
[131] -0.53997885 -0.53997885 -0.32822891  0.96190050 -0.32822891  0.02600530 -1.21578617  0.18303344  0.96190050  0.96190050 -1.21578617 -0.53997885 -0.53997885
[144] -0.53997885  0.96190050  0.96190050 -1.21578617 -1.21578617 -1.21578617  0.96190050 -1.21578617 -1.21578617  0.96190050 -1.21578617  0.96190050 -1.21578617
[157] -1.21578617  0.96190050  0.96190050 -1.21578617  0.96190050 -1.21578617  0.96190050  0.96190050  0.96190050 -1.21578617 -1.21578617 -1.21578617 -1.21578617
[170]  0.96190050  0.96190050  0.96190050  0.96190050  0.96190050 -1.21578617  0.96190050  0.96190050  0.96190050 -1.21578617 -1.21578617  0.96190050  0.96190050
[183]  0.96190050 -1.21578617  0.96190050  0.96190050  0.96190050 -1.21578617  0.96190050 -1.21578617 -1.21578617  0.96190050 -1.21578617  0.96190050 -1.21578617
[196]  0.02600530 -0.53997885  0.18303344 -0.32822891 -0.53997885  0.18303344 -0.32822891  0.96190050  0.18303344  0.96190050 -0.32822891  0.02600530  0.18303344
[209] -0.32822891  0.96190050  0.18303344  0.18303344  0.96190050  0.18303344  0.96190050  0.18303344  0.02600530  0.02600530  0.02600530  0.18303344  0.02600530
[222]  0.96190050  0.18303344 -0.53997885 -0.53997885  0.02600530  0.96190050  0.18303344  0.02600530 -0.15665257  0.02600530  0.02600530 -0.53997885  0.18303344
[235] -0.53997885 -0.15665257 -0.53997885 -0.53997885 -0.53997885  0.18303344
psych::describe(egg_n_transf$x) #non-transformed
   vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
X1    1 240 0.56 0.39   0.67    0.58 0.49   0   1     1 -0.23    -1.43 0.02
psych::describe(egg_n_transf$x.t) #transformed
   vars   n  mean   sd median trimmed  mad   min  max range  skew kurtosis   se
X1    1 240 -0.01 0.83   0.03    0.02 1.39 -1.22 0.96  2.18 -0.17    -1.39 0.05
hist(egg_n_transf$x) #non-transformed

hist(egg_n_transf$x.t) #transformed

qqnorm(egg_n_transf$x) #non-transformed

qqnorm(egg_n_transf$x.t) #transformed

Correlations (within-condition; BASELINE, NE, FE, SA only)

Because of the aforementioned non-normality of the EGG variables, I used both Spearman’s rho as well as Pearson’s r.

EGG normogastria

# HRV and EGG normo @ baseline
baseline <- all.data %>% filter(cond=="BASELINE")
cor.test(baseline$egg_n, baseline$hrv.msd, method=c("pearson"))

    Pearson's product-moment correlation

data:  baseline$egg_n and baseline$hrv.msd
t = -0.175, df = 46, p-value = 0.8618
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.3076736  0.2602482
sample estimates:
        cor 
-0.02579378 
cor.test(baseline$egg_n, baseline$hrv.msd, method=c("spearman"))
Cannot compute exact p-value with ties

    Spearman's rank correlation rho

data:  baseline$egg_n and baseline$hrv.msd
S = 17667, p-value = 0.7817
alternative hypothesis: true rho is not equal to 0
sample estimates:
       rho 
0.04106877 
# HRV and EGG normo @ fear video
fe <- all.data %>% filter(cond=="FE")
cor.test(fe$egg_n, fe$hrv.msd, method=c("pearson"))

    Pearson's product-moment correlation

data:  fe$egg_n and fe$hrv.msd
t = -3.1494, df = 46, p-value = 0.002873
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.6299199 -0.1556592
sample estimates:
       cor 
-0.4211665 
cor.test(fe$egg_n, fe$hrv.msd, method=c("spearman"))
Cannot compute exact p-value with ties

    Spearman's rank correlation rho

data:  fe$egg_n and fe$hrv.msd
S = 26751, p-value = 0.00126
alternative hypothesis: true rho is not equal to 0
sample estimates:
       rho 
-0.4519664 
# HRV and EGG normo @ sad video
sa <- all.data %>% filter(cond=="SA")
cor.test(sa$egg_n, sa$hrv.msd, method=c("pearson"))

    Pearson's product-moment correlation

data:  sa$egg_n and sa$hrv.msd
t = -0.65518, df = 46, p-value = 0.5156
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.3701746  0.1932615
sample estimates:
        cor 
-0.09615324 
cor.test(sa$egg_n, sa$hrv.msd, method=c("spearman"))
Cannot compute exact p-value with ties

    Spearman's rank correlation rho

data:  sa$egg_n and sa$hrv.msd
S = 20005, p-value = 0.5619
alternative hypothesis: true rho is not equal to 0
sample estimates:
        rho 
-0.08583065 
# HRV and EGG normo @ neutral video
ne <- all.data %>% filter(cond=="NE")
cor.test(ne$egg_n, ne$hrv.msd, method=c("pearson"))

    Pearson's product-moment correlation

data:  ne$egg_n and ne$hrv.msd
t = -0.61873, df = 46, p-value = 0.5391
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.3655483  0.1984066
sample estimates:
        cor 
-0.09084973 
cor.test(ne$egg_n, ne$hrv.msd, method=c("spearman"))
Cannot compute exact p-value with ties

    Spearman's rank correlation rho

data:  ne$egg_n and ne$hrv.msd
S = 18396, p-value = 0.9918
alternative hypothesis: true rho is not equal to 0
sample estimates:
        rho 
0.001515731 

Luckily, the results match: HRV and EGG normogastria for the sample as a whole are uncorrelated except in the Fear condition, where they are negatively correlated based either on Spearman or Pearson ( p < .003).

EGG tachygastria

# HRV and EGG tachy @ baseline
baseline <- all.data %>% filter(cond=="BASELINE")
cor.test(baseline$egg_t, baseline$hrv.msd, method=c("pearson"))

    Pearson's product-moment correlation

data:  baseline$egg_t and baseline$hrv.msd
t = -0.13687, df = 46, p-value = 0.8917
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.3025768  0.2654799
sample estimates:
        cor 
-0.02017674 
cor.test(baseline$egg_t, baseline$hrv.msd, method=c("spearman"))
Cannot compute exact p-value with ties

    Spearman's rank correlation rho

data:  baseline$egg_t and baseline$hrv.msd
S = 20593, p-value = 0.4255
alternative hypothesis: true rho is not equal to 0
sample estimates:
       rho 
-0.1177177 
# HRV and EGG tachy @ fear video
fe <- all.data %>% filter(cond=="FE")
cor.test(fe$egg_t, fe$hrv.msd, method=c("pearson"))

    Pearson's product-moment correlation

data:  fe$egg_t and fe$hrv.msd
t = 2.2804, df = 46, p-value = 0.02726
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.0380050 0.5527772
sample estimates:
      cor 
0.3186982 
cor.test(fe$egg_t, fe$hrv.msd, method=c("spearman"))
Cannot compute exact p-value with ties

    Spearman's rank correlation rho

data:  fe$egg_t and fe$hrv.msd
S = 10424, p-value = 0.002044
alternative hypothesis: true rho is not equal to 0
sample estimates:
     rho 
0.434238 
# HRV and EGG tachy @ sad video
sa <- all.data %>% filter(cond=="SA")
cor.test(sa$egg_t, sa$hrv.msd, method=c("pearson"))

    Pearson's product-moment correlation

data:  sa$egg_t and sa$hrv.msd
t = 2.0598, df = 46, p-value = 0.0451
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.007039263 0.530892951
sample estimates:
      cor 
0.2905927 
cor.test(sa$egg_t, sa$hrv.msd, method=c("spearman"))
Cannot compute exact p-value with ties

    Spearman's rank correlation rho

data:  sa$egg_t and sa$hrv.msd
S = 13588, p-value = 0.07148
alternative hypothesis: true rho is not equal to 0
sample estimates:
      rho 
0.2624902 
# HRV and EGG tachy @ neutral video
ne <- all.data %>% filter(cond=="NE")
cor.test(ne$egg_t, ne$hrv.msd, method=c("pearson"))

    Pearson's product-moment correlation

data:  ne$egg_t and ne$hrv.msd
t = 3.3413, df = 46, p-value = 0.001663
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.1804545 0.6450653
sample estimates:
      cor 
0.4419299 
cor.test(ne$egg_t, ne$hrv.msd, method=c("spearman"))
Cannot compute exact p-value with ties

    Spearman's rank correlation rho

data:  ne$egg_t and ne$hrv.msd
S = 12079, p-value = 0.01654
alternative hypothesis: true rho is not equal to 0
sample estimates:
      rho 
0.3443775 

For tachygastria, we see that EGG and HRV are positively correlated during both Fear ( p < .03) and Neutral ( p < .02). The correlation during Sadness is no-significant if using Spearman ( p < .075) but significant if using Pearson ( p = .045).

Scatterplots

Let’s visualize these relationships.

Across conditions

all.data %>% ggplot(aes(x=egg_n, y=hrv.msd)) + geom_point() + geom_smooth(method=lm, linetype="solid", color="gray59", fill="lightgray") # normo

all.data %>% ggplot(aes(x=egg_t, y=hrv.msd)) + geom_point() + geom_smooth(method=lm, linetype="solid", color="gray59", fill="lightgray") # tachy

Baseline

baseline %>% ggplot(aes(x=egg_n, y=hrv.msd)) + geom_point() + geom_smooth(method=lm, linetype="solid", color="gray59", fill="lightgray")  # normo

baseline %>% ggplot(aes(x=egg_t, y=hrv.msd)) + geom_point() + geom_smooth(method=lm, linetype="solid", color="gray59", fill="lightgray")  # tachy

Fear

fe %>% ggplot(aes(x=egg_n, y=hrv.msd)) + geom_point() + geom_smooth(method=lm, linetype="solid", color="gray59", fill="lightgray")  # normo

fe %>% ggplot(aes(x=egg_t, y=hrv.msd)) + geom_point() + geom_smooth(method=lm, linetype="solid", color="gray59", fill="lightgray")  # tachy

Sadness

sa %>% ggplot(aes(x=egg_n, y=hrv.msd)) + geom_point() + geom_smooth(method=lm, linetype="solid", color="gray59", fill="lightgray") # normo

sa %>% ggplot(aes(x=egg_t, y=hrv.msd)) + geom_point() + geom_smooth(method=lm, linetype="solid", color="gray59", fill="lightgray") # tachy

Based on these plots, you can see the problem with assuming that these data are continuous (EGG values from Acqknowledge are really closer to ordinal) and normally distributed, which I think supports the use of Spearman’s rho over Pearson’s r, though in most cases the general pattern is in agreement.

EGG/HRV by condition: RM-ANOVAs

anovaData <- filter(all.data, !grepl("DIS",cond)) # filtered out data in DIS condition, we dropped AMU earlier in the data cleaning
# repeated-measures ANOVA 
a1 <- aov_ez(id = "ID", dv = "egg_n", anovaData, within = "cond", fun_aggregate = mean)
a1 
Anova Table (Type 3 tests)

Response: egg_n
  Effect          df  MSE    F ges p.value
1   cond 2.10, 98.85 0.15 0.81 .01     .45
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Sphericity correction method: GG 
a2 <- aov_ez(id = "ID", dv = "egg_t", anovaData, within = "cond", fun_aggregate = mean)
a2 
Anova Table (Type 3 tests)

Response: egg_t
  Effect           df  MSE    F  ges p.value
1   cond 2.32, 109.19 0.11 0.60 .009     .57
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Sphericity correction method: GG 
a3 <- aov_ez(id = "ID", dv = "hrv.msd", anovaData, within = "cond", fun_aggregate = mean)
a3 
Anova Table (Type 3 tests)

Response: hrv.msd
  Effect           df   MSE    F  ges p.value
1   cond 2.38, 111.69 55.10 0.86 .001     .44
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Sphericity correction method: GG 
a5 <- aov_ez(id = "ID", dv = "panas_NA", anovaData, within = "cond", fun_aggregate = mean)
a5 
Anova Table (Type 3 tests)

Response: panas_NA
  Effect           df   MSE        F ges p.value
1   cond 2.61, 122.75 12.56 9.62 *** .08  <.0001
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Sphericity correction method: GG 
a6 <- aov_ez(id = "ID", dv = "panas_PA", anovaData, within = "cond", fun_aggregate = mean)
a6 
Anova Table (Type 3 tests)

Response: panas_PA
  Effect           df   MSE         F ges p.value
1   cond 2.82, 132.53 16.99 65.77 *** .32  <.0001
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Sphericity correction method: GG 

There is no main effect of condition alone on egg_n or egg_t or hrv.msd. However, there is a main effect of condition on PANAS, both NA and PA.

Pairwise comparisons for effect of cond on state affect

a5$lm[1] # coefficients for PANAS NA (use a5$lm[2] to get residuals)
$coefficients
            BASELINE      FE       NE       SA
(Intercept) 13.72917 15.6875 12.39583 15.14583
# negative affect estimated marginal means and pairwise comparisons
emm <- emmeans(a5, ~c(cond))
emm
 cond       emmean        SE     df lower.CL upper.CL
 BASELINE 13.72917 0.6404344 118.02 12.46093 14.99740
 FE       15.68750 0.6404344 118.02 14.41927 16.95573
 NE       12.39583 0.6404344 118.02 11.12760 13.66407
 SA       15.14583 0.6404344 118.02 13.87760 16.41407

Confidence level used: 0.95 
update(pairs(emm), by=NULL, adjust = "holm")
 contrast        estimate       SE  df t.ratio p.value
 BASELINE - FE -1.9583333 0.674986 141  -2.901  0.0173
 BASELINE - NE  1.3333333 0.674986 141   1.975  0.1128
 BASELINE - SA -1.4166667 0.674986 141  -2.099  0.1128
 FE - NE        3.2916667 0.674986 141   4.877  <.0001
 FE - SA        0.5416667 0.674986 141   0.802  0.4236
 NE - SA       -2.7500000 0.674986 141  -4.074  0.0004

P value adjustment: holm method for 6 tests 

In terms of negative affect, NA is significantly higher after the fear video compared to when it was measured pre-baseline recording. NA is also significantly higher after the fear video compared to after the neutral video, and after the sad video compared to after the neutral video. These patterns are shown in the boxplot below:

a6$lm[1] # coefficients for PANAS PA (use a6$lm[2] to get residuals)
$coefficients
            BASELINE      FE       NE       SA
(Intercept) 25.70833 21.1875 14.85417 17.70833
# negative affect estimated marginal means and pairwise comparisons
emm <- emmeans(a6, ~c(cond))
emm
 cond       emmean        SE    df lower.CL upper.CL
 BASELINE 25.70833 0.8526869 99.88 24.01660 27.40007
 FE       21.18750 0.8526869 99.88 19.49577 22.87923
 NE       14.85417 0.8526869 99.88 13.16243 16.54590
 SA       17.70833 0.8526869 99.88 16.01660 19.40007

Confidence level used: 0.95 
update(pairs(emm), by=NULL, adjust = "holm")
 contrast       estimate        SE  df t.ratio p.value
 BASELINE - FE  4.520833 0.8157988 141   5.542  <.0001
 BASELINE - NE 10.854167 0.8157988 141  13.305  <.0001
 BASELINE - SA  8.000000 0.8157988 141   9.806  <.0001
 FE - NE        6.333333 0.8157988 141   7.763  <.0001
 FE - SA        3.479167 0.8157988 141   4.265  0.0001
 NE - SA       -2.854167 0.8157988 141  -3.499  0.0006

P value adjustment: holm method for 6 tests 

In terms of positive affect, PA is significantly higher pre-baseline recording, compared to the neutral, fear, and sadness videos. Interesting, PA is significantly lower after neutral than after both sadness and fear (so maybe people REALLY hate being bored by the colorbars?? hmmm). It’s also significantly lower for sadness relative to fear. This is interesting! I guess that last one fits with the idea that many undergrads enjoy horror movies… These patterns are shown in the boxplot below:

pa_box <- ggplot(anovaData, aes(y=panas_PA, x=as.factor(cond))) + 
  geom_boxplot(aes(fill=cond),outlier.alpha = 0.2) + xlab("Condition") + ylab("PANAS Positive Affect")
pa_box

