In August of 2012, news outlets ranging from the Washington Post to the Huffington Post ran a story about the rise of atheism in America. The source for the story was a poll that asked people, “Irrespective of whether you attend a place of worship or not, would you say you are a religious person, not a religious person or a convinced atheist?” This type of question, which asks people to classify themselves in one way or another, is common in polling and generates categorical data. In this lab we take a look at the atheism survey and explore what’s at play when making inference about population proportions using categorical data.

The survey

To access the press release for the poll, conducted by WIN-Gallup International, click on the following link:

https://github.com/jbryer/DATA606/blob/master/inst/labs/Lab6/more/Global_INDEX_of_Religiosity_and_Atheism_PR__6.pdf

Take a moment to review the report then address the following questions.

  1. In the first paragraph, several key findings are reported. Do these percentages appear to be sample statistics (derived from the data sample) or population parameters?

    The percentages come from the results of the survey and the survey is a sample of the population

  2. The title of the report is “Global Index of Religiosity and Atheism”. To generalize the report’s findings to the global human population, what must we assume about the sampling method? Does that seem like a reasonable assumption?

    In order to generalize the results we must assume that the observations are independent of each other and that the sample is random, they polled 51,927 people across the globe through various methods, they tried to sample around 1000 women and men in each country that they went to.

The data

Turn your attention to Table 6 (pages 15 and 16), which reports the sample size and response percentages for all 57 countries. While this is a useful format to summarize the data, we will base our analysis on the original data set of individual responses to the survey. Load this data set into R with the following command.

load("more/atheism.RData")
  1. What does each row of Table 6 correspond to? What does each row of atheism correspond to?

    Each row in the dataset corresponds to to certain individuals response at a certain point in time, it also includes their nationality and whether or not they are atheist

To investigate the link between these two ways of organizing this data, take a look at the estimated proportion of atheists in the United States. Towards the bottom of Table 6, we see that this is 5%. We should be able to come to the same number using the atheism data.

  1. Using the command below, create a new dataframe called us12 that contains only the rows in atheism associated with respondents to the 2012 survey from the United States. Next, calculate the proportion of atheist responses. Does it agree with the percentage in Table 6? If not, why?

    The atheist percentage is just shy of 5% which agrees with the percentage from table 6

us12 <- subset(atheism, nationality == "United States" & year == "2012")
# Remove unused levels
us12$nationality <- as.factor(as.character(us12$nationality))

# Get proportions
us12prop <- prop.table(table(us12$nationality, us12$response))
us12prop
##                
##                   atheist non-atheist
##   United States 0.0499002   0.9500998

Inference on proportions

As was hinted at in Exercise 1, Table 6 provides statistics, that is, calculations made from the sample of 51,927 people. What we’d like, though, is insight into the population parameters. You answer the question, “What proportion of people in your sample reported being atheists?” with a statistic; while the question “What proportion of people on earth would report being atheists” is answered with an estimate of the parameter.

The inferential tools for estimating population proportion are analogous to those used for means in the last chapter: the confidence interval and the hypothesis test.

  1. Write out the conditions for inference to construct a 95% confidence interval for the proportion of atheists in the United States in 2012. Are you confident all conditions are met?

Observations must be independent. Assuming that individuals were selected using a simple random sample and considering that the sample is less than 10% of the population, this condition is satisfied.

Observations must come from a nearly normal distribution. Considering percentage of atheists at 0.05 and number of observations at 1,002, the observed number of atheists is 50 which is greater than 10. Assumption of nearly normal distribution is reasonable.

If the conditions for inference are reasonable, we can either calculate the standard error and construct the interval by hand, or allow the inference function to do it for us.

inference(us12$response, est = "proportion", type = "ci", method = "theoretical", 
          success = "atheist")
## Single proportion -- success: atheist 
## Summary statistics:

## p_hat = 0.0499 ;  n = 1002 
## Check conditions: number of successes = 50 ; number of failures = 952 
## Standard error = 0.0069 
## 95 % Confidence interval = ( 0.0364 , 0.0634 )

Note that since the goal is to construct an interval estimate for a proportion, it’s necessary to specify what constitutes a “success”, which here is a response of "atheist".

Although formal confidence intervals and hypothesis tests don’t show up in the report, suggestions of inference appear at the bottom of page 7: “In general, the error margin for surveys of this kind is \(\pm\) 3-5% at 95% confidence”.

  1. Based on the R output, what is the margin of error for the estimate of the proportion of the proportion of atheists in US in 2012?

Confidence interval is (0.0364, 0.0634), so margin of error is (0.0634 - 0.0364) / 2 = 0.0135. Alternatively, margin of error is 1.96 *Standard Error = 1.96 times 0.0069 = 0.013524.

