Markov Chains

Smith is in jail and has 1 dollar; he can get out on bail if he has 8 dollars. A guard agrees to make a series of bet with him. If Smith bets A dollars, he wins A dollars with probability .4 and loses A dollars with probability .6. Find the probability that he wins 8 dollars before losing all of his money

library(expm)
Loading required package: Matrix

Attaching package: ‘expm’

The following object is masked from ‘package:Matrix’:

    expm

a

If he uses a timid strategy by only beggin 1 dollar each time.

p = rbind(.4, .6)
d0 = 1
# 0, 1, 2, 3, 4, 5, 6, 7, 8
r0 = cbind(1,0,0,0,0,0,0,0,0)
r1 = cbind(.6,0,.4,0,0,0,0,0,0)
r2 = cbind(0,.6,0,.4,0,0,0,0,0)
r3 = cbind(0,0,.6,0,.4,0,0,0,0)
r4 = cbind(0,0,0,.6,0,.4,0,0,0)
r5 = cbind(0,0,0,0,.6,0,.4,0,0)
r6 = cbind(0,0,0,0,0,.6,0,.4,0)
r7 = cbind(0,0,0,0,0,0,.6,0,.4)
r8 = cbind(0,0,0,0,0,0,0,0,1)
mtx = rbind(r0,r1,r2,r3,r4,r5,r6,r7,r8)
df <- data.frame(mtx)
df
x = cbind(0,1,0,0,0,0,0,0,0)
many = mtx%^% 100
final.states = data.frame(x %*% many)
colnames(final.states) <- c('$0','$1','$2','$3','$4','$5','$6','$7', '$8' )
round(final.states[9],2)

There is a 2% chance that the prisoner makes it out with the timid strategy.

# 0 , 1, 2, 4, 8
r0 = cbind(1,0,0,0,0)
r1 = cbind(.6,0,.4,0,0)
r2 = cbind(0,.6,0,.4,0)
r3 = cbind(0,0,.6,0,.4)
r4 = cbind(0,0,0,0,1)
mtx = rbind(r0,r1,r2,r3,r4)
df <-data.frame(mtx)
df
x = cbind(0,1,0,0,0)
many = mtx%^% 100
final.states = data.frame(x %*% many)
colnames(final.states) <- c('$0','$1','$2','$4', '$8' )
round(final.states[5],2)

With the bold strategy, there is a 12% chance of success. Despite the counterintuitive nature of these findings, the bold strategy is ‘safer.’

LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKIyBNYXJrb3YgQ2hhaW5zClNtaXRoIGlzIGluIGphaWwgYW5kIGhhcyAxIGRvbGxhcjsgaGUgY2FuIGdldCBvdXQgb24gYmFpbCBpZiBoZSBoYXMgOCBkb2xsYXJzLgpBIGd1YXJkIGFncmVlcyB0byBtYWtlIGEgc2VyaWVzIG9mIGJldCB3aXRoIGhpbS4gSWYgU21pdGggYmV0cyBBIGRvbGxhcnMsIGhlIHdpbnMgQSBkb2xsYXJzIHdpdGggcHJvYmFiaWxpdHkgLjQgYW5kIGxvc2VzIEEgZG9sbGFycyB3aXRoIHByb2JhYmlsaXR5IC42LgpGaW5kIHRoZSBwcm9iYWJpbGl0eSB0aGF0IGhlIHdpbnMgOCBkb2xsYXJzIGJlZm9yZSBsb3NpbmcgYWxsIG9mIGhpcyBtb25leSAKYGBge3J9CmxpYnJhcnkoZXhwbSkKYGBgCgojIyBhCklmIGhlIHVzZXMgYSB0aW1pZCBzdHJhdGVneSBieSBvbmx5IGJlZ2dpbiAxIGRvbGxhciBlYWNoIHRpbWUuCgpgYGB7cn0KIyAwLCAxLCAyLCAzLCA0LCA1LCA2LCA3LCA4CnIwID0gY2JpbmQoMSwwLDAsMCwwLDAsMCwwLDApCnIxID0gY2JpbmQoLjYsMCwuNCwwLDAsMCwwLDAsMCkKcjIgPSBjYmluZCgwLC42LDAsLjQsMCwwLDAsMCwwKQpyMyA9IGNiaW5kKDAsMCwuNiwwLC40LDAsMCwwLDApCnI0ID0gY2JpbmQoMCwwLDAsLjYsMCwuNCwwLDAsMCkKcjUgPSBjYmluZCgwLDAsMCwwLC42LDAsLjQsMCwwKQpyNiA9IGNiaW5kKDAsMCwwLDAsMCwuNiwwLC40LDApCnI3ID0gY2JpbmQoMCwwLDAsMCwwLDAsLjYsMCwuNCkKcjggPSBjYmluZCgwLDAsMCwwLDAsMCwwLDAsMSkKbXR4ID0gcmJpbmQocjAscjEscjIscjMscjQscjUscjYscjcscjgpCmRmIDwtIGRhdGEuZnJhbWUobXR4KQpkZgp4ID0gY2JpbmQoMCwxLDAsMCwwLDAsMCwwLDApCm1hbnkgPSBtdHglXiUgMTAwCmZpbmFsLnN0YXRlcyA9IGRhdGEuZnJhbWUoeCAlKiUgbWFueSkKY29sbmFtZXMoZmluYWwuc3RhdGVzKSA8LSBjKCckMCcsJyQxJywnJDInLCckMycsJyQ0JywnJDUnLCckNicsJyQ3JywgJyQ4JyApCnJvdW5kKGZpbmFsLnN0YXRlc1s5XSwyKQpgYGAKVGhlcmUgaXMgYSAyJSBjaGFuY2UgdGhhdCB0aGUgcHJpc29uZXIgbWFrZXMgaXQgb3V0IHdpdGggdGhlIHRpbWlkIHN0cmF0ZWd5LgoKYGBge3J9CiMgMCAsIDEsIDIsIDQsIDgKcjAgPSBjYmluZCgxLDAsMCwwLDApCnIxID0gY2JpbmQoLjYsMCwuNCwwLDApCnIyID0gY2JpbmQoMCwuNiwwLC40LDApCnIzID0gY2JpbmQoMCwwLC42LDAsLjQpCnI0ID0gY2JpbmQoMCwwLDAsMCwxKQptdHggPSByYmluZChyMCxyMSxyMixyMyxyNCkKZGYgPC1kYXRhLmZyYW1lKG10eCkKZGYKCnggPSBjYmluZCgwLDEsMCwwLDApCm1hbnkgPSBtdHglXiUgMTAwCmZpbmFsLnN0YXRlcyA9IGRhdGEuZnJhbWUoeCAlKiUgbWFueSkKY29sbmFtZXMoZmluYWwuc3RhdGVzKSA8LSBjKCckMCcsJyQxJywnJDInLCckNCcsICckOCcgKQpyb3VuZChmaW5hbC5zdGF0ZXNbNV0sMikKYGBgCldpdGggdGhlIGJvbGQgc3RyYXRlZ3ksIHRoZXJlIGlzIGEgMTIlIGNoYW5jZSBvZiBzdWNjZXNzLiBEZXNwaXRlIHRoZSBjb3VudGVyaW50dWl0aXZlIG5hdHVyZSBvZiB0aGVzZSBmaW5kaW5ncywgdGhlIGJvbGQgc3RyYXRlZ3kgaXMgJ3NhZmVyLicKCgoK