EGG and HRV models with covariates

# repeated-measures ANOVA with covariates
a7 <- aov_ez(id = "ID", dv = "egg_n", anovaData, within = "cond", covariate = c("hrs_ate","gender","age"), fun_aggregate = mean)
Numerical variables NOT centered on 0 (i.e., likely bogus results): hrs_ate, NAMissing values for following ID(s):
1004, 1016, 1024, 1031, 1118
Removing those cases from the analysis.Contrasts set to contr.sum for the following variables: gender
a7 
Anova Table (Type 3 tests)

Response: egg_n
        Effect          df  MSE    F  ges p.value
1      hrs_ate       1, 39 0.21 0.83 .009     .37
2       gender       1, 39 0.21 1.42  .01     .24
3          age       1, 39 0.21 0.31 .003     .58
4         cond 2.14, 83.41 0.14 0.73  .01     .50
5 hrs_ate:cond 2.14, 83.41 0.14 0.29 .004     .77
6  gender:cond 2.14, 83.41 0.14 1.88  .03     .16
7     age:cond 2.14, 83.41 0.14 0.87  .01     .43
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Sphericity correction method: GG 
a8 <- aov_ez(id = "ID", dv = "egg_t", anovaData, within = "cond", covariate = c("hrs_ate","gender","age"), fun_aggregate = mean)
Numerical variables NOT centered on 0 (i.e., likely bogus results): hrs_ate, NAMissing values for following ID(s):
1004, 1016, 1024, 1031, 1118
Removing those cases from the analysis.Contrasts set to contr.sum for the following variables: gender
a8 
Anova Table (Type 3 tests)

Response: egg_t
        Effect          df  MSE    F    ges p.value
1      hrs_ate       1, 39 0.11 0.01 <.0001     .92
2       gender       1, 39 0.11 0.54   .004     .47
3          age       1, 39 0.11 0.13   .001     .72
4         cond 2.13, 82.98 0.11 0.34   .006     .72
5 hrs_ate:cond 2.13, 82.98 0.11 0.72    .01     .50
6  gender:cond 2.13, 82.98 0.11 1.07    .02     .35
7     age:cond 2.13, 82.98 0.11 1.19    .02     .31
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Sphericity correction method: GG 
a9 <- aov_ez(id = "ID", dv = "hrv.msd", anovaData, within = "cond", covariate = c("gender","age"), fun_aggregate = mean)
Numerical variables NOT centered on 0 (i.e., likely bogus results): NAMissing values for following ID(s):
1004, 1016, 1024, 1031, 1118
Removing those cases from the analysis.Contrasts set to contr.sum for the following variables: gender
a9 
Anova Table (Type 3 tests)

Response: hrv.msd
       Effect          df     MSE      F   ges p.value
1      gender       1, 40 1993.84   1.14   .03     .29
2         age       1, 40 1993.84 3.71 +   .08     .06
3        cond 2.34, 93.78   59.25   0.98  .002     .39
4 gender:cond 2.34, 93.78   59.25   0.10 .0002     .93
5    age:cond 2.34, 93.78   59.25   0.86  .001     .44
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Sphericity correction method: GG 

The package tells me I need to center age and hrs_ate, but I’m not sure that I do since zero is a perfectly reasonable value for both of those, so I would think we’d want to preserve the actual units for interpretability…??

No significant effects when covariates are included, either. There is a non-significant effect of age on hrv.msd, p = .06.

Lattice plots

The lack of main effects suggests that either that people’s physiology isn’t affected by the videos, or alternatively, that people just vary a lot in their response. Let’s check it out using lattice plots:

library(lattice)
xyplot(egg_n ~ cond | ID, data = anovaData, as.table=T)

xyplot(egg_t ~ cond | ID, data = anovaData, as.table=T)

xyplot(hrv.msd ~ cond | ID, data = anovaData, as.table=T)

Too many people/hard to see patterns with the whole sample, so look at a random subset of IDs:

# too many people/hard to see, try random subset
ids <- sample(unique(anovaData$ID), 18) # random subset of IDs (n=18)
temp <- anovaData[anovaData$ID %in% ids, ]
xyplot(egg_n ~ cond | ID, data = temp, as.table=T) 

xyplot(egg_t ~ cond | ID, data = temp, as.table=T) 

xyplot(hrv.msd ~ cond | ID, data = temp, as.table=T) 

What this shows is that people vary pretty widely in their response to the videos. This could explain some of the lack of overall effects of cond.

Effects of emotionality and regulation (continuous)

I would very much IGNORE all of the crazy multi-way interactions below, because they’re not super interpretable…I just don’t know how to make afex stop giving me every possible interaction under the sun.
a10 <- aov_ez(id = "ID", dv = "egg_n", anovaData, within = "cond", between = c("cen_tot_BIS","cen_tot_BAS_Rew","cen_tot_PSWQ","cen_tot_RS_Brooding"), fun_aggregate = mean)
a10 
Anova Table (Type 3 tests)

Response: egg_n
                                                              Effect          df  MSE      F   ges p.value
1                                                        cen_tot_BIS       1, 32 0.16 4.32 *   .04     .05
2                                                    cen_tot_BAS_Rew       1, 32 0.16   1.16   .01     .29
3                                                       cen_tot_PSWQ       1, 32 0.16   2.04   .02     .16
4                                                cen_tot_RS_Brooding       1, 32 0.16   0.97  .010     .33
5                                        cen_tot_BIS:cen_tot_BAS_Rew       1, 32 0.16   0.45  .004     .51
6                                           cen_tot_BIS:cen_tot_PSWQ       1, 32 0.16   0.03 .0003     .87
7                                       cen_tot_BAS_Rew:cen_tot_PSWQ       1, 32 0.16   2.35   .02     .14
8                                    cen_tot_BIS:cen_tot_RS_Brooding       1, 32 0.16   1.13   .01     .30
9                                cen_tot_BAS_Rew:cen_tot_RS_Brooding       1, 32 0.16   0.08 .0008     .78
10                                  cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 0.16   0.25  .002     .62
11                          cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ       1, 32 0.16   0.30  .003     .59
12                   cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_RS_Brooding       1, 32 0.16   1.29   .01     .26
13                      cen_tot_BIS:cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 0.16   0.77  .008     .39
14                  cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 0.16   1.23   .01     .28
15      cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 0.16   0.26  .003     .61
16                                                              cond 2.01, 64.47 0.16   0.22  .005     .81
17                                                  cen_tot_BIS:cond 2.01, 64.47 0.16   1.48   .03     .24
18                                              cen_tot_BAS_Rew:cond 2.01, 64.47 0.16   0.88   .02     .42
19                                                 cen_tot_PSWQ:cond 2.01, 64.47 0.16   0.60   .01     .55
20                                          cen_tot_RS_Brooding:cond 2.01, 64.47 0.16   0.29  .006     .75
21                                  cen_tot_BIS:cen_tot_BAS_Rew:cond 2.01, 64.47 0.16   0.78   .02     .46
22                                     cen_tot_BIS:cen_tot_PSWQ:cond 2.01, 64.47 0.16   0.28  .006     .76
23                                 cen_tot_BAS_Rew:cen_tot_PSWQ:cond 2.01, 64.47 0.16   0.22  .005     .80
24                              cen_tot_BIS:cen_tot_RS_Brooding:cond 2.01, 64.47 0.16   0.63   .01     .54
25                          cen_tot_BAS_Rew:cen_tot_RS_Brooding:cond 2.01, 64.47 0.16   1.59   .03     .21
26                             cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.01, 64.47 0.16   1.11   .02     .34
27                     cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ:cond 2.01, 64.47 0.16   0.34  .007     .72
28              cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_RS_Brooding:cond 2.01, 64.47 0.16   1.88   .04     .16
29                 cen_tot_BIS:cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.01, 64.47 0.16   0.02 .0004     .98
30             cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.01, 64.47 0.16   0.50   .01     .61
31 cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.01, 64.47 0.16   0.24  .005     .79
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Sphericity correction method: GG 
a11 <- aov_ez(id = "ID", dv = "egg_t", anovaData, within = "cond", between = c("cen_tot_BIS","cen_tot_BAS_Rew","cen_tot_PSWQ","cen_tot_RS_Brooding"), fun_aggregate = mean)
a11
Anova Table (Type 3 tests)

Response: egg_t
                                                              Effect          df  MSE      F    ges p.value
1                                                        cen_tot_BIS       1, 32 0.11 3.34 +    .03     .08
2                                                    cen_tot_BAS_Rew       1, 32 0.11   0.07  .0007     .79
3                                                       cen_tot_PSWQ       1, 32 0.11   0.71   .006     .41
4                                                cen_tot_RS_Brooding       1, 32 0.11   0.34   .003     .56
5                                        cen_tot_BIS:cen_tot_BAS_Rew       1, 32 0.11   0.01 <.0001     .93
6                                           cen_tot_BIS:cen_tot_PSWQ       1, 32 0.11   0.29   .003     .60
7                                       cen_tot_BAS_Rew:cen_tot_PSWQ       1, 32 0.11   0.57   .005     .45
8                                    cen_tot_BIS:cen_tot_RS_Brooding       1, 32 0.11   1.07   .010     .31
9                                cen_tot_BAS_Rew:cen_tot_RS_Brooding       1, 32 0.11   1.11    .01     .30
10                                  cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 0.11   0.01 <.0001     .94
11                          cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ       1, 32 0.11   0.38   .003     .54
12                   cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_RS_Brooding       1, 32 0.11   1.15    .01     .29
13                      cen_tot_BIS:cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 0.11   0.16   .001     .70
14                  cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 0.11   0.00 <.0001     .97
15      cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 0.11   0.24   .002     .63
16                                                              cond 2.47, 79.17 0.11   1.04    .02     .37
17                                                  cen_tot_BIS:cond 2.47, 79.17 0.11   0.55    .01     .62
18                                              cen_tot_BAS_Rew:cond 2.47, 79.17 0.11   0.15   .003     .90
19                                                 cen_tot_PSWQ:cond 2.47, 79.17 0.11   0.13   .003     .91
20                                          cen_tot_RS_Brooding:cond 2.47, 79.17 0.11   0.29   .006     .79
21                                  cen_tot_BIS:cen_tot_BAS_Rew:cond 2.47, 79.17 0.11   0.65    .01     .56
22                                     cen_tot_BIS:cen_tot_PSWQ:cond 2.47, 79.17 0.11   0.28   .006     .80
23                                 cen_tot_BAS_Rew:cen_tot_PSWQ:cond 2.47, 79.17 0.11   0.04  .0009     .98
24                              cen_tot_BIS:cen_tot_RS_Brooding:cond 2.47, 79.17 0.11   0.79    .02     .48
25                          cen_tot_BAS_Rew:cen_tot_RS_Brooding:cond 2.47, 79.17 0.11   0.12   .003     .92
26                             cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.47, 79.17 0.11   0.78    .02     .49
27                     cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ:cond 2.47, 79.17 0.11   0.21   .005     .85
28              cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_RS_Brooding:cond 2.47, 79.17 0.11 3.37 *    .07     .03
29                 cen_tot_BIS:cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.47, 79.17 0.11   1.06    .02     .36
30             cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.47, 79.17 0.11   1.21    .03     .31
31 cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.47, 79.17 0.11   0.53    .01     .63
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Sphericity correction method: GG 
a12 <- aov_ez(id = "ID", dv = "hrv.msd", anovaData, within = "cond", between = c("cen_tot_BIS","cen_tot_BAS_Rew","cen_tot_PSWQ","cen_tot_RS_Brooding"), fun_aggregate = mean)
a12
Anova Table (Type 3 tests)

Response: hrv.msd
                                                              Effect          df     MSE      F    ges p.value
1                                                        cen_tot_BIS       1, 32 1679.82 7.18 *    .17     .01
2                                                    cen_tot_BAS_Rew       1, 32 1679.82 3.22 +    .08     .08
3                                                       cen_tot_PSWQ       1, 32 1679.82   1.62    .04     .21
4                                                cen_tot_RS_Brooding       1, 32 1679.82   0.17   .005     .68
5                                        cen_tot_BIS:cen_tot_BAS_Rew       1, 32 1679.82   0.01  .0002     .94
6                                           cen_tot_BIS:cen_tot_PSWQ       1, 32 1679.82   0.17   .005     .68
7                                       cen_tot_BAS_Rew:cen_tot_PSWQ       1, 32 1679.82   0.03  .0008     .87
8                                    cen_tot_BIS:cen_tot_RS_Brooding       1, 32 1679.82   1.47    .04     .23
9                                cen_tot_BAS_Rew:cen_tot_RS_Brooding       1, 32 1679.82   0.26   .007     .61
10                                  cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 1679.82   1.39    .04     .25
11                          cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ       1, 32 1679.82   0.01  .0003     .92
12                   cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_RS_Brooding       1, 32 1679.82   2.58    .07     .12
13                      cen_tot_BIS:cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 1679.82   1.32    .04     .26
14                  cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 1679.82   2.54    .07     .12
15      cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 1679.82   0.02  .0005     .90
16                                                              cond 2.32, 74.40   68.95   0.50   .001     .64
17                                                  cen_tot_BIS:cond 2.32, 74.40   68.95   0.04  .0001     .97
18                                              cen_tot_BAS_Rew:cond 2.32, 74.40   68.95   0.30  .0008     .78
19                                                 cen_tot_PSWQ:cond 2.32, 74.40   68.95   0.07  .0002     .95
20                                          cen_tot_RS_Brooding:cond 2.32, 74.40   68.95   0.03 <.0001     .98
21                                  cen_tot_BIS:cen_tot_BAS_Rew:cond 2.32, 74.40   68.95   0.13  .0004     .90
22                                     cen_tot_BIS:cen_tot_PSWQ:cond 2.32, 74.40   68.95   0.20  .0005     .85
23                                 cen_tot_BAS_Rew:cen_tot_PSWQ:cond 2.32, 74.40   68.95   0.44   .001     .68
24                              cen_tot_BIS:cen_tot_RS_Brooding:cond 2.32, 74.40   68.95   1.44   .004     .24
25                          cen_tot_BAS_Rew:cen_tot_RS_Brooding:cond 2.32, 74.40   68.95   0.43   .001     .68
26                             cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.32, 74.40   68.95   0.99   .003     .39
27                     cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ:cond 2.32, 74.40   68.95   0.29  .0008     .78
28              cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_RS_Brooding:cond 2.32, 74.40   68.95   0.71   .002     .52
29                 cen_tot_BIS:cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.32, 74.40   68.95   0.15  .0004     .89
30             cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.32, 74.40   68.95   1.52   .004     .22
31 cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.32, 74.40   68.95   0.02 <.0001     .99
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Sphericity correction method: GG 
a13 <- aov_ez(id = "ID", dv = "panas_NA", anovaData, within = "cond", between = c("cen_tot_BIS","cen_tot_BAS_Rew","cen_tot_PSWQ","cen_tot_RS_Brooding"), fun_aggregate = mean)
a13
Anova Table (Type 3 tests)

Response: panas_NA
                                                              Effect          df   MSE        F   ges p.value
1                                                        cen_tot_BIS       1, 32 35.42     1.90   .03     .18
2                                                    cen_tot_BAS_Rew       1, 32 35.42     0.04 .0006     .84
3                                                       cen_tot_PSWQ       1, 32 35.42  7.78 **   .11    .009
4                                                cen_tot_RS_Brooding       1, 32 35.42     2.51   .04     .12
5                                        cen_tot_BIS:cen_tot_BAS_Rew       1, 32 35.42     1.63   .03     .21
6                                           cen_tot_BIS:cen_tot_PSWQ       1, 32 35.42     0.40  .006     .53
7                                       cen_tot_BAS_Rew:cen_tot_PSWQ       1, 32 35.42     0.12  .002     .73
8                                    cen_tot_BIS:cen_tot_RS_Brooding       1, 32 35.42     0.69   .01     .41
9                                cen_tot_BAS_Rew:cen_tot_RS_Brooding       1, 32 35.42     0.29  .005     .59
10                                  cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 35.42   3.14 +   .05     .09
11                          cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ       1, 32 35.42     2.50   .04     .12
12                   cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_RS_Brooding       1, 32 35.42   3.69 +   .05     .06
13                      cen_tot_BIS:cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 35.42     0.70   .01     .41
14                  cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 35.42     0.05 .0008     .83
15      cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 35.42     0.82   .01     .37
16                                                              cond 2.63, 84.01 13.23 8.52 ***   .12   .0001
17                                                  cen_tot_BIS:cond 2.63, 84.01 13.23     0.69   .01     .54
18                                              cen_tot_BAS_Rew:cond 2.63, 84.01 13.23     0.11  .002     .94
19                                                 cen_tot_PSWQ:cond 2.63, 84.01 13.23     0.45  .007     .69
20                                          cen_tot_RS_Brooding:cond 2.63, 84.01 13.23     0.51  .008     .65
21                                  cen_tot_BIS:cen_tot_BAS_Rew:cond 2.63, 84.01 13.23     1.48   .02     .23
22                                     cen_tot_BIS:cen_tot_PSWQ:cond 2.63, 84.01 13.23     1.61   .02     .20
23                                 cen_tot_BAS_Rew:cen_tot_PSWQ:cond 2.63, 84.01 13.23     0.20  .003     .87
24                              cen_tot_BIS:cen_tot_RS_Brooding:cond 2.63, 84.01 13.23     0.43  .007     .71
25                          cen_tot_BAS_Rew:cen_tot_RS_Brooding:cond 2.63, 84.01 13.23     1.50   .02     .22
26                             cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.63, 84.01 13.23     0.07  .001     .97
27                     cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ:cond 2.63, 84.01 13.23     0.46  .007     .69
28              cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_RS_Brooding:cond 2.63, 84.01 13.23     0.14  .002     .92
29                 cen_tot_BIS:cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.63, 84.01 13.23     0.62  .010     .58
30             cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.63, 84.01 13.23     0.14  .002     .92
31 cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.63, 84.01 13.23     0.79   .01     .49
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Sphericity correction method: GG 
a13 <- aov_ez(id = "ID", dv = "panas_PA", anovaData, within = "cond", between = c("cen_tot_BIS","cen_tot_BAS_Rew","cen_tot_PSWQ","cen_tot_RS_Brooding"), fun_aggregate = mean)
a13
Anova Table (Type 3 tests)

