This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.
Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.
library(ggplot2)
library(gapminder)
library(dplyr)
Attaching package: <U+393C><U+3E31>dplyr<U+393C><U+3E32>
The following objects are masked from <U+393C><U+3E31>package:stats<U+393C><U+3E32>:
filter, lag
The following objects are masked from <U+393C><U+3E31>package:base<U+393C><U+3E32>:
intersect, setdiff, setequal, union
library(tidyverse)
Como hacer una data de juguete
data_juguete <- tibble(
curso = c("Taller datos" , "Lectura Critica"),
profesor = c("Pepito" , "Victoria"),
tasa_reprobación = c(0.5 , 0.9)
)
data_juguete
dyr::gather()
robo_en_ANFP <- tibble(
trabajador = c("Sergio Jadue" , "Camilo Benavides"),
primer_semestre = c("10 millones de dolares" , "15 millones de dolares"),
segundo_semestre = c("5 millones de dolares" , "10 millones de dolares"),
)
robo_en_ANFP
Desfalco en ANFP
#Desfalco en ANFP
tidyr::gather(data = robo_en_ANFP,
key = "periodo",
value = "monto robado",
-trabajador
)
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vay4gV2hlbiB5b3UgZXhlY3V0ZSBjb2RlIHdpdGhpbiB0aGUgbm90ZWJvb2ssIHRoZSByZXN1bHRzIGFwcGVhciBiZW5lYXRoIHRoZSBjb2RlLiANCg0KVHJ5IGV4ZWN1dGluZyB0aGlzIGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqUnVuKiBidXR0b24gd2l0aGluIHRoZSBjaHVuayBvciBieSBwbGFjaW5nIHlvdXIgY3Vyc29yIGluc2lkZSBpdCBhbmQgcHJlc3NpbmcgKkN0cmwrU2hpZnQrRW50ZXIqLiANCg0KYGBge3J9DQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KGdhcG1pbmRlcikNCmxpYnJhcnkoZHBseXIpDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmBgYA0KDQojQ29tbyBoYWNlciB1bmEgZGF0YSBkZSBqdWd1ZXRlDQoNCmBgYHtyfQ0KZGF0YV9qdWd1ZXRlIDwtIHRpYmJsZSgNCmN1cnNvID0gYygiVGFsbGVyIGRhdG9zIiAsICJMZWN0dXJhIENyaXRpY2EiKSwNCnByb2Zlc29yID0gYygiUGVwaXRvIiAsICJWaWN0b3JpYSIpLA0KdGFzYV9yZXByb2JhY2nzbiA9IGMoMC41ICwgMC45KQ0KKQ0KYGBgDQpgYGB7cn0NCmRhdGFfanVndWV0ZQ0KYGBgDQoNCmR5cjo6Z2F0aGVyKCkNCg0KYGBge3J9DQpyb2JvX2VuX0FORlAgPC0gdGliYmxlKA0KdHJhYmFqYWRvciA9IGMoIlNlcmdpbyBKYWR1ZSIgLCAiQ2FtaWxvIEJlbmF2aWRlcyIpLA0KcHJpbWVyX3NlbWVzdHJlID0gYygiMTAgbWlsbG9uZXMgZGUgZG9sYXJlcyIgLCAiMTUgbWlsbG9uZXMgZGUgZG9sYXJlcyIpLA0Kc2VndW5kb19zZW1lc3RyZSA9IGMoIjUgbWlsbG9uZXMgZGUgZG9sYXJlcyIgLCAiMTAgbWlsbG9uZXMgZGUgZG9sYXJlcyIpLA0KKQ0KYGBgDQpgYGB7cn0NCnJvYm9fZW5fQU5GUA0KYGBgDQoNCiMjRGVzZmFsY28gZW4gQU5GUA0KYGBge3J9DQp0aWR5cjo6Z2F0aGVyKGRhdGEgPSByb2JvX2VuX0FORlAsDQogICAgICAgICAgICAgIGtleSA9ICJwZXJpb2RvIiwNCiAgICAgICAgICAgICAgdmFsdWUgPSAibW9udG8gcm9iYWRvIiwNCiAgICAgICAgICAgICAgLXRyYWJhamFkb3INCikNCg0KYGBgDQoNCg0KDQoNCg0K