  1. Using the inference function, calculate confidence intervals for the proportion of atheists in 2012 in two other countries of your choice, and report the associated margins of error. Be sure to note whether the conditions for inference are met. It may be helpful to create new data sets for each of the two countries first, and then use these data sets in the inference function to construct the confidence intervals.
china <- subset(atheism, nationality == "China" & year == "2012")
canada <- subset(atheism, nationality == "Canada" & year == "2012")
china$nationality <- as.factor(as.character(china$nationality))
canada$nationality <- as.factor(as.character(canada$nationality))


inference(china$response, est = "proportion", type = "ci", method = "theoretical", 
          success = "atheist")
## Single proportion -- success: atheist 
## Summary statistics:

## p_hat = 0.47 ;  n = 500 
## Check conditions: number of successes = 235 ; number of failures = 265 
## Standard error = 0.0223 
## 95 % Confidence interval = ( 0.4263 , 0.5137 )
inference(canada$response, est = "proportion", type = "ci", method = "theoretical", 
          success = "atheist")
## Single proportion -- success: atheist 
## Summary statistics:

## p_hat = 0.0898 ;  n = 1002 
## Check conditions: number of successes = 90 ; number of failures = 912 
## Standard error = 0.009 
## 95 % Confidence interval = ( 0.0721 , 0.1075 )

China Margin of error = (.5137 - .4263)/2 canada Margin of error = (.1075-.0721)/2

How does the proportion affect the margin of error?

Imagine you’ve set out to survey 1000 people on two questions: are you female? and are you left-handed? Since both of these sample proportions were calculated from the same sample size, they should have the same margin of error, right? Wrong! While the margin of error does change with sample size, it is also affected by the proportion.

Think back to the formula for the standard error: \(SE = \sqrt{p(1-p)/n}\). This is then used in the formula for the margin of error for a 95% confidence interval: \(ME = 1.96\times SE = 1.96\times\sqrt{p(1-p)/n}\). Since the population proportion \(p\) is in this \(ME\) formula, it should make sense that the margin of error is in some way dependent on the population proportion. We can visualize this relationship by creating a plot of \(ME\) vs. \(p\).

The first step is to make a vector p that is a sequence from 0 to 1 with each number separated by 0.01. We can then create a vector of the margin of error (me) associated with each of these values of p using the familiar approximate formula (\(ME = 2 \times SE\)). Lastly, we plot the two vectors against each other to reveal their relationship.

n <- 1000
p <- seq(0, 1, 0.01)
me <- 2 * sqrt(p * (1 - p)/n)
plot(me ~ p, ylab = "Margin of Error", xlab = "Population Proportion")

  1. Describe the relationship between p and me. The relationship is quadratic or parabolic. As population proportion increases from 0 to 0.5, the margin of error also increases with the highest value at p=0.5. As population proportion continues to increase past 0.5 the reverse is true and the margin of error decreases down to 0 at p=1.

Success-failure condition

The textbook emphasizes that you must always check conditions before making inference. For inference on proportions, the sample proportion can be assumed to be nearly normal if it is based upon a random sample of independent observations and if both \(np \geq 10\) and \(n(1 - p) \geq 10\). This rule of thumb is easy enough to follow, but it makes one wonder: what’s so special about the number 10?

The short answer is: nothing. You could argue that we would be fine with 9 or that we really should be using 11. What is the “best” value for such a rule of thumb is, at least to some degree, arbitrary. However, when \(np\) and \(n(1-p)\) reaches 10 the sampling distribution is sufficiently normal to use confidence intervals and hypothesis tests that are based on that approximation.

We can investigate the interplay between \(n\) and \(p\) and the shape of the sampling distribution by using simulations. To start off, we simulate the process of drawing 5000 samples of size 1040 from a population with a true atheist proportion of 0.1. For each of the 5000 samples we compute \(\hat{p}\) and then plot a histogram to visualize their distribution.

p <- 0.1
n <- 1040
p_hats <- rep(0, 5000)

for(i in 1:5000){
  samp <- sample(c("atheist", "non_atheist"), n, replace = TRUE, prob = c(p, 1-p))
  p_hats[i] <- sum(samp == "atheist")/n
}

hist(p_hats, main = "p = 0.1, n = 1040", xlim = c(0, 0.18))

These commands build up the sampling distribution of \(\hat{p}\) using the familiar for loop. You can read the sampling procedure for the first line of code inside the for loop as, “take a sample of size \(n\) with replacement from the choices of atheist and non-atheist with probabilities \(p\) and \(1 - p\), respectively.” The second line in the loop says, “calculate the proportion of atheists in this sample and record this value.” The loop allows us to repeat this process 5,000 times to build a good representation of the sampling distribution.