Response: panas_PA
                                                              Effect          df   MSE         F    ges p.value
1                                                        cen_tot_BIS       1, 32 69.16  10.76 **    .17    .003
2                                                    cen_tot_BAS_Rew       1, 32 69.16      0.16   .003     .69
3                                                       cen_tot_PSWQ       1, 32 69.16      1.15    .02     .29
4                                                cen_tot_RS_Brooding       1, 32 69.16      1.07    .02     .31
5                                        cen_tot_BIS:cen_tot_BAS_Rew       1, 32 69.16      1.23    .02     .28
6                                           cen_tot_BIS:cen_tot_PSWQ       1, 32 69.16      0.98    .02     .33
7                                       cen_tot_BAS_Rew:cen_tot_PSWQ       1, 32 69.16      0.56    .01     .46
8                                    cen_tot_BIS:cen_tot_RS_Brooding       1, 32 69.16      0.07   .001     .79
9                                cen_tot_BAS_Rew:cen_tot_RS_Brooding       1, 32 69.16      2.29    .04     .14
10                                  cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 69.16      0.11   .002     .74
11                          cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ       1, 32 69.16      0.63    .01     .43
12                   cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_RS_Brooding       1, 32 69.16      0.00 <.0001     .95
13                      cen_tot_BIS:cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 69.16      1.38    .03     .25
14                  cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 69.16      0.93    .02     .34
15      cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding       1, 32 69.16      1.00    .02     .32
16                                                              cond 2.87, 91.86 14.54 47.07 ***    .36  <.0001
17                                                  cen_tot_BIS:cond 2.87, 91.86 14.54      0.64   .007     .59
18                                              cen_tot_BAS_Rew:cond 2.87, 91.86 14.54      0.36   .004     .77
19                                                 cen_tot_PSWQ:cond 2.87, 91.86 14.54      1.14    .01     .33
20                                          cen_tot_RS_Brooding:cond 2.87, 91.86 14.54      0.29   .003     .82
21                                  cen_tot_BIS:cen_tot_BAS_Rew:cond 2.87, 91.86 14.54      0.72   .008     .54
22                                     cen_tot_BIS:cen_tot_PSWQ:cond 2.87, 91.86 14.54    2.34 +    .03     .08
23                                 cen_tot_BAS_Rew:cen_tot_PSWQ:cond 2.87, 91.86 14.54    2.88 *    .03     .04
24                              cen_tot_BIS:cen_tot_RS_Brooding:cond 2.87, 91.86 14.54      0.66   .008     .57
25                          cen_tot_BAS_Rew:cen_tot_RS_Brooding:cond 2.87, 91.86 14.54      0.66   .008     .57
26                             cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.87, 91.86 14.54      0.97    .01     .41
27                     cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ:cond 2.87, 91.86 14.54      0.90    .01     .44
28              cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_RS_Brooding:cond 2.87, 91.86 14.54      0.58   .007     .62
29                 cen_tot_BIS:cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.87, 91.86 14.54      1.14    .01     .34
30             cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.87, 91.86 14.54      0.57   .007     .63
31 cen_tot_BIS:cen_tot_BAS_Rew:cen_tot_PSWQ:cen_tot_RS_Brooding:cond 2.87, 91.86 14.54      0.33   .004     .80
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

Sphericity correction method: GG 
  • There is a significant(ish) effect of BIS on EGG normogastria, F = 4.32, p = .05, and of BIS on HRV, F = 7.18, p = .01.

  • There is a significant effect of PSWQ on PANAS NA, F = 7.78, p = .009, as well as a main effect of condition (as seen above in the model without between-subjects effects), F = 8.52, p = .0001.

  • There is a significant effect of PSWQ on PANAS PA, F = 10.76, p = .003, as well as a main effect of condition (as seen above in the model without between-subjects effects), F = 47.07, p < .0001.

So that’s kind of interesting! …maybe suggests that physiological response is more a function of emotionality, whereas subjective response is more a function of regulation?

NOTE: There is probably a more correct test to use given the non-normality of the data, but I haven’t been able to find a clear good equivalent to RM-ANOVA, at least so far…

T-tests for PANAS

# add the median split vars to the wide dataset
tots <- tots %>% mutate(med_split_BIS = as.factor(ifelse(tot_bisbas_BIS.Total <= median(tot_bisbas_BIS.Total), "low", "high")), 
                                med_split_BAS_Rew = as.factor(ifelse(tot_bisbas_BAS.Reward < median(tot_bisbas_BAS.Reward), "low", "high")),
                                med_split_PSWQ = as.factor(ifelse(tot_PSWQ_Total <= median(tot_PSWQ_Total), "low", "high")),
                                med_split_RS_Brood = as.factor(ifelse(tot_RS_Brooding <= median(tot_RS_Brooding), "low", "high"))
                                )

data <- left_join(data, tots, by="ID")

BIS

# BIS
t.test(data$tot_PANAS_State.NA ~ data$med_split_BIS)

    Welch Two Sample t-test

data:  data$tot_PANAS_State.NA by data$med_split_BIS
t = 1.7034, df = 30.13, p-value = 0.09878
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.3687091  4.0800135
sample estimates:
mean in group high  mean in group low 
          14.69565           12.84000 
t.test(data$tot_PANAS_State.PA ~ data$med_split_BIS)

    Welch Two Sample t-test

data:  data$tot_PANAS_State.PA by data$med_split_BIS
t = -0.73473, df = 45.888, p-value = 0.4662
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -5.086144  2.366144
sample estimates:
mean in group high  mean in group low 
             25.00              26.36 
t.test(data$tot_aftervid.NEUTRAL_PANAS_State.NA ~ data$med_split_BIS)

    Welch Two Sample t-test

data:  data$tot_aftervid.NEUTRAL_PANAS_State.NA by data$med_split_BIS
t = 0.81359, df = 39.907, p-value = 0.4207
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.226169  2.878342
sample estimates:
mean in group high  mean in group low 
          12.82609           12.00000 
t.test(data$tot_aftervid.NEUTRAL_PANAS_State.PA ~ data$med_split_BIS)

    Welch Two Sample t-test

data:  data$tot_aftervid.NEUTRAL_PANAS_State.PA by data$med_split_BIS
t = -1.5539, df = 37.469, p-value = 0.1286
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -5.5080456  0.7254369
sample estimates:
mean in group high  mean in group low 
           13.6087            16.0000 
t.test(data$tot_aftervid.FEAR_PANAS_State.NA ~ data$med_split_BIS)

    Welch Two Sample t-test

data:  data$tot_aftervid.FEAR_PANAS_State.NA by data$med_split_BIS
t = 2.2951, df = 32.58, p-value = 0.02831
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.3794805 6.3300847
sample estimates:
mean in group high  mean in group low 
          17.43478           14.08000 
t.test(data$tot_aftervid.FEAR_PANAS_State.PA ~ data$med_split_BIS)

    Welch Two Sample t-test

data:  data$tot_aftervid.FEAR_PANAS_State.PA by data$med_split_BIS
t = -1.3977, df = 45.337, p-value = 0.169
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -6.379890  1.152064
sample estimates:
mean in group high  mean in group low 
          19.82609           22.44000 
t.test(data$tot_aftervid.SAD_PANAS_State.NA ~ data$med_split_BIS)

    Welch Two Sample t-test

data:  data$tot_aftervid.SAD_PANAS_State.NA by data$med_split_BIS
t = 1.7191, df = 27.949, p-value = 0.09665
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.4902641  5.6067859
sample estimates:
mean in group high  mean in group low 
          16.47826           13.92000 
t.test(data$tot_aftervid.SAD_PANAS_State.PA ~ data$med_split_BIS)

    Welch Two Sample t-test

data:  data$tot_aftervid.SAD_PANAS_State.PA by data$med_split_BIS
t = -0.53023, df = 45.459, p-value = 0.5985
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.721157  2.169853
sample estimates:
mean in group high  mean in group low 
          17.30435           18.08000 

The high BIS group had significantly higher negative affect after the fear video than the low group, t = 2.30, p = .028.

bis <- ggplot(anovaData, aes(fill=cond, y=panas_NA, x=med_split_BIS)) + 
  geom_boxplot(aes(fill=cond), outlier.alpha = 0.3)
bis

BAS-Reward

# BAS_Rew
t.test(data$tot_PANAS_State.NA ~ data$med_split_BAS_Rew)

    Welch Two Sample t-test

data:  data$tot_PANAS_State.NA by data$med_split_BAS_Rew
t = 0.20785, df = 37.058, p-value = 0.8365
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.023455  2.486064
sample estimates:
mean in group high  mean in group low 
           13.8400            13.6087 
t.test(data$tot_PANAS_State.PA ~ data$med_split_BAS_Rew)

    Welch Two Sample t-test

data:  data$tot_PANAS_State.PA by data$med_split_BAS_Rew
t = 0.19242, df = 45.834, p-value = 0.8483
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.389948  4.106470
sample estimates:
mean in group high  mean in group low 
          25.88000           25.52174 
t.test(data$tot_aftervid.NEUTRAL_PANAS_State.NA ~ data$med_split_BAS_Rew)

    Welch Two Sample t-test

data:  data$tot_aftervid.NEUTRAL_PANAS_State.NA by data$med_split_BAS_Rew
t = 0.090463, df = 42.09, p-value = 0.9283
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.963941  2.148289
sample estimates:
mean in group high  mean in group low 
          12.44000           12.34783 
t.test(data$tot_aftervid.NEUTRAL_PANAS_State.PA ~ data$med_split_BAS_Rew)

    Welch Two Sample t-test

data:  data$tot_aftervid.NEUTRAL_PANAS_State.PA by data$med_split_BAS_Rew
t = 0.98847, df = 43.015, p-value = 0.3284
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.619079  4.732123
sample estimates:
mean in group high  mean in group low 
          15.60000           14.04348 
t.test(data$tot_aftervid.FEAR_PANAS_State.NA ~ data$med_split_BAS_Rew)

    Welch Two Sample t-test

data:  data$tot_aftervid.FEAR_PANAS_State.NA by data$med_split_BAS_Rew
t = -0.11997, df = 42.757, p-value = 0.9051
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.252666  2.887448
sample estimates:
mean in group high  mean in group low 
          15.60000           15.78261 
t.test(data$tot_aftervid.FEAR_PANAS_State.PA ~ data$med_split_BAS_Rew)

    Welch Two Sample t-test

data:  data$tot_aftervid.FEAR_PANAS_State.PA by data$med_split_BAS_Rew
t = 0.67812, df = 45.781, p-value = 0.5011
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.516538  5.073060
sample estimates:
mean in group high  mean in group low 
          21.80000           20.52174 
t.test(data$tot_aftervid.SAD_PANAS_State.NA ~ data$med_split_BAS_Rew)

    Welch Two Sample t-test

data:  data$tot_aftervid.SAD_PANAS_State.NA by data$med_split_BAS_Rew
t = -0.7594, df = 40.112, p-value = 0.4521
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -4.170562  1.892301
sample estimates:
mean in group high  mean in group low 
          14.60000           15.73913 
t.test(data$tot_aftervid.SAD_PANAS_State.PA ~ data$med_split_BAS_Rew)

    Welch Two Sample t-test

data:  data$tot_aftervid.SAD_PANAS_State.PA by data$med_split_BAS_Rew
t = 2.0505, df = 42.574, p-value = 0.04651
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.04634305 5.67887434
sample estimates:
mean in group high  mean in group low 
          19.08000           16.21739 

The high BAS-Reward Responsiveness group had significantly(ish) higher positive affect after the sad video than the low group, t = 2.05, p = .047.

basrr <- ggplot(anovaData, aes(fill=cond, y=panas_PA, x=med_split_BAS_Rew)) + 
  geom_boxplot(aes(fill=cond), outlier.alpha = 0.3)
basrr

PSWQ

# PSWQ
t.test(data$tot_PANAS_State.NA ~ data$med_split_PSWQ)

    Welch Two Sample t-test

data:  data$tot_PANAS_State.NA by data$med_split_PSWQ
t = 3.4503, df = 29.632, p-value = 0.001703
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 1.403447 5.480031
sample estimates:
mean in group high  mean in group low 
          15.52174           12.08000 
t.test(data$tot_PANAS_State.PA ~ data$med_split_PSWQ)

    Welch Two Sample t-test

data:  data$tot_PANAS_State.PA by data$med_split_PSWQ
t = 0.12272, df = 44.262, p-value = 0.9029
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.486074  3.938248
sample estimates:
mean in group high  mean in group low 
          25.82609           25.60000 
t.test(data$tot_aftervid.NEUTRAL_PANAS_State.NA ~ data$med_split_PSWQ)

    Welch Two Sample t-test

data:  data$tot_aftervid.NEUTRAL_PANAS_State.NA by data$med_split_PSWQ
t = 2.2301, df = 40.63, p-value = 0.03133
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.2035568 4.1199214
sample estimates:
mean in group high  mean in group low 
          13.52174           11.36000 
t.test(data$tot_aftervid.NEUTRAL_PANAS_State.PA ~ data$med_split_PSWQ)

    Welch Two Sample t-test

data:  data$tot_aftervid.NEUTRAL_PANAS_State.PA by data$med_split_PSWQ
t = -0.24454, df = 41.65, p-value = 0.808
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.589137  2.813485
sample estimates:
mean in group high  mean in group low 
          14.65217           15.04000 
t.test(data$tot_aftervid.FEAR_PANAS_State.NA ~ data$med_split_PSWQ)

    Welch Two Sample t-test

data:  data$tot_aftervid.FEAR_PANAS_State.NA by data$med_split_PSWQ
t = 2.3668, df = 34.665, p-value = 0.02366
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.4880615 6.3884602
sample estimates:
mean in group high  mean in group low 
          17.47826           14.04000 
t.test(data$tot_aftervid.FEAR_PANAS_State.PA ~ data$med_split_PSWQ)

    Welch Two Sample t-test

data:  data$tot_aftervid.FEAR_PANAS_State.PA by data$med_split_PSWQ
t = 0.51167, df = 44.942, p-value = 0.6114
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.864998  4.816303
sample estimates:
mean in group high  mean in group low 
          21.69565           20.72000 
t.test(data$tot_aftervid.SAD_PANAS_State.NA ~ data$med_split_PSWQ)

    Welch Two Sample t-test

data:  data$tot_aftervid.SAD_PANAS_State.NA by data$med_split_PSWQ
t = 1.5491, df = 31.214, p-value = 0.1314
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.7297752  5.3454274
sample estimates:
mean in group high  mean in group low 
          16.34783           14.04000 
t.test(data$tot_aftervid.SAD_PANAS_State.PA ~ data$med_split_PSWQ)

    Welch Two Sample t-test

data:  data$tot_aftervid.SAD_PANAS_State.PA by data$med_split_PSWQ
t = 0.72754, df = 45.314, p-value = 0.4706
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.875456  3.997195
sample estimates:
mean in group high  mean in group low 
          18.26087           17.20000 

The high PSWQ group had significantly higher NA at baseline (t = 3.45, p = .002), following the neutral video (t = 2.23, p = .03), and following the fear video (t = 2.37, p = .024) than the low PSWQ group.

