## aggregate function dawtagdsan torloor angilan ded olonloguud uusgen statistic uzuuleltudig tootsdog
library(wooldridge)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(plyr)
## -------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## -------------------------------------------------------------------------
##
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
data("wage1")
aggregate(wage1$wage~wage1$educ,wage1,mean)
## wage1$educ wage1$wage
## 1 0 3.530000
## 2 2 3.750000
## 3 3 2.920000
## 4 4 3.170000
## 5 5 2.900000
## 6 6 3.985000
## 7 7 4.387500
## 8 8 5.038182
## 9 9 3.275882
## 10 10 3.835667
## 11 11 4.185517
## 12 12 5.371364
## 13 13 5.598974
## 14 14 6.231698
## 15 15 6.321429
## 16 16 8.041618
## 17 17 11.343333
## 18 18 10.678947
aggregate(wage1$wage~wage1$female,wage1,mean)
## wage1$female wage1$wage
## 1 0 7.099489
## 2 1 4.587659
aggregate(wage1$wage~wage1$educ+wage1$female,wage1,mean)
## wage1$educ wage1$female wage1$wage
## 1 2 0 3.750000
## 2 3 0 2.920000
## 3 4 0 3.170000
## 4 6 0 3.952500
## 5 7 0 5.600000
## 6 8 0 5.790667
## 7 9 0 3.430000
## 8 10 0 4.585385
## 9 11 0 4.840588
## 10 12 0 6.946235
## 11 13 0 6.732143
## 12 14 0 7.334839
## 13 15 0 6.553333
## 14 16 0 9.017333
## 15 17 0 12.087000
## 16 18 0 9.886154
## 17 0 1 3.530000
## 18 5 1 2.900000
## 19 6 1 4.050000
## 20 7 1 3.175000
## 21 8 1 3.425714
## 22 9 1 3.138889
## 23 10 1 3.262353
## 24 11 1 3.257500
## 25 12 1 4.186726
## 26 13 1 4.964400
## 27 14 1 4.677273
## 28 15 1 6.012222
## 29 16 1 6.132609
## 30 17 1 7.625000
## 31 18 1 12.396667
## group by function
wage1 %>%
group_by(wage1$female) %>%
summarise(avgwage=mean(wage),avgeduc=mean(educ),avgnumdep=mean(numdep))
## avgwage avgeduc avgnumdep
## 1 5.896103 12.56274 1.043726