install.packages("ggplot2")
install.packages("dplyr")
install.packages("gapminder")
library(ggplot2)
library(gapminder)
install.packages("titanic")
library(ggplot2)
library(dplyr)
library(titanic)
library(dplyr)
# Unir las dos tablas por filas con información de los pasajeros del
# titanic que vienen en el paquete titanic: titanic_train y titanic_test
df <- dplyr::bind_rows(titanic::titanic_train,
                       titanic::titanic_test)
# Ver que contiene la data, un breve resumen con glimpse():
glimpse(df)
Observations: 1,309
Variables: 12
$ PassengerId <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14...
$ Survived    <int> 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, ...
$ Pclass      <int> 3, 1, 3, 1, 3, 3, 1, 3, 3, 2, 3, 1, 3, 3, 3, ...
$ Name        <chr> "Braund, Mr. Owen Harris", "Cumings, Mrs. Joh...
$ Sex         <chr> "male", "female", "female", "female", "male",...
$ Age         <dbl> 22, 38, 26, 35, 35, NA, 54, 2, 27, 14, 4, 58,...
$ SibSp       <int> 1, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 0, 0, 1, 0, ...
$ Parch       <int> 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 5, 0, ...
$ Ticket      <chr> "A/5 21171", "PC 17599", "STON/O2. 3101282", ...
$ Fare        <dbl> 7.2500, 71.2833, 7.9250, 53.1000, 8.0500, 8.4...
$ Cabin       <chr> "", "C85", "", "C123", "", "", "E46", "", "",...
$ Embarked    <chr> "S", "C", "S", "S", "S", "Q", "S", "S", "S", ...
?titanic::titanic_train
ggplot(data = df) +
  geom_bar(mapping = aes(x = Sex), fill = "steelblue", colour = "black") +
  ggtitle("Para observar la variación de una variable categórica: geom_bar.")

ggplot(data = df) +
  geom_histogram(mapping = aes(x = Fare, fill = Cabin),
                 colour = "black") +
  scale_fill_viridis_d() +
  facet_wrap(~ Cabin)

ggplot(data = df) +
  geom_bar(mapping = aes(x = Age), fill = "steelblue", colour = "red") +
  ggtitle("Gráfico acumulado de personas por edad")

pendejetes <- dplyr::filter(df, Age < 18)
ggplot(data = df, mapping = geom_area()
ggplot(data = pendejetes) +
geom_point(mapping = aes(x = Age, y = Survived, colour = Age)) +
  ggtitle("Niños sobrevivientes y muertos por edad")

ggplot(data = pendejetes) +
geom_bar(mapping = aes(x = Sex), fill = "red", colour = "blue") +
  ggtitle("Cantidad de niñas y niños a bordo")

ggplot(data = df) +
  geom_bar(mapping = aes(x = Age), fill = "steelblue", colour = "red") +
  ggtitle("Gráfico acumulado de personas por edad")

df <- dplyr::bind_rows(titanic::titanic_train, titanic::titanic_test)

filter(df, Survived == "Female")
Sobrevivientes_mujeres <- dplyr::filter(df, Survived, Sex == "female")
Sobrevivientes_hombres <- dplyr::filter(df, Survived, Sex == "male")
ggplot(pendejetes) +
  geom_point(aes(x = Pclass, y = Age, Size = Survived)) + 
  facet_wrap(~ Sex)
Ignoring unknown aesthetics: Size

SobrHM <- dplyr::bind_rows(df::Sobrevivientes_hombres, df::Sobrevivientes_mujeres)

ggplot(pendejetes) +
  geom_point(aes(x = Pclass, y = Age, size = Survived, color = Survived, line = Age)) + 
  facet_wrap(~ Sex) +
  ggtitle("Menores sobrevivientes por clase, edad y sexo biológico")
Ignoring unknown aesthetics: line

ggplot(df) +
  geom_point(aes(x = Age, y = Pclass, size = Survived)) + 
  facet_wrap(~ Sex)

ggplot(df) +
geom_freqpoly(mapping = aes (x = Age, y = ..density.., colour = factor(Pclass)))

ggplot(data = df) + geom_freqpoly(mapping = aes(x = Fare, y = ..density.., colour = factor(Pclass),), binwidth = 10, size = 0.8) +