pswq <- ggplot(anovaData, aes(fill=cond, y=panas_NA, x=med_split_PSWQ)) + 
  geom_boxplot(aes(fill=cond), outlier.alpha = 0.3)
pswq

RS-Brood

# RS_Brood
t.test(data$tot_PANAS_State.NA ~ data$med_split_RS_Brood)

    Welch Two Sample t-test

data:  data$tot_PANAS_State.NA by data$med_split_RS_Brood
t = 0.41093, df = 34.348, p-value = 0.6837
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.721490  2.594533
sample estimates:
mean in group high  mean in group low 
          13.95652           13.52000 
t.test(data$tot_PANAS_State.PA ~ data$med_split_RS_Brood)

    Welch Two Sample t-test

data:  data$tot_PANAS_State.PA by data$med_split_RS_Brood
t = -0.60193, df = 45.588, p-value = 0.5502
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -4.820932  2.601802
sample estimates:
mean in group high  mean in group low 
          25.13043           26.24000 
t.test(data$tot_aftervid.NEUTRAL_PANAS_State.NA ~ data$med_split_RS_Brood)

    Welch Two Sample t-test

data:  data$tot_aftervid.NEUTRAL_PANAS_State.NA by data$med_split_RS_Brood
t = 1.5075, df = 43.799, p-value = 0.1389
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.5035468  3.4913729
sample estimates:
mean in group high  mean in group low 
          13.17391           11.68000 
t.test(data$tot_aftervid.NEUTRAL_PANAS_State.PA ~ data$med_split_RS_Brood)

    Welch Two Sample t-test

data:  data$tot_aftervid.NEUTRAL_PANAS_State.PA by data$med_split_RS_Brood
t = -0.56536, df = 37.54, p-value = 0.5752
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -4.072123  2.294732
sample estimates:
mean in group high  mean in group low 
           14.3913            15.2800 
t.test(data$tot_aftervid.FEAR_PANAS_State.NA ~ data$med_split_RS_Brood)

    Welch Two Sample t-test

data:  data$tot_aftervid.FEAR_PANAS_State.NA by data$med_split_RS_Brood
t = -0.5553, df = 39.747, p-value = 0.5818
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.801034  2.162773
sample estimates:
mean in group high  mean in group low 
          15.26087           16.08000 
t.test(data$tot_aftervid.FEAR_PANAS_State.PA ~ data$med_split_RS_Brood)

    Welch Two Sample t-test

data:  data$tot_aftervid.FEAR_PANAS_State.PA by data$med_split_RS_Brood
t = -0.18795, df = 44.218, p-value = 0.8518
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -4.219718  3.499718
sample estimates:
mean in group high  mean in group low 
             21.00              21.36 
t.test(data$tot_aftervid.SAD_PANAS_State.NA ~ data$med_split_RS_Brood)

    Welch Two Sample t-test

data:  data$tot_aftervid.SAD_PANAS_State.NA by data$med_split_RS_Brood
t = -1.3061, df = 36.415, p-value = 0.1997
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -4.762658  1.030484
sample estimates:
mean in group high  mean in group low 
          14.17391           16.04000 
t.test(data$tot_aftervid.SAD_PANAS_State.PA ~ data$med_split_RS_Brood)

    Welch Two Sample t-test

data:  data$tot_aftervid.SAD_PANAS_State.PA by data$med_split_RS_Brood
t = 0.1519, df = 43.607, p-value = 0.88
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.774427  3.226601
sample estimates:
mean in group high  mean in group low 
          17.82609           17.60000 

There is no different in PANAS (NA or PA) by RS-Brood median split.

Comparing HRV-EGG correlations by median splits

Same above in the earlier section, except now looking at the low/high groups separately. Using Jeannie’s output from SPSS here. Jeannie, you could re-run using Spearman’s rho (https://statistics.laerd.com/spss-tutorials/spearmans-rank-order-correlation-using-spss-statistics.php) to double-check but based on the correlations above, they’re similar enough that using the Pearson ones you did already are fine. May want to ultimately use Spearman’s for the publication, but for the presentation next week, I think this is okay.

library(cocor)

