library(LearnBayes)
library(BayesianTools)
ll <- generateTestDensityMultiNormal(sigma = "no correlation")
bayesianSetup = createBayesianSetup(likelihood = ll, lower = rep(-10, 3), upper = rep(10, 3))
iter = 10000
settings = list(iterations = iter, message = FALSE)
out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "Metropolis", settings = settings)
summary(out)
## # # # # # # # # # # # # # # # # # # # # # # # # #
## ## MCMC chain summary ##
## # # # # # # # # # # # # # # # # # # # # # # # # #
##
## # MCMC sampler: Metropolis
## # Nr. Chains: 1
## # Iterations per chain: 10000
## # Rejection rate: 0.692
## # Effective sample size: 880
## # Runtime: 14.01 sec.
##
## # Parameters
## MAP 2.5% median 97.5%
## par 1 0.001 -1.973 -0.006 2.001
## par 2 0.000 -1.885 -0.011 1.951
## par 3 0.000 -2.088 -0.066 2.002
##
## ## DIC: 11.77
## ## Convergence
## Gelman Rubin multivariate psrf: Only one chain; convergence cannot be determined!
##
## ## Correlations
## par 1 par 2 par 3
## par 1 1.000 0.028 0.02
## par 2 0.028 1.000 -0.02
## par 3 0.020 -0.020 1.00
plot(out)

correlationPlot(out)

marginalPlot(out)

marginalLikelihood(out)
## $ln.ML
## [1] -8.95998
##
## $ln.lik.star
## [1] -2.756816
##
## $ln.pi.star
## [1] -8.987197
##
## $ln.pi.hat
## [1] -2.784033
##
## $method
## [1] "Chib"