library(readr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(knitr)
library(kableExtra)
library(ggplot2)
VoterData<-read_csv("/Users/juliushunte/Downloads/VOTER_Survey_July17_Release1-csv copy.csv")
urbanreligon <-VoterData%>%
mutate(Demographical = ifelse(urbancity_baseline==1,"City",
ifelse(urbancity_baseline==4,"Rural Area",NA)),
imminaturalize = ifelse(immi_naturalize_baseline==1,"Favor",
ifelse(immi_naturalize_baseline==2,"Oppose",NA)),
ft_muslims = ifelse(ft_muslim_2017==997,NA,ft_muslim_2017),
ImmiMakeDiff = ifelse(immi_makedifficult_baseline==1,"Much easier",
ifelse(immi_makedifficult_baseline==2,"Slightly easier",
ifelse(immi_makedifficult_baseline==3,"No change",
ifelse(immi_makedifficult_baseline==4,"Slightly harder",
ifelse(immi_makedifficult_baseline==5,"Much harder",
ifelse(immi_makedifficult_baseline==8,"Not Sure",NA)))))))%>%
select(Demographical,imminaturalize,ft_muslims,ImmiMakeDiff)
gridExtra::grid.arrange(
urbanreligon%>%
filter(imminaturalize=="Favor")%>%
ggplot()+
geom_histogram(aes(ft_muslims),fill="blue")+
geom_vline(aes(xintercept=mean(urbanreligon$ft_muslims,na.rm=TRUE)))+
ggtitle("Average Feelings towards Muslims for those who favor"),
urbanreligon%>%
filter(imminaturalize=="Oppose")%>%
ggplot()+
geom_histogram(aes(ft_muslims),fill="red")+
geom_vline(aes(xintercept=mean(urbanreligon$ft_muslims,na.rm=TRUE)))+
ggtitle("Average Feelings towards Muslims for those who oppose"),
nrow=1)

urbanreligon%>%
group_by(imminaturalize)%>%
summarize(ft_muslims = mean(ft_muslims, na.rm=TRUE))%>%
kable()
|
imminaturalize
|
ft_muslims
|
|
Favor
|
64.27866
|
|
Oppose
|
33.67957
|
|
NA
|
50.15795
|
urbanreligon%>%
group_by(Demographical)%>%
summarize(ft_muslims = mean(ft_muslims,na.rm=TRUE))%>%
kable()
|
Demographical
|
ft_muslims
|
|
City
|
54.29596
|
|
Rural Area
|
43.26636
|
|
NA
|
49.99255
|
t.test(ft_muslims~Demographical, data = urbanreligon)
##
## Welch Two Sample t-test
##
## data: ft_muslims by Demographical
## t = 8.2702, df = 1828.4, p-value = 2.542e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 8.413957 13.645261
## sample estimates:
## mean in group City mean in group Rural Area
## 54.29596 43.26636