?cocor
LS0tCnRpdGxlOiAiUGVyc29uYWxpdHkgc3R1ZHkgRUdHIGFuYWx5c2lzIGZvciBBQkNUIDIwMTgiCmF1dGhvcjogIlNhcmVuIFNlZWxleSIKZGF0ZTogIjExLTEwLTIwMTgiCm91dHB1dDoKICBodG1sX25vdGVib29rOgogICAgbnVtYmVyX3NlY3Rpb25zOiBubwogICAgdGhlbWU6IHBhcGVyCiAgICB0b2M6IHllcwogICAgdG9jX2Zsb2F0OiB5ZXMKICBodG1sX2RvY3VtZW50OgogICAgZGZfcHJpbnQ6IHBhZ2VkCiAgICB0b2M6IHllcwotLS0KXypJZiB5b3Ugd2FudCB0byB1c2UgYW55IG9mIHRoZXNlIHBsb3RzIGZvciB0aGUgcHJlc2VudGF0aW9uLCBsZXQgbWUga25vdyBhbmQgSSdsbCBtYWtlIHRoZW0gaW50byBoaWdoLXJlcyAucHB0eCBzbGlkZXMgKHdpdGggYXhlcyBhcHByb3ByaWF0ZWx5IGxhYmVsZWQpLipfCgoKIyMgSW1wb3J0aW5nIFNQU1MgZGF0YXNldCBhbmQgY29udmVydGluZyBpdCB0byBsb25nIGZvcm1hdApgYGB7cn0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoZm9yZWlnbikKbGlicmFyeShhZmV4KQpsaWJyYXJ5KGVtbWVhbnMpCmxpYnJhcnkoanRvb2xzKQpsaWJyYXJ5KHBzeWNoKQpsaWJyYXJ5KGJlc3ROb3JtYWxpemUpCgojIHNldCB3b3JraW5nIGRpcmVjdG9yeSBhbmQgcmVhZCBpbiBkYXRhCnNldHdkKCJ+L0Rvd25sb2Fkcy9wZXJzb25hbGl0eWVnZ2dvb2RpZXMiKQplZ2dkYXRhIDwtIHJlYWQuc3Bzcygifi9Eb3dubG9hZHMvUGVyc29uYWxpdHkgU3R1ZHlfU2VsZi1SZXBvcnQrU3ViamVjdGl2ZSBBc3Nlc3NtZW50cytFR0cgKyBIUlYgTWFzdGVyIERhdGFzZXQgW04gPSA0OF1fMTEuMy4xOC5zYXYiLCB1c2UudmFsdWUubGFiZWw9VFJVRSwgdG8uZGF0YS5mcmFtZT1UUlVFKQoKZGF0YSA8LSBzZWxlY3QoZWdnZGF0YSwgbWF0Y2hlcygiXihJRHxlZ2d8aHJ2KSIpKSAjIHN1YnNldAp0b3RzIDwtIHNlbGVjdChlZ2dkYXRhLCBtYXRjaGVzKCJeKElEfHRvdHxhZ2V8Z2VuZGVyfHJhY2VfY2F0fHJhY2Vfb3RoZXJ8aHJzfGdxX2hlaWdodHxncV93ZWlnaHQpIikpICMgc3Vic2V0CgplZ2dfaW50QU1VX24gPC0gZGF0YS5mcmFtZShkYXRhJGVnZ19pbnRBTVVfbikKZWdnX2ludEFNVV9iIDwtIGRhdGEuZnJhbWUoZGF0YSRlZ2dfaW50QU1VX2IpCmVnZ19pbnRBTVVfdCA8LSBkYXRhLmZyYW1lKGRhdGEkZWdnX2ludEFNVV90KQplZ2dfaW50QkFTRUxJTkVfbiA8LSBkYXRhLmZyYW1lKGRhdGEkZWdnX2ludEJBU0VMSU5FX24pCmVnZ19pbnRCQVNFTElORV9iIDwtIGRhdGEuZnJhbWUoZGF0YSRlZ2dfaW50QkFTRUxJTkVfYikKZWdnX2ludEJBU0VMSU5FX3QgPC0gZGF0YS5mcmFtZShkYXRhJGVnZ19pbnRCQVNFTElORV90KQplZ2dfaW50RElTX24gPC0gZGF0YS5mcmFtZShkYXRhJGVnZ19pbnRESVNfbikKZWdnX2ludERJU19iIDwtIGRhdGEuZnJhbWUoZGF0YSRlZ2dfaW50RElTX2IpCmVnZ19pbnRESVNfdCA8LSBkYXRhLmZyYW1lKGRhdGEkZWdnX2ludERJU190KQplZ2dfaW50RkVfbiA8LSBkYXRhLmZyYW1lKGRhdGEkZWdnX2ludEZFX24pCmVnZ19pbnRGRV9iIDwtIGRhdGEuZnJhbWUoZGF0YSRlZ2dfaW50RkVfYikKZWdnX2ludEZFX3QgPC0gZGF0YS5mcmFtZShkYXRhJGVnZ19pbnRGRV90KQplZ2dfaW50TkVfbiA8LSBkYXRhLmZyYW1lKGRhdGEkZWdnX2ludE5FX24pCmVnZ19pbnRORV9iIDwtIGRhdGEuZnJhbWUoZGF0YSRlZ2dfaW50TkVfYikKZWdnX2ludE5FX3QgPC0gZGF0YS5mcmFtZShkYXRhJGVnZ19pbnRORV90KQplZ2dfaW50U0FfbiA8LSBkYXRhLmZyYW1lKGRhdGEkZWdnX2ludFNBX24pCmVnZ19pbnRTQV9iIDwtIGRhdGEuZnJhbWUoZGF0YSRlZ2dfaW50U0FfYikKZWdnX2ludFNBX3QgPC0gZGF0YS5mcmFtZShkYXRhJGVnZ19pbnRTQV90KQpocnZfaW50QkFTRUxJTkVfTVNEIDwtIGRhdGEuZnJhbWUoZGF0YSRocnZfaW50QkFTRUxJTkVfTVNEKQpocnZfaW50RElTX01TRCA8LSBkYXRhLmZyYW1lKGRhdGEkaHJ2X2ludERJU19NU0QpCmhydl9pbnRGRV9NU0QgPC0gZGF0YS5mcmFtZShkYXRhJGhydl9pbnRGRV9NU0QpCmhydl9pbnRORV9NU0QgPC0gZGF0YS5mcmFtZShkYXRhJGhydl9pbnRORV9NU0QpCmhydl9pbnRTQV9NU0QgPC0gZGF0YS5mcmFtZShkYXRhJGhydl9pbnRTQV9NU0QpCnBhbmFzX3ByZUJBU0VMSU5FX1BBIDwtIGRhdGEuZnJhbWUodG90cyR0b3RfUEFOQVNfU3RhdGUuUEEpCnBhbmFzX3ByZUJBU0VMSU5FX05BIDwtIGRhdGEuZnJhbWUodG90cyR0b3RfUEFOQVNfU3RhdGUuTkEpCnBhbmFzX0ZFX1BBIDwtIGRhdGEuZnJhbWUodG90cyR0b3RfYWZ0ZXJ2aWQuRkVBUl9QQU5BU19TdGF0ZS5QQSkKcGFuYXNfRkVfTkEgPC0gZGF0YS5mcmFtZSh0b3RzJHRvdF9hZnRlcnZpZC5GRUFSX1BBTkFTX1N0YXRlLk5BKQpwYW5hc19ESVNfUEEgPC0gZGF0YS5mcmFtZSh0b3RzJHRvdF9hZnRlcnZpZC5ESVNHVVNUX1BBTkFTX1N0YXRlLlBBKQpwYW5hc19ESVNfTkEgPC0gZGF0YS5mcmFtZSh0b3RzJHRvdF9hZnRlcnZpZC5ESVNHVVNUX1BBTkFTX1N0YXRlLk5BKQpwYW5hc19ORV9QQSA8LSBkYXRhLmZyYW1lKHRvdHMkdG90X2FmdGVydmlkLk5FVVRSQUxfUEFOQVNfU3RhdGUuUEEpCnBhbmFzX05FX05BIDwtIGRhdGEuZnJhbWUodG90cyR0b3RfYWZ0ZXJ2aWQuTkVVVFJBTF9QQU5BU19TdGF0ZS5OQSkKcGFuYXNfU0FfUEEgPC0gZGF0YS5mcmFtZSh0b3RzJHRvdF9hZnRlcnZpZC5TQURfUEFOQVNfU3RhdGUuUEEpCnBhbmFzX1NBX05BIDwtIGRhdGEuZnJhbWUodG90cyR0b3RfYWZ0ZXJ2aWQuU0FEX1BBTkFTX1N0YXRlLk5BKQoKCmVnZ19pbnRBTVVfbiA8LSBlZ2dfaW50QU1VX24gJT4lIG11dGF0ZShjb25kID0gIkFNVSIsIElEID0gZGF0YSRJRCkgJT4lIHJlbmFtZShlZ2dfbiA9IGRhdGEuZWdnX2ludEFNVV9uKQplZ2dfaW50QU1VX2IgPC0gZWdnX2ludEFNVV9iICU+JSBtdXRhdGUoY29uZCA9ICJBTVUiLCBJRCA9IGRhdGEkSUQpICU+JSByZW5hbWUoZWdnX2IgPSBkYXRhLmVnZ19pbnRBTVVfYikKZWdnX2ludEFNVV90IDwtIGVnZ19pbnRBTVVfdCAlPiUgbXV0YXRlKGNvbmQgPSAiQU1VIiwgSUQgPSBkYXRhJElEKSAlPiUgcmVuYW1lKGVnZ190ID0gZGF0YS5lZ2dfaW50QU1VX3QpCmVnZ19pbnRCQVNFTElORV9uIDwtIGVnZ19pbnRCQVNFTElORV9uICU+JSBtdXRhdGUoY29uZCA9ICJCQVNFTElORSIsIElEID0gZGF0YSRJRCkgJT4lIHJlbmFtZShlZ2dfbiA9IGRhdGEuZWdnX2ludEJBU0VMSU5FX24pCmVnZ19pbnRCQVNFTElORV9iIDwtIGVnZ19pbnRCQVNFTElORV9iICU+JSBtdXRhdGUoY29uZCA9ICJCQVNFTElORSIsIElEID0gZGF0YSRJRCkgJT4lIHJlbmFtZShlZ2dfYiA9IGRhdGEuZWdnX2ludEJBU0VMSU5FX2IpCmVnZ19pbnRCQVNFTElORV90IDwtIGVnZ19pbnRCQVNFTElORV90ICU+JSBtdXRhdGUoY29uZCA9ICJCQVNFTElORSIsIElEID0gZGF0YSRJRCkgJT4lIHJlbmFtZShlZ2dfdCA9IGRhdGEuZWdnX2ludEJBU0VMSU5FX3QpCmVnZ19pbnRESVNfbiA8LSBlZ2dfaW50RElTX24gJT4lIG11dGF0ZShjb25kID0gIkRJUyIsIElEID0gZGF0YSRJRCkgJT4lIHJlbmFtZShlZ2dfbiA9IGRhdGEuZWdnX2ludERJU19uKQplZ2dfaW50RElTX2IgPC0gZWdnX2ludERJU19iICU+JSBtdXRhdGUoY29uZCA9ICJESVMiLCBJRCA9IGRhdGEkSUQpICU+JSByZW5hbWUoZWdnX2IgPSBkYXRhLmVnZ19pbnRESVNfYikKZWdnX2ludERJU190IDwtIGVnZ19pbnRESVNfdCAlPiUgbXV0YXRlKGNvbmQgPSAiRElTIiwgSUQgPSBkYXRhJElEKSAlPiUgcmVuYW1lKGVnZ190ID0gZGF0YS5lZ2dfaW50RElTX3QpCmVnZ19pbnRGRV9uIDwtIGVnZ19pbnRGRV9uICU+JSBtdXRhdGUoY29uZCA9ICJGRSIsIElEID0gZGF0YSRJRCkgJT4lIHJlbmFtZShlZ2dfbiA9IGRhdGEuZWdnX2ludEZFX24pCmVnZ19pbnRGRV9iIDwtIGVnZ19pbnRGRV9iICU+JSBtdXRhdGUoY29uZCA9ICJGRSIsIElEID0gZGF0YSRJRCkgJT4lIHJlbmFtZShlZ2dfYiA9IGRhdGEuZWdnX2ludEZFX2IpCmVnZ19pbnRGRV90IDwtIGVnZ19pbnRGRV90ICU+JSBtdXRhdGUoY29uZCA9ICJGRSIsIElEID0gZGF0YSRJRCkgJT4lIHJlbmFtZShlZ2dfdCA9IGRhdGEuZWdnX2ludEZFX3QpCmVnZ19pbnRORV9uIDwtIGVnZ19pbnRORV9uICU+JSBtdXRhdGUoY29uZCA9ICJORSIsIElEID0gZGF0YSRJRCkgJT4lIHJlbmFtZShlZ2dfbiA9IGRhdGEuZWdnX2ludE5FX24pCmVnZ19pbnRORV9iIDwtIGVnZ19pbnRORV9iICU+JSBtdXRhdGUoY29uZCA9ICJORSIsIElEID0gZGF0YSRJRCkgJT4lIHJlbmFtZShlZ2dfYiA9IGRhdGEuZWdnX2ludE5FX2IpCmVnZ19pbnRORV90IDwtIGVnZ19pbnRORV90ICU+JSBtdXRhdGUoY29uZCA9ICJORSIsIElEID0gZGF0YSRJRCkgJT4lIHJlbmFtZShlZ2dfdCA9IGRhdGEuZWdnX2ludE5FX3QpCmVnZ19pbnRTQV9uIDwtIGVnZ19pbnRTQV9uICU+JSBtdXRhdGUoY29uZCA9ICJTQSIsIElEID0gZGF0YSRJRCkgJT4lIHJlbmFtZShlZ2dfbiA9IGRhdGEuZWdnX2ludFNBX24pCmVnZ19pbnRTQV9iIDwtIGVnZ19pbnRTQV9iICU+JSBtdXRhdGUoY29uZCA9ICJTQSIsIElEID0gZGF0YSRJRCkgJT4lIHJlbmFtZShlZ2dfYiA9IGRhdGEuZWdnX2ludFNBX2IpCmVnZ19pbnRTQV90IDwtIGVnZ19pbnRTQV90ICU+JSBtdXRhdGUoY29uZCA9ICJTQSIsIElEID0gZGF0YSRJRCkgJT4lIHJlbmFtZShlZ2dfdCA9IGRhdGEuZWdnX2ludFNBX3QpCmhydl9pbnRCQVNFTElORV9NU0QgPC0gaHJ2X2ludEJBU0VMSU5FX01TRCAlPiUgbXV0YXRlKGNvbmQgPSAiQkFTRUxJTkUiLCBJRCA9IGRhdGEkSUQpICU+JSByZW5hbWUoaHJ2Lm1zZCA9IGRhdGEuaHJ2X2ludEJBU0VMSU5FX01TRCkKaHJ2X2ludERJU19NU0QgPC0gaHJ2X2ludERJU19NU0QgJT4lIG11dGF0ZShjb25kID0gIkRJUyIsIElEID0gZGF0YSRJRCkgJT4lIHJlbmFtZShocnYubXNkID0gZGF0YS5ocnZfaW50RElTX01TRCkKaHJ2X2ludEZFX01TRCA8LSBocnZfaW50RkVfTVNEICU+JSBtdXRhdGUoY29uZCA9ICJGRSIsIElEID0gZGF0YSRJRCkgJT4lIHJlbmFtZShocnYubXNkID0gZGF0YS5ocnZfaW50RkVfTVNEKQpocnZfaW50TkVfTVNEIDwtIGhydl9pbnRORV9NU0QgJT4lIG11dGF0ZShjb25kID0gIk5FIiwgSUQgPSBkYXRhJElEKSAlPiUgcmVuYW1lKGhydi5tc2QgPSBkYXRhLmhydl9pbnRORV9NU0QpCmhydl9pbnRTQV9NU0QgPC0gaHJ2X2ludFNBX01TRCAlPiUgbXV0YXRlKGNvbmQgPSAiU0EiLCBJRCA9IGRhdGEkSUQpICU+JSByZW5hbWUoaHJ2Lm1zZCA9IGRhdGEuaHJ2X2ludFNBX01TRCkKcGFuYXNfcHJlQkFTRUxJTkVfUEEgPC0gcGFuYXNfcHJlQkFTRUxJTkVfUEEgJT4lIG11dGF0ZShjb25kID0gIkJBU0VMSU5FIiwgSUQgPSB0b3RzJElEKSAlPiUgcmVuYW1lKHBhbmFzX1BBID0gdG90cy50b3RfUEFOQVNfU3RhdGUuUEEpCnBhbmFzX3ByZUJBU0VMSU5FX05BIDwtIHBhbmFzX3ByZUJBU0VMSU5FX05BICU+JSBtdXRhdGUoY29uZCA9ICJCQVNFTElORSIsIElEID0gdG90cyRJRCkgJT4lIHJlbmFtZShwYW5hc19OQSA9IHRvdHMudG90X1BBTkFTX1N0YXRlLk5BKQpwYW5hc19ESVNfUEEgPC0gcGFuYXNfRElTX1BBICU+JSBtdXRhdGUoY29uZCA9ICJESVMiLCBJRCA9IHRvdHMkSUQpICU+JSByZW5hbWUocGFuYXNfUEEgPSB0b3RzLnRvdF9hZnRlcnZpZC5ESVNHVVNUX1BBTkFTX1N0YXRlLlBBKQpwYW5hc19ESVNfTkEgPC0gcGFuYXNfRElTX05BICU+JSBtdXRhdGUoY29uZCA9ICJESVMiLCBJRCA9IHRvdHMkSUQpICU+JSByZW5hbWUocGFuYXNfTkEgPSB0b3RzLnRvdF9hZnRlcnZpZC5ESVNHVVNUX1BBTkFTX1N0YXRlLk5BKQpwYW5hc19GRV9QQSA8LSBwYW5hc19GRV9QQSAlPiUgbXV0YXRlKGNvbmQgPSAiRkUiLCBJRCA9IHRvdHMkSUQpICU+JSByZW5hbWUocGFuYXNfUEEgPSB0b3RzLnRvdF9hZnRlcnZpZC5GRUFSX1BBTkFTX1N0YXRlLlBBKQpwYW5hc19GRV9OQSA8LSBwYW5hc19GRV9OQSAlPiUgbXV0YXRlKGNvbmQgPSAiRkUiLCBJRCA9IHRvdHMkSUQpICU+JSByZW5hbWUocGFuYXNfTkEgPSB0b3RzLnRvdF9hZnRlcnZpZC5GRUFSX1BBTkFTX1N0YXRlLk5BKQpwYW5hc19TQV9QQSA8LSBwYW5hc19TQV9QQSAlPiUgbXV0YXRlKGNvbmQgPSAiU0EiLCBJRCA9IHRvdHMkSUQpICU+JSByZW5hbWUocGFuYXNfUEEgPSB0b3RzLnRvdF9hZnRlcnZpZC5TQURfUEFOQVNfU3RhdGUuUEEpCnBhbmFzX1NBX05BIDwtIHBhbmFzX1NBX05BICU+JSBtdXRhdGUoY29uZCA9ICJTQSIsIElEID0gdG90cyRJRCkgJT4lIHJlbmFtZShwYW5hc19OQSA9IHRvdHMudG90X2FmdGVydmlkLlNBRF9QQU5BU19TdGF0ZS5OQSkKcGFuYXNfTkVfUEEgPC0gcGFuYXNfTkVfUEEgJT4lIG11dGF0ZShjb25kID0gIk5FIiwgSUQgPSB0b3RzJElEKSAlPiUgcmVuYW1lKHBhbmFzX1BBID0gdG90cy50b3RfYWZ0ZXJ2aWQuTkVVVFJBTF9QQU5BU19TdGF0ZS5QQSkKcGFuYXNfTkVfTkEgPC0gcGFuYXNfTkVfTkEgJT4lIG11dGF0ZShjb25kID0gIk5FIiwgSUQgPSB0b3RzJElEKSAlPiUgcmVuYW1lKHBhbmFzX05BID0gdG90cy50b3RfYWZ0ZXJ2aWQuTkVVVFJBTF9QQU5BU19TdGF0ZS5OQSkKCmxvbmdfYW11IDwtIGxlZnRfam9pbihlZ2dfaW50QU1VX24sZWdnX2ludEFNVV9iLCBieT1jKCJjb25kIiwgIklEIikpICU+JSBsZWZ0X2pvaW4oLixlZ2dfaW50QU1VX3QsIGJ5PWMoImNvbmQiLCAiSUQiKSkKbG9uZ19iYXNlIDwtIGxlZnRfam9pbihlZ2dfaW50QkFTRUxJTkVfbixlZ2dfaW50QkFTRUxJTkVfYiwgYnk9YygiY29uZCIsICJJRCIpKSAlPiUgbGVmdF9qb2luKC4sZWdnX2ludEJBU0VMSU5FX3QsIGJ5PWMoImNvbmQiLCAiSUQiKSkgCmxvbmdfZGlzIDwtIGxlZnRfam9pbihlZ2dfaW50RElTX24sZWdnX2ludERJU19iLCBieT1jKCJjb25kIiwgIklEIikpICU+JSBsZWZ0X2pvaW4oLixlZ2dfaW50RElTX3QsIGJ5PWMoImNvbmQiLCAiSUQiKSkgCmxvbmdfZmUgPC0gbGVmdF9qb2luKGVnZ19pbnRGRV9uLGVnZ19pbnRGRV9iLCBieT1jKCJjb25kIiwgIklEIikpICU+JSBsZWZ0X2pvaW4oLixlZ2dfaW50RkVfdCwgYnk9YygiY29uZCIsICJJRCIpKSAKbG9uZ19uZSA8LSBsZWZ0X2pvaW4oZWdnX2ludE5FX24sZWdnX2ludE5FX2IsIGJ5PWMoImNvbmQiLCAiSUQiKSkgJT4lIGxlZnRfam9pbiguLGVnZ19pbnRORV90LCBieT1jKCJjb25kIiwgIklEIikpIApsb25nX3NhIDwtIGxlZnRfam9pbihlZ2dfaW50U0FfbixlZ2dfaW50U0FfYiwgYnk9YygiY29uZCIsICJJRCIpKSAlPiUgbGVmdF9qb2luKC4sZWdnX2ludFNBX3QsIGJ5PWMoImNvbmQiLCAiSUQiKSkgCmxvbmdfaHJ2IDwtIGJpbmRfcm93cyhocnZfaW50QkFTRUxJTkVfTVNELCBocnZfaW50RElTX01TRCwgaHJ2X2ludEZFX01TRCwgaHJ2X2ludE5FX01TRCwgaHJ2X2ludFNBX01TRCkgCmxvbmdfcGFuYXNfYmFzZSA8LWxlZnRfam9pbihwYW5hc19wcmVCQVNFTElORV9OQSxwYW5hc19wcmVCQVNFTElORV9QQSwgYnk9YygiY29uZCIsICJJRCIpKSAKbG9uZ19wYW5hc19kaXMgPC1sZWZ0X2pvaW4ocGFuYXNfRElTX05BLHBhbmFzX0RJU19QQSwgYnk9YygiY29uZCIsICJJRCIpKSAKbG9uZ19wYW5hc19mZSA8LWxlZnRfam9pbihwYW5hc19GRV9OQSxwYW5hc19GRV9QQSwgYnk9YygiY29uZCIsICJJRCIpKSAKbG9uZ19wYW5hc19uZSA8LWxlZnRfam9pbihwYW5hc19ORV9OQSxwYW5hc19ORV9QQSwgYnk9YygiY29uZCIsICJJRCIpKSAKbG9uZ19wYW5hc19zYSA8LSBsZWZ0X2pvaW4ocGFuYXNfU0FfTkEscGFuYXNfU0FfUEEsIGJ5PWMoImNvbmQiLCAiSUQiKSkgCmxvbmdfcGFuYXNfbmEucGEgPC0gYmluZF9yb3dzKGxvbmdfcGFuYXNfYmFzZSxsb25nX3BhbmFzX2Rpcyxsb25nX3BhbmFzX2ZlLGxvbmdfcGFuYXNfbmUsbG9uZ19wYW5hc19zYSkKCiMgbWVyZ2UgaW4gb3RoZXIgdmFycyAoc2VsZi1yZXBvcnRzLCBldGMuKQphbGwuZGF0YSA8LSBsZWZ0X2pvaW4obG9uZ2RhdGEsIHRvdHMsIGJ5PSJJRCIpICU+JSBmaWx0ZXIoY29uZCE9IkFNVSIpICAlPiUgbXV0YXRlKGNvbmQgPSBhcy5mYWN0b3IoY29uZCksIElEID0gYXMuZmFjdG9yKElEKSkKCiMgbWVhbi1jZW50ZXIgYWdlLCBocnNfYXRlLCBlbW90aW9uYWxpdHkgYW5kIHJlZ3VsYXRpb24gdmFyaWFibGVzCmFsbC5kYXRhIDwtIGFsbC5kYXRhICU+JSBtdXRhdGUoY2VuX3RvdF9TUFNSUV9QdW5pc2htZW50ID0gdG90X1NQU1JRX1B1bmlzaG1lbnQtbWVhbih0b3RfU1BTUlFfUHVuaXNobWVudCksIGNlbl90b3RfU1BTUlFfUmV3YXJkID0gdG90X1NQU1JRX1Jld2FyZC1tZWFuKHRvdF9TUFNSUV9SZXdhcmQpLCBjZW5fdG90X0JJUyA9IHRvdF9iaXNiYXNfQklTLlRvdGFsLW1lYW4odG90X2Jpc2Jhc19CSVMuVG90YWwpLCBjZW5fdG90X0JBU19SZXcgPSB0b3RfYmlzYmFzX0JBUy5SZXdhcmQtbWVhbih0b3RfYmlzYmFzX0JBUy5SZXdhcmQpLCBjZW5fdG90X1BTV1EgPSB0b3RfUFNXUV9Ub3RhbC1tZWFuKHRvdF9QU1dRX1RvdGFsKSwgY2VuX3RvdF9SU19Ccm9vZGluZyA9IHRvdF9SU19Ccm9vZGluZy1tZWFuKHRvdF9SU19Ccm9vZGluZyksIGNlbl9hZ2UgPSBhZ2UtbWVhbihhZ2UpLCBjZW5faHJzX2F0ZSA9IGhyc19hdGUtbWVhbihocnNfYXRlKSkKIyBjYW4ndCBzZWVtIHRvIGNlbnRlciBhZ2UgKGp1c3QgZ2l2ZXMgTkFzKSwgcHJvYmFibHkgYmVjYXVzZSBuPTI1IGFyZSBtaXNzaW5nIGFnZQoKIyBhZGQgdGhlIG1lZGlhbiBzcGxpdCB2YXJzCmFsbC5kYXRhIDwtIGFsbC5kYXRhICU+JSBtdXRhdGUobWVkX3NwbGl0X0JJUyA9IGFzLmZhY3RvcihpZmVsc2UodG90X2Jpc2Jhc19CSVMuVG90YWwgPD0gbWVkaWFuKHRvdF9iaXNiYXNfQklTLlRvdGFsKSwgImxvdyIsICJoaWdoIikpLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZWRfc3BsaXRfQkFTX1JldyA9IGFzLmZhY3RvcihpZmVsc2UodG90X2Jpc2Jhc19CQVMuUmV3YXJkIDwgbWVkaWFuKHRvdF9iaXNiYXNfQkFTLlJld2FyZCksICJsb3ciLCAiaGlnaCIpKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZWRfc3BsaXRfUFNXUSA9IGFzLmZhY3RvcihpZmVsc2UodG90X1BTV1FfVG90YWwgPD0gbWVkaWFuKHRvdF9QU1dRX1RvdGFsKSwgImxvdyIsICJoaWdoIikpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1lZF9zcGxpdF9SU19Ccm9vZCA9IGFzLmZhY3RvcihpZmVsc2UodG90X1JTX0Jyb29kaW5nIDw9IG1lZGlhbih0b3RfUlNfQnJvb2RpbmcpLCAibG93IiwgImhpZ2giKSkKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICApCnRhYmxlKGFsbC5kYXRhJG1lZF9zcGxpdF9CSVMpCnRhYmxlKGFsbC5kYXRhJG1lZF9zcGxpdF9CQVNfUmV3KSAjIEkgdXNlZCA8IGZvciBCQVMtUlIgKGJ1dCA8PSBmb3IgdGhlIG90aGVycykgdG8gbWFrZSB0aGUgZ3JvdXBzIG1vcmUgZXF1YWxseS1zaXplZAp0YWJsZShhbGwuZGF0YSRtZWRfc3BsaXRfUFNXUSkKdGFibGUoYWxsLmRhdGEkbWVkX3NwbGl0X1JTX0Jyb29kKQpgYGAKCiMjIyBDaGVjayBvdXQgdGhlIGRhdGFzZXQKYGBge3J9CiMgb3ZlcnZpZXcgdGhlIGVudGlyZSBbd2lkZV0gZGF0YXNldAojIHRoaXMgd2lsbCBsb29rIGxpa2UgVE9UQUwgY3JhcCBpbiB0aGUgbm90ZWJvb2sgb3V0cHV0IChpLmUuLCB3aGF0IHlvdSBhcmUgcHJvYmFibHkgbG9va2luZyBhdCByaWdodCBub3cpCiMgZnJvbSB0aGUgUiBjb25zb2xlLCB1c2UgdmlldyhkZlN1bW1hcnkoYWxsLmRhdGEpKSB0byBzZWUgYSBtdWNoIG1vcmUgcmVhZGFibGUgYW5kIGF0dHJhY3RpdmUgb3V0cHV0CmxpYnJhcnkoc3VtbWFyeXRvb2xzKQpkZlN1bW1hcnkoYWxsLmRhdGEpCiMgdmlldyhkZlN1bW1hcnkoYWxsLmRhdGEpKQpgYGAKClRoZSBFR0cgdmFyaWFibGVzIGxvb2sgcHJldHR5IGJpbW9kYWwsIHdoaWNoIGhhcyBtZSBraW5kYSB3b3JyaWVkLiBJIGRpZCBhdHRlbXB0IHRyYW5zZm9ybWF0aW9uIHVzaW5nIHRoZSBgYmVzdE5vcm1hbGl6ZWAgcGFja2FnZSAocGlja3MgdGhlIHRyYW5zZm9ybWF0aW9uIHRoYXQgZ2V0cyB5b3VyIGRhdGEgY2xvc2VzdCB0byBub3JtYWwpIG9uIGBlZ2dfbmAgYnV0IGl0IGRpZG4ndCByZWFsbHkgaW1wcm92ZSBtYXR0ZXJzIC0gZGF0YSBhcmUgc3RpbGwgYmltb2RhbCwgYXMgc2hvd24gYmVsb3cuIFNvIEkganVzdCB3ZW50IHdpdGggdGhlIG5vbi10cmFuc2Zvcm1lZCB2YWx1ZXMuCgpOb3RlIG1pc3Npbmcgb2JzZXJ2YXRpb25zIGZvciBhZ2UsIGdlbmRlciwgYW5kIHJhY2UuCgojIyMjIFRyYW5zZm9ybWF0aW9uCmBgYHtyfQpsaWJyYXJ5KGJlc3ROb3JtYWxpemUpCmVnZ19uX3RyYW5zZiA8LSBiZXN0Tm9ybWFsaXplKGFsbC5kYXRhJGVnZ19uKQplZ2dfbl90cmFuc2YkeC50Cgpwc3ljaDo6ZGVzY3JpYmUoZWdnX25fdHJhbnNmJHgpICNub24tdHJhbnNmb3JtZWQKcHN5Y2g6OmRlc2NyaWJlKGVnZ19uX3RyYW5zZiR4LnQpICN0cmFuc2Zvcm1lZAoKaGlzdChlZ2dfbl90cmFuc2YkeCkgI25vbi10cmFuc2Zvcm1lZApoaXN0KGVnZ19uX3RyYW5zZiR4LnQpICN0cmFuc2Zvcm1lZAoKcXFub3JtKGVnZ19uX3RyYW5zZiR4KSAjbm9uLXRyYW5zZm9ybWVkCnFxbm9ybShlZ2dfbl90cmFuc2YkeC50KSAjdHJhbnNmb3JtZWQKYGBgCgojIyBDb3JyZWxhdGlvbnMgKHdpdGhpbi1jb25kaXRpb247IEJBU0VMSU5FLCBORSwgRkUsIFNBIG9ubHkpCkJlY2F1c2Ugb2YgdGhlIGFmb3JlbWVudGlvbmVkIG5vbi1ub3JtYWxpdHkgb2YgdGhlIEVHRyB2YXJpYWJsZXMsIEkgdXNlZCBib3RoIFNwZWFybWFuJ3MgX3Job18gYXMgd2VsbCBhcyBQZWFyc29uJ3MgX3JfLiAKCiMjIyBFR0cgbm9ybW9nYXN0cmlhCmBgYHtyfQojIEhSViBhbmQgRUdHIG5vcm1vIEAgYmFzZWxpbmUKYmFzZWxpbmUgPC0gYWxsLmRhdGEgJT4lIGZpbHRlcihjb25kPT0iQkFTRUxJTkUiKQpjb3IudGVzdChiYXNlbGluZSRlZ2dfbiwgYmFzZWxpbmUkaHJ2Lm1zZCwgbWV0aG9kPWMoInBlYXJzb24iKSkKY29yLnRlc3QoYmFzZWxpbmUkZWdnX24sIGJhc2VsaW5lJGhydi5tc2QsIG1ldGhvZD1jKCJzcGVhcm1hbiIpKQoKIyBIUlYgYW5kIEVHRyBub3JtbyBAIGZlYXIgdmlkZW8KZmUgPC0gYWxsLmRhdGEgJT4lIGZpbHRlcihjb25kPT0iRkUiKQpjb3IudGVzdChmZSRlZ2dfbiwgZmUkaHJ2Lm1zZCwgbWV0aG9kPWMoInBlYXJzb24iKSkKY29yLnRlc3QoZmUkZWdnX24sIGZlJGhydi5tc2QsIG1ldGhvZD1jKCJzcGVhcm1hbiIpKQoKIyBIUlYgYW5kIEVHRyBub3JtbyBAIHNhZCB2aWRlbwpzYSA8LSBhbGwuZGF0YSAlPiUgZmlsdGVyKGNvbmQ9PSJTQSIpCmNvci50ZXN0KHNhJGVnZ19uLCBzYSRocnYubXNkLCBtZXRob2Q9YygicGVhcnNvbiIpKQpjb3IudGVzdChzYSRlZ2dfbiwgc2EkaHJ2Lm1zZCwgbWV0aG9kPWMoInNwZWFybWFuIikpCgojIEhSViBhbmQgRUdHIG5vcm1vIEAgbmV1dHJhbCB2aWRlbwpuZSA8LSBhbGwuZGF0YSAlPiUgZmlsdGVyKGNvbmQ9PSJORSIpCmNvci50ZXN0KG5lJGVnZ19uLCBuZSRocnYubXNkLCBtZXRob2Q9YygicGVhcnNvbiIpKQpjb3IudGVzdChuZSRlZ2dfbiwgbmUkaHJ2Lm1zZCwgbWV0aG9kPWMoInNwZWFybWFuIikpCmBgYAoKTHVja2lseSwgdGhlIHJlc3VsdHMgbWF0Y2g6IEhSViBhbmQgRUdHIG5vcm1vZ2FzdHJpYSBmb3IgdGhlIHNhbXBsZSBhcyBhIHdob2xlIGFyZSB1bmNvcnJlbGF0ZWQgKl9leGNlcHRfKiBpbiB0aGUgRmVhciBjb25kaXRpb24sIHdoZXJlIHRoZXkgYXJlIG5lZ2F0aXZlbHkgY29ycmVsYXRlZCBiYXNlZCBlaXRoZXIgb24gU3BlYXJtYW4gb3IgUGVhcnNvbiAoIF9wXyA8IC4wMDMpLiAKCiMjIyBFR0cgdGFjaHlnYXN0cmlhCmBgYHtyfQojIEhSViBhbmQgRUdHIHRhY2h5IEAgYmFzZWxpbmUKYmFzZWxpbmUgPC0gYWxsLmRhdGEgJT4lIGZpbHRlcihjb25kPT0iQkFTRUxJTkUiKQpjb3IudGVzdChiYXNlbGluZSRlZ2dfdCwgYmFzZWxpbmUkaHJ2Lm1zZCwgbWV0aG9kPWMoInBlYXJzb24iKSkKY29yLnRlc3QoYmFzZWxpbmUkZWdnX3QsIGJhc2VsaW5lJGhydi5tc2QsIG1ldGhvZD1jKCJzcGVhcm1hbiIpKQoKIyBIUlYgYW5kIEVHRyB0YWNoeSBAIGZlYXIgdmlkZW8KZmUgPC0gYWxsLmRhdGEgJT4lIGZpbHRlcihjb25kPT0iRkUiKQpjb3IudGVzdChmZSRlZ2dfdCwgZmUkaHJ2Lm1zZCwgbWV0aG9kPWMoInBlYXJzb24iKSkKY29yLnRlc3QoZmUkZWdnX3QsIGZlJGhydi5tc2QsIG1ldGhvZD1jKCJzcGVhcm1hbiIpKQoKIyBIUlYgYW5kIEVHRyB0YWNoeSBAIHNhZCB2aWRlbwpzYSA8LSBhbGwuZGF0YSAlPiUgZmlsdGVyKGNvbmQ9PSJTQSIpCmNvci50ZXN0KHNhJGVnZ190LCBzYSRocnYubXNkLCBtZXRob2Q9YygicGVhcnNvbiIpKQpjb3IudGVzdChzYSRlZ2dfdCwgc2EkaHJ2Lm1zZCwgbWV0aG9kPWMoInNwZWFybWFuIikpCgojIEhSViBhbmQgRUdHIHRhY2h5IEAgbmV1dHJhbCB2aWRlbwpuZSA8LSBhbGwuZGF0YSAlPiUgZmlsdGVyKGNvbmQ9PSJORSIpCmNvci50ZXN0KG5lJGVnZ190LCBuZSRocnYubXNkLCBtZXRob2Q9YygicGVhcnNvbiIpKQpjb3IudGVzdChuZSRlZ2dfdCwgbmUkaHJ2Lm1zZCwgbWV0aG9kPWMoInNwZWFybWFuIikpCmBgYAoKRm9yIHRhY2h5Z2FzdHJpYSwgd2Ugc2VlIHRoYXQgRUdHIGFuZCBIUlYgYXJlIHBvc2l0aXZlbHkgY29ycmVsYXRlZCBkdXJpbmcgYm90aCBGZWFyICggX3BfIDwgLjAzKSBhbmQgTmV1dHJhbCAoIF9wXyA8IC4wMikuIFRoZSBjb3JyZWxhdGlvbiBkdXJpbmcgU2FkbmVzcyBpcyBuby1zaWduaWZpY2FudCBpZiB1c2luZyBTcGVhcm1hbiAoIF9wXyA8IC4wNzUpIGJ1dCBzaWduaWZpY2FudCBpZiB1c2luZyBQZWFyc29uICggX3BfID0gLjA0NSkuIAoKCiMjIyBTY2F0dGVycGxvdHMKCkxldCdzIHZpc3VhbGl6ZSB0aGVzZSByZWxhdGlvbnNoaXBzLiAKCiMjIyMgQWNyb3NzIGNvbmRpdGlvbnMKYGBge3J9CmFsbC5kYXRhICU+JSBnZ3Bsb3QoYWVzKHg9ZWdnX24sIHk9aHJ2Lm1zZCkpICsgZ2VvbV9wb2ludCgpICsgZ2VvbV9zbW9vdGgobWV0aG9kPWxtLCBsaW5ldHlwZT0ic29saWQiLCBjb2xvcj0iZ3JheTU5IiwgZmlsbD0ibGlnaHRncmF5IikgIyBub3JtbwphbGwuZGF0YSAlPiUgZ2dwbG90KGFlcyh4PWVnZ190LCB5PWhydi5tc2QpKSArIGdlb21fcG9pbnQoKSArIGdlb21fc21vb3RoKG1ldGhvZD1sbSwgbGluZXR5cGU9InNvbGlkIiwgY29sb3I9ImdyYXk1OSIsIGZpbGw9ImxpZ2h0Z3JheSIpICMgdGFjaHkKYGBgCgojIyMjIEJhc2VsaW5lCmBgYHtyfQpiYXNlbGluZSAlPiUgZ2dwbG90KGFlcyh4PWVnZ19uLCB5PWhydi5tc2QpKSArIGdlb21fcG9pbnQoKSArIGdlb21fc21vb3RoKG1ldGhvZD1sbSwgbGluZXR5cGU9InNvbGlkIiwgY29sb3I9ImdyYXk1OSIsIGZpbGw9ImxpZ2h0Z3JheSIpICAjIG5vcm1vCmJhc2VsaW5lICU+JSBnZ3Bsb3QoYWVzKHg9ZWdnX3QsIHk9aHJ2Lm1zZCkpICsgZ2VvbV9wb2ludCgpICsgZ2VvbV9zbW9vdGgobWV0aG9kPWxtLCBsaW5ldHlwZT0ic29saWQiLCBjb2xvcj0iZ3JheTU5IiwgZmlsbD0ibGlnaHRncmF5IikgICMgdGFjaHkKYGBgCgojIyMjIEZlYXIKYGBge3J9CmZlICU+JSBnZ3Bsb3QoYWVzKHg9ZWdnX24sIHk9aHJ2Lm1zZCkpICsgZ2VvbV9wb2ludCgpICsgZ2VvbV9zbW9vdGgobWV0aG9kPWxtLCBsaW5ldHlwZT0ic29saWQiLCBjb2xvcj0iZ3JheTU5IiwgZmlsbD0ibGlnaHRncmF5IikgICMgbm9ybW8KZmUgJT4lIGdncGxvdChhZXMoeD1lZ2dfdCwgeT1ocnYubXNkKSkgKyBnZW9tX3BvaW50KCkgKyBnZW9tX3Ntb290aChtZXRob2Q9bG0sIGxpbmV0eXBlPSJzb2xpZCIsIGNvbG9yPSJncmF5NTkiLCBmaWxsPSJsaWdodGdyYXkiKSAgIyB0YWNoeQpgYGAKCgojIyMjIFNhZG5lc3MKYGBge3J9CnNhICU+JSBnZ3Bsb3QoYWVzKHg9ZWdnX24sIHk9aHJ2Lm1zZCkpICsgZ2VvbV9wb2ludCgpICsgZ2VvbV9zbW9vdGgobWV0aG9kPWxtLCBsaW5ldHlwZT0ic29saWQiLCBjb2xvcj0iZ3JheTU5IiwgZmlsbD0ibGlnaHRncmF5IikgIyBub3JtbwpzYSAlPiUgZ2dwbG90KGFlcyh4PWVnZ190LCB5PWhydi5tc2QpKSArIGdlb21fcG9pbnQoKSArIGdlb21fc21vb3RoKG1ldGhvZD1sbSwgbGluZXR5cGU9InNvbGlkIiwgY29sb3I9ImdyYXk1OSIsIGZpbGw9ImxpZ2h0Z3JheSIpICMgdGFjaHkKYGBgCgpCYXNlZCBvbiB0aGVzZSBwbG90cywgeW91IGNhbiBzZWUgdGhlIHByb2JsZW0gd2l0aCBhc3N1bWluZyB0aGF0IHRoZXNlIGRhdGEgYXJlIGNvbnRpbnVvdXMgKEVHRyB2YWx1ZXMgZnJvbSBBY3Frbm93bGVkZ2UgYXJlIHJlYWxseSBjbG9zZXIgdG8gb3JkaW5hbCkgYW5kIG5vcm1hbGx5IGRpc3RyaWJ1dGVkLCB3aGljaCBJIHRoaW5rIHN1cHBvcnRzIHRoZSB1c2Ugb2YgU3BlYXJtYW4ncyBfcmhvXyBvdmVyIFBlYXJzb24ncyBfcl8sIHRob3VnaCBpbiBtb3N0IGNhc2VzIHRoZSBnZW5lcmFsIHBhdHRlcm4gaXMgaW4gYWdyZWVtZW50LiAKCgoKIyMgRUdHL0hSViBieSBjb25kaXRpb246IFJNLUFOT1ZBcwoKYGBge3J9CmFub3ZhRGF0YSA8LSBmaWx0ZXIoYWxsLmRhdGEsICFncmVwbCgiRElTIixjb25kKSkgIyBmaWx0ZXJlZCBvdXQgZGF0YSBpbiBESVMgY29uZGl0aW9uLCB3ZSBkcm9wcGVkIEFNVSBlYXJsaWVyIGluIHRoZSBkYXRhIGNsZWFuaW5nCgojIHJlcGVhdGVkLW1lYXN1cmVzIEFOT1ZBIAphMSA8LSBhb3ZfZXooaWQgPSAiSUQiLCBkdiA9ICJlZ2dfbiIsIGFub3ZhRGF0YSwgd2l0aGluID0gImNvbmQiLCBmdW5fYWdncmVnYXRlID0gbWVhbikKYTEgCgphMiA8LSBhb3ZfZXooaWQgPSAiSUQiLCBkdiA9ICJlZ2dfdCIsIGFub3ZhRGF0YSwgd2l0aGluID0gImNvbmQiLCBmdW5fYWdncmVnYXRlID0gbWVhbikKYTIgCgphMyA8LSBhb3ZfZXooaWQgPSAiSUQiLCBkdiA9ICJocnYubXNkIiwgYW5vdmFEYXRhLCB3aXRoaW4gPSAiY29uZCIsIGZ1bl9hZ2dyZWdhdGUgPSBtZWFuKQphMyAKCmE1IDwtIGFvdl9leihpZCA9ICJJRCIsIGR2ID0gInBhbmFzX05BIiwgYW5vdmFEYXRhLCB3aXRoaW4gPSAiY29uZCIsIGZ1bl9hZ2dyZWdhdGUgPSBtZWFuKQphNSAKCmE2IDwtIGFvdl9leihpZCA9ICJJRCIsIGR2ID0gInBhbmFzX1BBIiwgYW5vdmFEYXRhLCB3aXRoaW4gPSAiY29uZCIsIGZ1bl9hZ2dyZWdhdGUgPSBtZWFuKQphNiAKYGBgClRoZXJlIGlzIG5vIG1haW4gZWZmZWN0IG9mIGNvbmRpdGlvbiBhbG9uZSBvbiBgZWdnX25gIG9yIGBlZ2dfdGAgb3IgYGhydi5tc2RgLgpIb3dldmVyLCB0aGVyZSBpcyBhIG1haW4gZWZmZWN0IG9mIGNvbmRpdGlvbiBvbiBQQU5BUywgYm90aCBOQSBhbmQgUEEuIAoKIyMjIFBhaXJ3aXNlIGNvbXBhcmlzb25zIGZvciBlZmZlY3Qgb2YgY29uZCBvbiBzdGF0ZSBhZmZlY3QKYGBge3J9CgphNSRsbVsxXSAjIGNvZWZmaWNpZW50cyBmb3IgUEFOQVMgTkEgKHVzZSBhNSRsbVsyXSB0byBnZXQgcmVzaWR1YWxzKQoKIyBuZWdhdGl2ZSBhZmZlY3QgZXN0aW1hdGVkIG1hcmdpbmFsIG1lYW5zIGFuZCBwYWlyd2lzZSBjb21wYXJpc29ucwplbW0gPC0gZW1tZWFucyhhNSwgfmMoY29uZCkpCmVtbQp1cGRhdGUocGFpcnMoZW1tKSwgYnk9TlVMTCwgYWRqdXN0ID0gImhvbG0iKQpgYGAKSW4gdGVybXMgb2YgbmVnYXRpdmUgYWZmZWN0LCBOQSBpcyBzaWduaWZpY2FudGx5IGhpZ2hlciBhZnRlciB0aGUgZmVhciB2aWRlbyBjb21wYXJlZCB0byB3aGVuIGl0IHdhcyBtZWFzdXJlZCBwcmUtYmFzZWxpbmUgcmVjb3JkaW5nLiBOQSBpcyBhbHNvIHNpZ25pZmljYW50bHkgaGlnaGVyIGFmdGVyIHRoZSBmZWFyIHZpZGVvIGNvbXBhcmVkIHRvIGFmdGVyIHRoZSBuZXV0cmFsIHZpZGVvLCBhbmQgYWZ0ZXIgdGhlIHNhZCB2aWRlbyBjb21wYXJlZCB0byBhZnRlciB0aGUgbmV1dHJhbCB2aWRlby4gClRoZXNlIHBhdHRlcm5zIGFyZSBzaG93biBpbiB0aGUgYm94cGxvdCBiZWxvdzoKCmBgYHtyfQpuYV9ib3ggPC0gZ2dwbG90KGFub3ZhRGF0YSwgYWVzKHk9cGFuYXNfTkEsIHg9YXMuZmFjdG9yKGNvbmQpKSkgKyAKICBnZW9tX2JveHBsb3QoYWVzKGZpbGw9Y29uZCksb3V0bGllci5hbHBoYSA9IDAuMikgKyB4bGFiKCJDb25kaXRpb24iKSArIHlsYWIoIlBBTkFTIE5lZ2F0aXZlIEFmZmVjdCIpCm5hX2JveApgYGAKCmBgYHtyfQphNiRsbVsxXSAjIGNvZWZmaWNpZW50cyBmb3IgUEFOQVMgUEEgKHVzZSBhNiRsbVsyXSB0byBnZXQgcmVzaWR1YWxzKQoKIyBuZWdhdGl2ZSBhZmZlY3QgZXN0aW1hdGVkIG1hcmdpbmFsIG1lYW5zIGFuZCBwYWlyd2lzZSBjb21wYXJpc29ucwplbW0gPC0gZW1tZWFucyhhNiwgfmMoY29uZCkpCmVtbQp1cGRhdGUocGFpcnMoZW1tKSwgYnk9TlVMTCwgYWRqdXN0ID0gImhvbG0iKQpgYGAKCkluIHRlcm1zIG9mIHBvc2l0aXZlIGFmZmVjdCwgUEEgaXMgc2lnbmlmaWNhbnRseSBoaWdoZXIgcHJlLWJhc2VsaW5lIHJlY29yZGluZywgY29tcGFyZWQgdG8gdGhlIG5ldXRyYWwsIGZlYXIsIGFuZCBzYWRuZXNzIHZpZGVvcy4gSW50ZXJlc3RpbmcsIFBBIGlzIHNpZ25pZmljYW50bHkgbG93ZXIgYWZ0ZXIgbmV1dHJhbCB0aGFuIGFmdGVyIGJvdGggc2FkbmVzcyBhbmQgZmVhciAoc28gbWF5YmUgcGVvcGxlIFJFQUxMWSBoYXRlIGJlaW5nIGJvcmVkIGJ5IHRoZSBjb2xvcmJhcnM/PyBobW1tKS4gSXQncyBhbHNvIHNpZ25pZmljYW50bHkgbG93ZXIgZm9yIHNhZG5lc3MgcmVsYXRpdmUgdG8gZmVhci4gVGhpcyBpcyBpbnRlcmVzdGluZyEgSSBndWVzcyB0aGF0IGxhc3Qgb25lIGZpdHMgd2l0aCB0aGUgaWRlYSB0aGF0IG1hbnkgdW5kZXJncmFkcyBlbmpveSBob3Jyb3IgbW92aWVzLi4uClRoZXNlIHBhdHRlcm5zIGFyZSBzaG93biBpbiB0aGUgYm94cGxvdCBiZWxvdzoKCmBgYHtyfQpwYV9ib3ggPC0gZ2dwbG90KGFub3ZhRGF0YSwgYWVzKHk9cGFuYXNfUEEsIHg9YXMuZmFjdG9yKGNvbmQpKSkgKyAKICBnZW9tX2JveHBsb3QoYWVzKGZpbGw9Y29uZCksb3V0bGllci5hbHBoYSA9IDAuMikgKyB4bGFiKCJDb25kaXRpb24iKSArIHlsYWIoIlBBTkFTIFBvc2l0aXZlIEFmZmVjdCIpCnBhX2JveApgYGAKCiMjIyBFR0cgYW5kIEhSViBtb2RlbHMgd2l0aCBjb3ZhcmlhdGVzCmBgYHtyfQojIHJlcGVhdGVkLW1lYXN1cmVzIEFOT1ZBIHdpdGggY292YXJpYXRlcwphNyA8LSBhb3ZfZXooaWQgPSAiSUQiLCBkdiA9ICJlZ2dfbiIsIGFub3ZhRGF0YSwgd2l0aGluID0gImNvbmQiLCBjb3ZhcmlhdGUgPSBjKCJocnNfYXRlIiwiZ2VuZGVyIiwiYWdlIiksIGZ1bl9hZ2dyZWdhdGUgPSBtZWFuKQphNyAKCmE4IDwtIGFvdl9leihpZCA9ICJJRCIsIGR2ID0gImVnZ190IiwgYW5vdmFEYXRhLCB3aXRoaW4gPSAiY29uZCIsIGNvdmFyaWF0ZSA9IGMoImhyc19hdGUiLCJnZW5kZXIiLCJhZ2UiKSwgZnVuX2FnZ3JlZ2F0ZSA9IG1lYW4pCmE4IAoKYTkgPC0gYW92X2V6KGlkID0gIklEIiwgZHYgPSAiaHJ2Lm1zZCIsIGFub3ZhRGF0YSwgd2l0aGluID0gImNvbmQiLCBjb3ZhcmlhdGUgPSBjKCJnZW5kZXIiLCJhZ2UiKSwgZnVuX2FnZ3JlZ2F0ZSA9IG1lYW4pCmE5IApgYGAKVGhlIHBhY2thZ2UgdGVsbHMgbWUgSSBuZWVkIHRvIGNlbnRlciBgYWdlYCBhbmQgYGhyc19hdGVgLCBidXQgSSdtIG5vdCBzdXJlIHRoYXQgSSBkbyBzaW5jZSB6ZXJvIGlzIGEgcGVyZmVjdGx5IHJlYXNvbmFibGUgdmFsdWUgZm9yIGJvdGggb2YgdGhvc2UsIHNvIEkgd291bGQgdGhpbmsgd2UnZCB3YW50IHRvIHByZXNlcnZlIHRoZSBhY3R1YWwgdW5pdHMgZm9yIGludGVycHJldGFiaWxpdHkuLi4/PwoKTm8gc2lnbmlmaWNhbnQgZWZmZWN0cyB3aGVuIGNvdmFyaWF0ZXMgYXJlIGluY2x1ZGVkLCBlaXRoZXIuIFRoZXJlIGlzIGEgbm9uLXNpZ25pZmljYW50IGVmZmVjdCBvZiBhZ2Ugb24gYGhydi5tc2RgLCBfcF8gPSAuMDYuCgojIyMgTGF0dGljZSBwbG90cwpUaGUgbGFjayBvZiBtYWluIGVmZmVjdHMgc3VnZ2VzdHMgdGhhdCBlaXRoZXIgdGhhdCBwZW9wbGUncyBwaHlzaW9sb2d5IGlzbid0IGFmZmVjdGVkIGJ5IHRoZSB2aWRlb3MsIG9yIGFsdGVybmF0aXZlbHksIHRoYXQgcGVvcGxlIGp1c3QgdmFyeSBhIGxvdCBpbiB0aGVpciByZXNwb25zZS4gTGV0J3MgY2hlY2sgaXQgb3V0IHVzaW5nIGxhdHRpY2UgcGxvdHM6CmBgYHtyfQpsaWJyYXJ5KGxhdHRpY2UpCnh5cGxvdChlZ2dfbiB+IGNvbmQgfCBJRCwgZGF0YSA9IGFub3ZhRGF0YSwgYXMudGFibGU9VCkKeHlwbG90KGVnZ190IH4gY29uZCB8IElELCBkYXRhID0gYW5vdmFEYXRhLCBhcy50YWJsZT1UKQp4eXBsb3QoaHJ2Lm1zZCB+IGNvbmQgfCBJRCwgZGF0YSA9IGFub3ZhRGF0YSwgYXMudGFibGU9VCkKYGBgCgpUb28gbWFueSBwZW9wbGUvaGFyZCB0byBzZWUgcGF0dGVybnMgd2l0aCB0aGUgd2hvbGUgc2FtcGxlLCBzbyBsb29rIGF0IGEgcmFuZG9tIHN1YnNldCBvZiBJRHM6CmBgYHtyfQojIHRvbyBtYW55IHBlb3BsZS9oYXJkIHRvIHNlZSwgdHJ5IHJhbmRvbSBzdWJzZXQKaWRzIDwtIHNhbXBsZSh1bmlxdWUoYW5vdmFEYXRhJElEKSwgMTgpICMgcmFuZG9tIHN1YnNldCBvZiBJRHMgKG49MTgpCnRlbXAgPC0gYW5vdmFEYXRhW2Fub3ZhRGF0YSRJRCAlaW4lIGlkcywgXQp4eXBsb3QoZWdnX24gfiBjb25kIHwgSUQsIGRhdGEgPSB0ZW1wLCBhcy50YWJsZT1UKSAKeHlwbG90KGVnZ190IH4gY29uZCB8IElELCBkYXRhID0gdGVtcCwgYXMudGFibGU9VCkgCnh5cGxvdChocnYubXNkIH4gY29uZCB8IElELCBkYXRhID0gdGVtcCwgYXMudGFibGU9VCkgCgpgYGAKV2hhdCB0aGlzIHNob3dzIGlzIHRoYXQgcGVvcGxlIHZhcnkgcHJldHR5IHdpZGVseSBpbiB0aGVpciByZXNwb25zZSB0byB0aGUgdmlkZW9zLiBUaGlzIGNvdWxkIGV4cGxhaW4gc29tZSBvZiB0aGUgbGFjayBvZiBvdmVyYWxsIGVmZmVjdHMgb2YgYGNvbmRgLiAKCiMjIyBFZmZlY3RzIG9mIGVtb3Rpb25hbGl0eSBhbmQgcmVndWxhdGlvbiAoY29udGludW91cykKPGNlbnRlcj4gIF9JIHdvdWxkIHZlcnkgbXVjaCBJR05PUkUgYWxsIG9mIHRoZSBjcmF6eSBtdWx0aS13YXkgaW50ZXJhY3Rpb25zIGJlbG93LCBiZWNhdXNlIHRoZXkncmUgbm90IHN1cGVyIGludGVycHJldGFibGUuLi5JIGp1c3QgZG9uJ3Qga25vdyBob3cgdG8gbWFrZSBgYWZleGAgc3RvcCBnaXZpbmcgbWUgZXZlcnkgcG9zc2