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KYGBge3J9DQppbnN0YWxsLnBhY2thZ2VzKCJnZ3Bsb3QyIikNCmluc3RhbGwucGFja2FnZXMoImRwbHlyIikNCmluc3RhbGwucGFja2FnZXMoImdhcG1pbmRlciIpDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KGdhcG1pbmRlcikNCmBgYA0KDQpgYGB7cn0NCmluc3RhbGwucGFja2FnZXMoInRpdGFuaWMiKQ0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkodGl0YW5pYykNCmBgYA0KYGBge3J9DQpsaWJyYXJ5KGRwbHlyKQ0KYGBgDQoNCmBgYHtyfQ0KIyBVbmlyIGxhcyBkb3MgdGFibGFzIHBvciBmaWxhcyBjb24gaW5mb3JtYWNp824gZGUgbG9zIHBhc2FqZXJvcyBkZWwNCiMgdGl0YW5pYyBxdWUgdmllbmVuIGVuIGVsIHBhcXVldGUgdGl0YW5pYzogdGl0YW5pY190cmFpbiB5IHRpdGFuaWNfdGVzdA0KZGYgPC0gZHBseXI6OmJpbmRfcm93cyh0aXRhbmljOjp0aXRhbmljX3RyYWluLA0KICAgICAgICAgICAgICAgICAgICAgICB0aXRhbmljOjp0aXRhbmljX3Rlc3QpDQojIFZlciBxdWUgY29udGllbmUgbGEgZGF0YSwgdW4gYnJldmUgcmVzdW1lbiBjb24gZ2xpbXBzZSgpOg0KZ2xpbXBzZShkZikNCmBgYA0KYGBge3J9DQo/dGl0YW5pYzo6dGl0YW5pY190cmFpbg0KYGBgDQpgYGB7cn0NCmdncGxvdChkYXRhID0gZGYpICsNCiAgZ2VvbV9iYXIobWFwcGluZyA9IGFlcyh4ID0gU2V4KSwgZmlsbCA9ICJzdGVlbGJsdWUiLCBjb2xvdXIgPSAiYmxhY2siKSArDQogIGdndGl0bGUoIlBhcmEgb2JzZXJ2YXIgbGEgdmFyaWFjafNuIGRlIHVuYSB2YXJpYWJsZSBjYXRlZ/NyaWNhOiBnZW9tX2Jhci4iKQ0KYGBgDQpgYGB7cn0NCmdncGxvdChkYXRhID0gZGYpICsNCiAgZ2VvbV9oaXN0b2dyYW0obWFwcGluZyA9IGFlcyh4ID0gRmFyZSwgZmlsbCA9IENhYmluKSwNCiAgICAgICAgICAgICAgICAgY29sb3VyID0gImJsYWNrIikgKw0KICBzY2FsZV9maWxsX3ZpcmlkaXNfZCgpICsNCiAgZmFjZXRfd3JhcCh+IENhYmluKQ0KYGBgDQoNCmBgYHtyfQ0KZ2dwbG90KGRhdGEgPSBkZikgKw0KICBnZW9tX2JhcihtYXBwaW5nID0gYWVzKHggPSBBZ2UpLCBmaWxsID0gInN0ZWVsYmx1ZSIsIGNvbG91ciA9ICJyZWQiKSArDQogIGdndGl0bGUoIkdy4WZpY28gYWN1bXVsYWRvIGRlIHBlcnNvbmFzIHBvciBlZGFkIikNCmBgYA0KYGBge3J9DQpwZW5kZWpldGVzIDwtIGRwbHlyOjpmaWx0ZXIoZGYsIEFnZSA8IDE4KQ0KYGBgDQoNCmBgYHtyfQ0KZ2dwbG90KGRhdGEgPSBkZiwgbWFwcGluZyA9IGdlb21fYXJlYSgpDQpgYGANCg0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IHBlbmRlamV0ZXMpICsNCmdlb21fcG9pbnQobWFwcGluZyA9IGFlcyh4ID0gQWdlLCB5ID0gU3Vydml2ZWQsIGNvbG91ciA9IEFnZSkpICsNCiAgZ2d0aXRsZSgiTmnxb3Mgc29icmV2aXZpZW50ZXMgeSBtdWVydG9zIHBvciBlZGFkIikNCmBgYA0KDQoNCmBgYHtyfQ0KZ2dwbG90KGRhdGEgPSBwZW5kZWpldGVzKSArDQpnZW9tX2JhcihtYXBwaW5nID0gYWVzKHggPSBTZXgpLCBmaWxsID0gInJlZCIsIGNvbG91ciA9ICJibHVlIikgKw0KICBnZ3RpdGxlKCJDYW50aWRhZCBkZSBuafFhcyB5IG5p8W9zIGEgYm9yZG8iKQ0KDQpgYGANCg0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IGRmKSArDQogIGdlb21fYmFyKG1hcHBpbmcgPSBhZXMoeCA9IEFnZSksIGZpbGwgPSAic3RlZWxibHVlIiwgY29sb3VyID0gInJlZCIpICsNCiAgZ2d0aXRsZSgiR3LhZmljbyBhY3VtdWxhZG8gZGUgcGVyc29uYXMgcG9yIGVkYWQiKQ0KYGBgDQoNCg0KZGYgPC0gZHBseXI6OmJpbmRfcm93cyh0aXRhbmljOjp0aXRhbmljX3RyYWluLA0KICAgICAgICAgICAgICAgICAgICAgICB0aXRhbmljOjp0aXRhbmljX3Rlc3QpDQoNCg0KYGBge3J9DQpmaWx0ZXIoZGYsIFN1cnZpdmVkID09ICJGZW1hbGUiKQ0KYGBgDQoNCg0KDQoNCmBgYHtyfQ0KU29icmV2aXZpZW50ZXNfbXVqZXJlcyA8LSBkcGx5cjo6ZmlsdGVyKGRmLCBTdXJ2aXZlZCwgU2V4ID09ICJmZW1hbGUiKQ0KYGBgDQoNCg0KDQpgYGB7cn0NClNvYnJldml2aWVudGVzX2hvbWJyZXMgPC0gZHBseXI6OmZpbHRlcihkZiwgU3Vydml2ZWQsIFNleCA9PSAibWFsZSIpDQpgYGANCg0KDQoNCg0KDQpgYGB7cn0NCmdncGxvdChwZW5kZWpldGVzKSArDQogIGdlb21fcG9pbnQoYWVzKHggPSBQY2xhc3MsIHkgPSBBZ2UsIFNpemUgPSBTdXJ2aXZlZCkpICsgDQogIGZhY2V0X3dyYXAofiBTZXgpDQpgYGANCg0KDQpTb2JySE0gPC0gZHBseXI6OmJpbmRfcm93cyhkZjo6U29icmV2aXZpZW50ZXNfaG9tYnJlcywNCiAgICAgICAgICAgICAgICAgICAgICAgZGY6OlNvYnJldml2aWVudGVzX211amVyZXMpDQoNCg0KYGBge3J9DQoNCg0KDQpgYGANCg0KDQoNCg0KYGBge3J9DQoNCmdncGxvdChwZW5kZWpldGVzKSArDQogIGdlb21fcG9pbnQoYWVzKHggPSBQY2xhc3MsIHkgPSBBZ2UsIHNpemUgPSBTdXJ2aXZlZCwgY29sb3IgPSBTdXJ2aXZlZCwgbGluZSA9IEFnZSkpICsgDQogIGZhY2V0X3dyYXAofiBTZXgpICsNCiAgZ2d0aXRsZSgiTWVub3JlcyBzb2JyZXZpdmllbnRlcyBwb3IgY2xhc2UsIGVkYWQgeSBzZXhvIGJpb2zzZ2ljbyIpDQoNCmBgYA0KDQoNCmBgYHtyfQ0KZ2dwbG90KGRmKSArDQogIGdlb21fcG9pbnQoYWVzKHggPSBBZ2UsIHkgPSBQY2xhc3MsIHNpemUgPSBTdXJ2aXZlZCkpICsgDQogIGZhY2V0X3dyYXAofiBTZXgpDQpgYGANCg0KDQpgYGB7cn0NCmdncGxvdChkZikgKw0KZ2VvbV9mcmVxcG9seShtYXBwaW5nID0gYWVzICh4ID0gQWdlLCB5ID0gLi5kZW5zaXR5Li4sIGNvbG91ciA9IGZhY3RvcihQY2xhc3MpKSkNCmBgYA0KDQoNCmdncGxvdChkYXRhID0gZGYpICsNCiAgZ2VvbV9mcmVxcG9seShtYXBwaW5nID0gYWVzKHggPSBGYXJlLCB5ID0gLi5kZW5zaXR5Li4sIGNvbG91ciA9IGZhY3RvcihQY2xhc3MpLCksDQogICAgICAgICAgICAgICAgYmlud2lkdGggPSAxMCwNCiAgICAgICAgICAgICAgICBzaXplID0gMC44KSArDQoNCg0KDQo=