This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

library(ggplot2)
library(gapminder)
library(dplyr)

Attaching package: <U+393C><U+3E31>dplyr<U+393C><U+3E32>

The following objects are masked from <U+393C><U+3E31>package:stats<U+393C><U+3E32>:

    filter, lag

The following objects are masked from <U+393C><U+3E31>package:base<U+393C><U+3E32>:

    intersect, setdiff, setequal, union
library(tidyverse)

Como hacer una data de juguete

data_juguete <- tibble(
curso = c("Taller datos" , "Lectura Critica"),
profesor = c("Pepito" , "Victoria"),
tasa_reprobación = c(0.5 , 0.9)
)
data_juguete

dyr::gather()

robo_en_ANFP <- tibble(
trabajador = c("Sergio Jadue" , "Camilo Benavides"),
primer_semestre = c("10 millones de dolares" , "15 millones de dolares"),
segundo_semestre = c("5 millones de dolares" , "10 millones de dolares"),
)
robo_en_ANFP

Desfalco en ANFP

#Desfalco en ANFP
tidyr::gather(data = robo_en_ANFP,
              key = "periodo",
              value = "monto robado",
              -trabajador
)
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vay4gV2hlbiB5b3UgZXhlY3V0ZSBjb2RlIHdpdGhpbiB0aGUgbm90ZWJvb2ssIHRoZSByZXN1bHRzIGFwcGVhciBiZW5lYXRoIHRoZSBjb2RlLiANCg0KVHJ5IGV4ZWN1dGluZyB0aGlzIGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqUnVuKiBidXR0b24gd2l0aGluIHRoZSBjaHVuayBvciBieSBwbGFjaW5nIHlvdXIgY3Vyc29yIGluc2lkZSBpdCBhbmQgcHJlc3NpbmcgKkN0cmwrU2hpZnQrRW50ZXIqLiANCg0KYGBge3J9DQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KGdhcG1pbmRlcikNCmxpYnJhcnkoZHBseXIpDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmBgYA0KDQojQ29tbyBoYWNlciB1bmEgZGF0YSBkZSBqdWd1ZXRlDQoNCmBgYHtyfQ0KZGF0YV9qdWd1ZXRlIDwtIHRpYmJsZSgNCmN1cnNvID0gYygiVGFsbGVyIGRhdG9zIiAsICJMZWN0dXJhIENyaXRpY2EiKSwNCnByb2Zlc29yID0gYygiUGVwaXRvIiAsICJWaWN0b3JpYSIpLA0KdGFzYV9yZXByb2JhY2nzbiA9IGMoMC41ICwgMC45KQ0KKQ0KYGBgDQpgYGB7cn0NCmRhdGFfanVndWV0ZQ0KYGBgDQoNCmR5cjo6Z2F0aGVyKCkNCg0KYGBge3J9DQpyb2JvX2VuX0FORlAgPC0gdGliYmxlKA0KdHJhYmFqYWRvciA9IGMoIlNlcmdpbyBKYWR1ZSIgLCAiQ2FtaWxvIEJlbmF2aWRlcyIpLA0KcHJpbWVyX3NlbWVzdHJlID0gYygiMTAgbWlsbG9uZXMgZGUgZG9sYXJlcyIgLCAiMTUgbWlsbG9uZXMgZGUgZG9sYXJlcyIpLA0Kc2VndW5kb19zZW1lc3RyZSA9IGMoIjUgbWlsbG9uZXMgZGUgZG9sYXJlcyIgLCAiMTAgbWlsbG9uZXMgZGUgZG9sYXJlcyIpLA0KKQ0KYGBgDQpgYGB7cn0NCnJvYm9fZW5fQU5GUA0KYGBgDQoNCiMjRGVzZmFsY28gZW4gQU5GUA0KYGBge3J9DQp0aWR5cjo6Z2F0aGVyKGRhdGEgPSByb2JvX2VuX0FORlAsDQogICAgICAgICAgICAgIGtleSA9ICJwZXJpb2RvIiwNCiAgICAgICAgICAgICAgdmFsdWUgPSAibW9udG8gcm9iYWRvIiwNCiAgICAgICAgICAgICAgLXRyYWJhamFkb3INCikNCg0KYGBgDQoNCg0KDQoNCg0K