from summer 2017 and summer 2018
LAIDat <- read.csv("C:/Users/micayla.lakey/Desktop/R/data/ceptdata.csv")
LAIDat$kg.ha<-with(LAIDat, TOTAL*4.325)
lai.gg <- ggplot(data=LAIDat, aes(x=LAI, y=kg.ha))+
geom_point(color="red") +
theme_bw(20)+
labs(x="Leaf Area Index (LAI)",
y="Actual Biomass(kg/ha)")
lai.gg +
geom_smooth(method = "lm",se=FALSE)+
annotate("text", x=1, y=1750, label="paste(\"t=12.9, \", \"p<0.001, \", R^2,\"=0.71\")",
parse=TRUE, size=4)+
ggtitle("Sorted Ceptometer Samples")

Validation Points Samples
without high biomass points - less than 1000 kg/ha biomass
Val <- read.csv("C:/Users/micayla.lakey/Desktop/R/data/validpts.csv")
Val$kg.ha<-with(Val, biomass*4.325)
val.gg <- ggplot(data=Val, aes(x=LAI, y=kg.ha))+
geom_point(color="orange") +
theme_bw(20)+
labs(x="Leaf Area Index (LAI)",
y="Actual Biomass (kg/ha)")
val.gg +
geom_smooth(method = "lm",se=FALSE, color="green")+
annotate("text", x=0.5, y=700, label = "paste(R ^ 2, \" = 0.67\")",
parse=TRUE, size=4)+
ggtitle("Validation samples WITHOUT high biomass")+
theme(plot.title = element_text(size = 20))

Validation Points Samples
with high biomass points - up to almost 3000 kg/ha
Valplus <- read.csv("C:/Users/micayla.lakey/Desktop/R/data/validptshigh.csv")
Valplus$kg.ha<-with(Valplus, biomass*4.325)
valplus.gg <- ggplot(data=Valplus, aes(x=LAI, y=kg.ha))+
geom_point(color="orange") +
theme_bw(20)+
labs(x="Leaf Area Index (LAI)",
y="Actual Biomass (kg/ha)")
valplus.gg +
geom_smooth(method = "lm",se=FALSE, color="green")+
annotate("text", x=0.5, y=2000, label = "paste(R ^ 2, \" = 0.39\")",
parse=TRUE, size=4)+
ggtitle("Validation samples WITH high biomass")+
theme(plot.title = element_text(size = 20))
