glm.fit <- glm(Y~Distance.bucket + X..of.Seats..17.18. + Spent.2017.2018 + Tenure + Util.2017.2018 + Util.2016.2017 + Phone.Calls + Emails + In.game.visits + Appointments,
family = "binomial", data = pdata)
summary(glm.fit)
Call:
glm(formula = Y ~ Distance.bucket + X..of.Seats..17.18. + Spent.2017.2018 +
Tenure + Util.2017.2018 + Util.2016.2017 + Phone.Calls +
Emails + In.game.visits + Appointments, family = "binomial",
data = pdata)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.2383 -1.1356 0.5665 1.1084 1.6510
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.8275465 0.3365040 -2.459 0.013923 *
Distance.bucket2 -0.2837849 0.1375107 -2.064 0.039043 *
Distance.bucket3 0.1474949 0.1805140 0.817 0.413881
Distance.bucket4 -0.0764126 0.1955135 -0.391 0.695923
Distance.bucket5 -0.4757407 0.3004673 -1.583 0.113345
Distance.bucket6 0.1011682 0.1718981 0.589 0.556173
X..of.Seats..17.18. -0.0045560 0.0476717 -0.096 0.923863
Spent.2017.2018 0.0007661 0.0002028 3.777 0.000159 ***
Tenure 0.0780824 0.0084165 9.277 < 2e-16 ***
Util.2017.2018 0.9523278 0.3148605 3.025 0.002490 **
Util.2016.2017 -0.2418799 0.4341632 -0.557 0.577447
Phone.Calls -0.0100563 0.0121372 -0.829 0.407360
Emails 0.6953346 0.9997363 0.696 0.486731
In.game.visits -0.7461192 1.0008320 -0.745 0.455970
Appointments 0.5751476 0.9634874 0.597 0.550545
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2195.7 on 1598 degrees of freedom
Residual deviance: 2031.3 on 1584 degrees of freedom
AIC: 2061.3
Number of Fisher Scoring iterations: 4
p.pred 0 1
0 383 285
1 325 606
This value is how accurate out model is which is ~ 61.8%
mean(p.pred == pdata$Y)
## [1] 0.6185116
# anova(glm.fit,test="Chisq") ## come back to later
Call:
glm(formula = Y ~ Distance.bucket + X..of.Seats..17.18. + Spent.2017.2018 +
Tenure + Util.2017.2018 + Util.2016.2017 + Phone.Calls +
Emails + In.game.visits + Appointments, family = "binomial",
data = pdata)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.7104 -1.1398 0.5378 0.8702 1.4978
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.113e-01 1.011e+00 -0.605 0.545308
Distance.bucket2 -1.051e+00 4.179e-01 -2.514 0.011925 *
Distance.bucket3 -6.343e-01 5.387e-01 -1.177 0.239028
Distance.bucket4 -1.100e+00 6.129e-01 -1.795 0.072719 .
Distance.bucket5 -2.451e-01 9.174e-01 -0.267 0.789327
Distance.bucket6 -8.626e-01 4.477e-01 -1.927 0.054032 .
X..of.Seats..17.18. 2.176e-01 1.358e-01 1.602 0.109087
Spent.2017.2018 4.906e-04 3.703e-04 1.325 0.185187
Tenure 8.120e-02 2.209e-02 3.676 0.000237 ***
Util.2017.2018 -2.945e-01 9.115e-01 -0.323 0.746643
Util.2016.2017 5.623e-01 1.246e+00 0.451 0.651762
Phone.Calls 5.694e-02 3.433e-02 1.659 0.097192 .
Emails 1.433e+01 1.011e+03 0.014 0.988688
In.game.visits -1.465e+01 1.011e+03 -0.014 0.988441
Appointments 1.457e+01 1.011e+03 0.014 0.988505
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 332.45 on 268 degrees of freedom
Residual deviance: 290.94 on 254 degrees of freedom
AIC: 320.94
Number of Fisher Scoring iterations: 14
p.pred 0 1
0 20 18
1 63 168
mean(p.pred == pdata$Y)
## [1] 0.6988848
# anova(glm.fit,test="Chisq") ## come back to later