libGUgaW50ZXJhY3Rpb24gdW5kZXIgdGhlIHN1bi5fIDwvY2VudGVyPgoKYGBge3J9CmExMCA8LSBhb3ZfZXooaWQgPSAiSUQiLCBkdiA9ICJlZ2dfbiIsIGFub3ZhRGF0YSwgd2l0aGluID0gImNvbmQiLCBiZXR3ZWVuID0gYygiY2VuX3RvdF9CSVMiLCJjZW5fdG90X0JBU19SZXciLCJjZW5fdG90X1BTV1EiLCJjZW5fdG90X1JTX0Jyb29kaW5nIiksIGZ1bl9hZ2dyZWdhdGUgPSBtZWFuKQphMTAgCgphMTEgPC0gYW92X2V6KGlkID0gIklEIiwgZHYgPSAiZWdnX3QiLCBhbm92YURhdGEsIHdpdGhpbiA9ICJjb25kIiwgYmV0d2VlbiA9IGMoImNlbl90b3RfQklTIiwiY2VuX3RvdF9CQVNfUmV3IiwiY2VuX3RvdF9QU1dRIiwiY2VuX3RvdF9SU19Ccm9vZGluZyIpLCBmdW5fYWdncmVnYXRlID0gbWVhbikKYTExCgphMTIgPC0gYW92X2V6KGlkID0gIklEIiwgZHYgPSAiaHJ2Lm1zZCIsIGFub3ZhRGF0YSwgd2l0aGluID0gImNvbmQiLCBiZXR3ZWVuID0gYygiY2VuX3RvdF9CSVMiLCJjZW5fdG90X0JBU19SZXciLCJjZW5fdG90X1BTV1EiLCJjZW5fdG90X1JTX0Jyb29kaW5nIiksIGZ1bl9hZ2dyZWdhdGUgPSBtZWFuKQphMTIKCmExMyA8LSBhb3ZfZXooaWQgPSAiSUQiLCBkdiA9ICJwYW5hc19OQSIsIGFub3ZhRGF0YSwgd2l0aGluID0gImNvbmQiLCBiZXR3ZWVuID0gYygiY2VuX3RvdF9CSVMiLCJjZW5fdG90X0JBU19SZXciLCJjZW5fdG90X1BTV1EiLCJjZW5fdG90X1JTX0Jyb29kaW5nIiksIGZ1bl9hZ2dyZWdhdGUgPSBtZWFuKQphMTMKCmExMyA8LSBhb3ZfZXooaWQgPSAiSUQiLCBkdiA9ICJwYW5hc19QQSIsIGFub3ZhRGF0YSwgd2l0aGluID0gImNvbmQiLCBiZXR3ZWVuID0gYygiY2VuX3RvdF9CSVMiLCJjZW5fdG90X0JBU19SZXciLCJjZW5fdG90X1BTV1EiLCJjZW5fdG90X1JTX0Jyb29kaW5nIiksIGZ1bl9hZ2dyZWdhdGUgPSBtZWFuKQphMTMKCmBgYAoKKiBUaGVyZSBpcyBhIHNpZ25pZmljYW50KGlzaCkgZWZmZWN0IG9mIEJJUyBvbiBFR0cgbm9ybW9nYXN0cmlhLCBGID0gNC4zMiwgcCA9IC4wNSwgYW5kIG9mIEJJUyBvbiBIUlYsIEYgPSA3LjE4LCBwID0gLjAxLgoKKiBUaGVyZSBpcyBhIHNpZ25pZmljYW50IGVmZmVjdCBvZiBQU1dRIG9uIFBBTkFTIE5BLCBGID0gNy43OCwgcCA9IC4wMDksIGFzIHdlbGwgYXMgYSBtYWluIGVmZmVjdCBvZiBjb25kaXRpb24gKGFzIHNlZW4gYWJvdmUgaW4gdGhlIG1vZGVsIHdpdGhvdXQgYmV0d2Vlbi1zdWJqZWN0cyBlZmZlY3RzKSwgRiA9IDguNTIsIHAgPSAuMDAwMS4gCgoqIFRoZXJlIGlzIGEgc2lnbmlmaWNhbnQgZWZmZWN0IG9mIFBTV1Egb24gUEFOQVMgUEEsIEYgPSAxMC43NiwgcCA9IC4wMDMsIGFzIHdlbGwgYXMgYSBtYWluIGVmZmVjdCBvZiBjb25kaXRpb24gKGFzIHNlZW4gYWJvdmUgaW4gdGhlIG1vZGVsIHdpdGhvdXQgYmV0d2Vlbi1zdWJqZWN0cyBlZmZlY3RzKSwgRiA9IDQ3LjA3LCBwIDwgLjAwMDEuIAoKU28gdGhhdCdzIGtpbmQgb2YgaW50ZXJlc3RpbmchIC4uLm1heWJlIHN1Z2dlc3RzIHRoYXQgKnBoeXNpb2xvZ2ljYWwgcmVzcG9uc2UgaXMgbW9yZSBhIGZ1bmN0aW9uIG9mIGVtb3Rpb25hbGl0eSwgd2hlcmVhcyBzdWJqZWN0aXZlIHJlc3BvbnNlIGlzIG1vcmUgYSBmdW5jdGlvbiBvZiByZWd1bGF0aW9uPyoKCl9OT1RFOiBUaGVyZSBpcyBwcm9iYWJseSBhIG1vcmUgY29ycmVjdCB0ZXN0IHRvIHVzZSBnaXZlbiB0aGUgbm9uLW5vcm1hbGl0eSBvZiB0aGUgZGF0YSwgYnV0IEkgaGF2ZW4ndCBiZWVuIGFibGUgdG8gZmluZCBhIGNsZWFyIGdvb2QgZXF1aXZhbGVudCB0byBSTS1BTk9WQSwgYXQgbGVhc3Qgc28gZmFyLi4uXwoKIyMgVC10ZXN0cyBmb3IgUEFOQVMKYGBge3J9CiMgYWRkIHRoZSBtZWRpYW4gc3BsaXQgdmFycyB0byB0aGUgd2lkZSBkYXRhc2V0CnRvdHMgPC0gdG90cyAlPiUgbXV0YXRlKG1lZF9zcGxpdF9CSVMgPSBhcy5mYWN0b3IoaWZlbHNlKHRvdF9iaXNiYXNfQklTLlRvdGFsIDw9IG1lZGlhbih0b3RfYmlzYmFzX0JJUy5Ub3RhbCksICJsb3ciLCAiaGlnaCIpKSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWVkX3NwbGl0X0JBU19SZXcgPSBhcy5mYWN0b3IoaWZlbHNlKHRvdF9iaXNiYXNfQkFTLlJld2FyZCA8IG1lZGlhbih0b3RfYmlzYmFzX0JBUy5SZXdhcmQpLCAibG93IiwgImhpZ2giKSksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWVkX3NwbGl0X1BTV1EgPSBhcy5mYWN0b3IoaWZlbHNlKHRvdF9QU1dRX1RvdGFsIDw9IG1lZGlhbih0b3RfUFNXUV9Ub3RhbCksICJsb3ciLCAiaGlnaCIpKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZWRfc3BsaXRfUlNfQnJvb2QgPSBhcy5mYWN0b3IoaWZlbHNlKHRvdF9SU19Ccm9vZGluZyA8PSBtZWRpYW4odG90X1JTX0Jyb29kaW5nKSwgImxvdyIsICJoaWdoIikpCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgKQoKZGF0YSA8LSBsZWZ0X2pvaW4oZGF0YSwgdG90cywgYnk9IklEIikKYGBgCgojIyMgQklTCmBgYHtyfQojIEJJUwp0LnRlc3QoZGF0YSR0b3RfUEFOQVNfU3RhdGUuTkEgfiBkYXRhJG1lZF9zcGxpdF9CSVMpCnQudGVzdChkYXRhJHRvdF9QQU5BU19TdGF0ZS5QQSB+IGRhdGEkbWVkX3NwbGl0X0JJUykKdC50ZXN0KGRhdGEkdG90X2FmdGVydmlkLk5FVVRSQUxfUEFOQVNfU3RhdGUuTkEgfiBkYXRhJG1lZF9zcGxpdF9CSVMpCnQudGVzdChkYXRhJHRvdF9hZnRlcnZpZC5ORVVUUkFMX1BBTkFTX1N0YXRlLlBBIH4gZGF0YSRtZWRfc3BsaXRfQklTKQp0LnRlc3QoZGF0YSR0b3RfYWZ0ZXJ2aWQuRkVBUl9QQU5BU19TdGF0ZS5OQSB+IGRhdGEkbWVkX3NwbGl0X0JJUykKdC50ZXN0KGRhdGEkdG90X2FmdGVydmlkLkZFQVJfUEFOQVNfU3RhdGUuUEEgfiBkYXRhJG1lZF9zcGxpdF9CSVMpCnQudGVzdChkYXRhJHRvdF9hZnRlcnZpZC5TQURfUEFOQVNfU3RhdGUuTkEgfiBkYXRhJG1lZF9zcGxpdF9CSVMpCnQudGVzdChkYXRhJHRvdF9hZnRlcnZpZC5TQURfUEFOQVNfU3RhdGUuUEEgfiBkYXRhJG1lZF9zcGxpdF9CSVMpCmBgYApUaGUgaGlnaCBCSVMgZ3JvdXAgaGFkIHNpZ25pZmljYW50bHkgaGlnaGVyIG5lZ2F0aXZlIGFmZmVjdCBhZnRlciB0aGUgZmVhciB2aWRlbyB0aGFuIHRoZSBsb3cgZ3JvdXAsIHQgPSAyLjMwLCBwID0gLjAyOC4KCmBgYHtyfQpiaXMgPC0gZ2dwbG90KGFub3ZhRGF0YSwgYWVzKGZpbGw9Y29uZCwgeT1wYW5hc19OQSwgeD1tZWRfc3BsaXRfQklTKSkgKyAKICBnZW9tX2JveHBsb3QoYWVzKGZpbGw9Y29uZCksIG91dGxpZXIuYWxwaGEgPSAwLjMpCmJpcwpgYGAKCiMjIyBCQVMtUmV3YXJkCmBgYHtyfSAgICAgICAKIyBCQVNfUmV3CnQudGVzdChkYXRhJHRvdF9QQU5BU19TdGF0ZS5OQSB+IGRhdGEkbWVkX3NwbGl0X0JBU19SZXcpCnQudGVzdChkYXRhJHRvdF9QQU5BU19TdGF0ZS5QQSB+IGRhdGEkbWVkX3NwbGl0X0JBU19SZXcpCnQudGVzdChkYXRhJHRvdF9hZnRlcnZpZC5ORVVUUkFMX1BBTkFTX1N0YXRlLk5BIH4gZGF0YSRtZWRfc3BsaXRfQkFTX1JldykKdC50ZXN0KGRhdGEkdG90X2FmdGVydmlkLk5FVVRSQUxfUEFOQVNfU3RhdGUuUEEgfiBkYXRhJG1lZF9zcGxpdF9CQVNfUmV3KQp0LnRlc3QoZGF0YSR0b3RfYWZ0ZXJ2aWQuRkVBUl9QQU5BU19TdGF0ZS5OQSB+IGRhdGEkbWVkX3NwbGl0X0JBU19SZXcpCnQudGVzdChkYXRhJHRvdF9hZnRlcnZpZC5GRUFSX1BBTkFTX1N0YXRlLlBBIH4gZGF0YSRtZWRfc3BsaXRfQkFTX1JldykKdC50ZXN0KGRhdGEkdG90X2FmdGVydmlkLlNBRF9QQU5BU19TdGF0ZS5OQSB+IGRhdGEkbWVkX3NwbGl0X0JBU19SZXcpCnQudGVzdChkYXRhJHRvdF9hZnRlcnZpZC5TQURfUEFOQVNfU3RhdGUuUEEgfiBkYXRhJG1lZF9zcGxpdF9CQVNfUmV3KQpgYGAKVGhlIGhpZ2ggQkFTLVJld2FyZCBSZXNwb25zaXZlbmVzcyBncm91cCBoYWQgc2lnbmlmaWNhbnRseShpc2gpIGhpZ2hlciBwb3NpdGl2ZSBhZmZlY3QgYWZ0ZXIgdGhlIHNhZCB2aWRlbyB0aGFuIHRoZSBsb3cgZ3JvdXAsIHQgPSAyLjA1LCBwID0gLjA0Ny4KYGBge3J9CmJhc3JyIDwtIGdncGxvdChhbm92YURhdGEsIGFlcyhmaWxsPWNvbmQsIHk9cGFuYXNfUEEsIHg9bWVkX3NwbGl0X0JBU19SZXcpKSArIAogIGdlb21fYm94cGxvdChhZXMoZmlsbD1jb25kKSwgb3V0bGllci5hbHBoYSA9IDAuMykKYmFzcnIKYGBgCgojIyMgUFNXUQpgYGB7cn0KIyBQU1dRCnQudGVzdChkYXRhJHRvdF9QQU5BU19TdGF0ZS5OQSB+IGRhdGEkbWVkX3NwbGl0X1BTV1EpCnQudGVzdChkYXRhJHRvdF9QQU5BU19TdGF0ZS5QQSB+IGRhdGEkbWVkX3NwbGl0X1BTV1EpCnQudGVzdChkYXRhJHRvdF9hZnRlcnZpZC5ORVVUUkFMX1BBTkFTX1N0YXRlLk5BIH4gZGF0YSRtZWRfc3BsaXRfUFNXUSkKdC50ZXN0KGRhdGEkdG90X2FmdGVydmlkLk5FVVRSQUxfUEFOQVNfU3RhdGUuUEEgfiBkYXRhJG1lZF9zcGxpdF9QU1dRKQp0LnRlc3QoZGF0YSR0b3RfYWZ0ZXJ2aWQuRkVBUl9QQU5BU19TdGF0ZS5OQSB+IGRhdGEkbWVkX3NwbGl0X1BTV1EpCnQudGVzdChkYXRhJHRvdF9hZnRlcnZpZC5GRUFSX1BBTkFTX1N0YXRlLlBBIH4gZGF0YSRtZWRfc3BsaXRfUFNXUSkKdC50ZXN0KGRhdGEkdG90X2FmdGVydmlkLlNBRF9QQU5BU19TdGF0ZS5OQSB+IGRhdGEkbWVkX3NwbGl0X1BTV1EpCnQudGVzdChkYXRhJHRvdF9hZnRlcnZpZC5TQURfUEFOQVNfU3RhdGUuUEEgfiBkYXRhJG1lZF9zcGxpdF9QU1dRKQpgYGAKVGhlIGhpZ2ggUFNXUSBncm91cCBoYWQgc2lnbmlmaWNhbnRseSBoaWdoZXIgTkEgYXQgYmFzZWxpbmUgKHQgPSAzLjQ1LCBwID0gLjAwMiksIGZvbGxvd2luZyB0aGUgbmV1dHJhbCB2aWRlbyAodCA9IDIuMjMsIHAgPSAuMDMpLCBhbmQgZm9sbG93aW5nIHRoZSBmZWFyIHZpZGVvICh0ID0gMi4zNywgcCA9IC4wMjQpIHRoYW4gdGhlIGxvdyBQU1dRIGdyb3VwLgoKYGBge3J9CnBzd3EgPC0gZ2dwbG90KGFub3ZhRGF0YSwgYWVzKGZpbGw9Y29uZCwgeT1wYW5hc19OQSwgeD1tZWRfc3BsaXRfUFNXUSkpICsgCiAgZ2VvbV9ib3hwbG90KGFlcyhmaWxsPWNvbmQpLCBvdXRsaWVyLmFscGhhID0gMC4zKQpwc3dxCmBgYAoKCiMjIyBSUy1Ccm9vZApgYGB7cn0KIyBSU19Ccm9vZAp0LnRlc3QoZGF0YSR0b3RfUEFOQVNfU3RhdGUuTkEgfiBkYXRhJG1lZF9zcGxpdF9SU19Ccm9vZCkKdC50ZXN0KGRhdGEkdG90X1BBTkFTX1N0YXRlLlBBIH4gZGF0YSRtZWRfc3BsaXRfUlNfQnJvb2QpCnQudGVzdChkYXRhJHRvdF9hZnRlcnZpZC5ORVVUUkFMX1BBTkFTX1N0YXRlLk5BIH4gZGF0YSRtZWRfc3BsaXRfUlNfQnJvb2QpCnQudGVzdChkYXRhJHRvdF9hZnRlcnZpZC5ORVVUUkFMX1BBTkFTX1N0YXRlLlBBIH4gZGF0YSRtZWRfc3BsaXRfUlNfQnJvb2QpCnQudGVzdChkYXRhJHRvdF9hZnRlcnZpZC5GRUFSX1BBTkFTX1N0YXRlLk5BIH4gZGF0YSRtZWRfc3BsaXRfUlNfQnJvb2QpCnQudGVzdChkYXRhJHRvdF9hZnRlcnZpZC5GRUFSX1BBTkFTX1N0YXRlLlBBIH4gZGF0YSRtZWRfc3BsaXRfUlNfQnJvb2QpCnQudGVzdChkYXRhJHRvdF9hZnRlcnZpZC5TQURfUEFOQVNfU3RhdGUuTkEgfiBkYXRhJG1lZF9zcGxpdF9SU19Ccm9vZCkKdC50ZXN0KGRhdGEkdG90X2FmdGVydmlkLlNBRF9QQU5BU19TdGF0ZS5QQSB+IGRhdGEkbWVkX3NwbGl0X1JTX0Jyb29kKQpgYGAKVGhlcmUgaXMgbm8gZGlmZmVyZW50IGluIFBBTkFTIChOQSBvciBQQSkgYnkgUlMtQnJvb2QgbWVkaWFuIHNwbGl0LgoKCgojIyBDb21wYXJpbmcgSFJWLUVHRyBjb3JyZWxhdGlvbnMgYnkgbWVkaWFuIHNwbGl0cwpTYW1lIGFib3ZlIGluIHRoZSBlYXJsaWVyIHNlY3Rpb24sIGV4Y2VwdCBub3cgbG9va2luZyBhdCB0aGUgbG93L2hpZ2ggZ3JvdXBzIHNlcGFyYXRlbHkuIApVc2luZyBKZWFubmllJ3Mgb3V0cHV0IGZyb20gU1BTUyBoZXJlLiBKZWFubmllLCB5b3UgY291bGQgcmUtcnVuIHVzaW5nIFNwZWFybWFuJ3MgcmhvIChodHRwczovL3N0YXRpc3RpY3MubGFlcmQuY29tL3Nwc3MtdHV0b3JpYWxzL3NwZWFybWFucy1yYW5rLW9yZGVyLWNvcnJlbGF0aW9uLXVzaW5nLXNwc3Mtc3RhdGlzdGljcy5waHApIHRvIGRvdWJsZS1jaGVjayBidXQgYmFzZWQgb24gdGhlIGNvcnJlbGF0aW9ucyBhYm92ZSwgdGhleSdyZSBzaW1pbGFyIGVub3VnaCB0aGF0IHVzaW5nIHRoZSBQZWFyc29uIG9uZXMgeW91IGRpZCBhbHJlYWR5IGFyZSBmaW5lLiBNYXkgd2FudCB0byB1bHRpbWF0ZWx5IHVzZSBTcGVhcm1hbidzIGZvciB0aGUgcHVibGljYXRpb24sIGJ1dCBmb3IgdGhlIHByZXNlbnRhdGlvbiBuZXh0IHdlZWssIEkgdGhpbmsgdGhpcyBpcyBva2F5LgoKYGBge3J9CmxpYnJhcnkoY29jb3IpCgo/Y29jb3IKYGBg