  1. Describe the sampling distribution of sample proportions at \(n = 1040\) and \(p = 0.1\). Be sure to note the center, spread, and shape.
    Hint: Remember that R has functions such as mean to calculate summary statistics.
library("DATA606")
## Loading required package: shiny
## Loading required package: OIdata
## Loading required package: RCurl
## Loading required package: bitops
## Loading required package: maps
## Loading required package: ggplot2
## 
## Attaching package: 'ggplot2'
## The following object is masked from 'package:openintro':
## 
##     diamonds
## Loading required package: markdown
## 
## Welcome to CUNY DATA606 Statistics and Probability for Data Analytics 
## This package is designed to support this course. The text book used 
## is OpenIntro Statistics, 3rd Edition. You can read this by typing 
## vignette('os3') or visit www.OpenIntro.org. 
##  
## The getLabs() function will return a list of the labs available. 
##  
## The demo(package='DATA606') will list the demos that are available.
## 
## Attaching package: 'DATA606'
## The following object is masked from 'package:utils':
## 
##     demo
qqnormsim(p_hats)

mean(p_hats)
## [1] 0.09969
  1. Repeat the above simulation three more times but with modified sample sizes and proportions: for \(n = 400\) and \(p = 0.1\), \(n = 1040\) and \(p = 0.02\), and \(n = 400\) and \(p = 0.02\). Plot all four histograms together by running the par(mfrow = c(2, 2)) command before creating the histograms. You may need to expand the plot window to accommodate the larger two-by-two plot. Describe the three new sampling distributions. Based on these limited plots, how does \(n\) appear to affect the distribution of \(\hat{p}\)? How does \(p\) affect the sampling distribution?
samp_func <- function (p, n) { 
  p_hats <- rep(0, 5000)
  for(i in 1:5000){
    samp <- sample(c("atheist", "non_atheist"), n, replace = TRUE, prob = c(p, 1-p))
    p_hats[i] <- sum(samp == "atheist")/n
  }
  p_hats
}
p_hats1 <- samp_func(.1, 400)
p_hats2 <- samp_func(.02, 1040)
p_hats3 <- samp_func(.02, 400)


par(mfrow = c(2, 2))

hist(p_hats1, main = "p = 0.1, n = 400", xlim = c(0, 0.18))
hist(p_hats2, main = "p = 0.02, n = 1040", xlim = c(0, .06))
hist(p_hats3, main = "p = 0.02, n = 400", xlim = c(0, .06))
     
par(mfrow = c(1, 1))

Once you’re done, you can reset the layout of the plotting window by using the command par(mfrow = c(1, 1)) command or clicking on “Clear All” above the plotting window (if using RStudio). Note that the latter will get rid of all your previous plots.

  1. If you refer to Table 6, you’ll find that Australia has a sample proportion of 0.1 on a sample size of 1040, and that Ecuador has a sample proportion of 0.02 on 400 subjects. Let’s suppose for this exercise that these point estimates are actually the truth. Then given the shape of their respective sampling distributions, do you think it is sensible to proceed with inference and report margin of errors, as the reports does?

For Ecuador the sample proportion of atheists is 0.02 with 400 observations, so the number of atheists in the sample is 8, which is not enough to assume nearly normal distribution and it may not be sensible to proceed with inteference. For Australia, with proportion of 0.1 and sample size of 1,040, the number of atheists in the sample is 104, so it is sensible to assume nearly normal distribution and proceed with inference.


On your own

The question of atheism was asked by WIN-Gallup International in a similar survey that was conducted in 2005. (We assume here that sample sizes have remained the same.) Table 4 on page 13 of the report summarizes survey results from 2005 and 2012 for 39 countries.

spain05 <- subset(atheism, nationality == "Spain" & year == "2005")
spain05$nationality <- as.factor(as.character(spain05$nationality))
table(spain05$nationality, spain05$response)
##        
##         atheist non-atheist
##   Spain     115        1031
spain12 <- subset(atheism, nationality == "Spain" & year == "2012")
spain12$nationality <- as.factor(as.character(spain12$nationality))
table(spain12$nationality, spain12$response)
##        
##         atheist non-atheist
##   Spain     103        1042

H0: The number of atheists in Spain did not change between 2005 and 2012, or p12=p05=0.1.

HA: The number of atheists in Spain changed between 2005 and 2012, or p12≠0.1.

inference(spain05$response, est = "proportion", type = "ci", method = "theoretical", 
          success = "atheist")
## Single proportion -- success: atheist 
## Summary statistics:

## p_hat = 0.1003 ;  n = 1146 
## Check conditions: number of successes = 115 ; number of failures = 1031 
## Standard error = 0.0089 
## 95 % Confidence interval = ( 0.083 , 0.1177 )
inference(spain12$response, est = "proportion", type = "ci", method = "theoretical", 
          success = "atheist")
## Single proportion -- success: atheist 
## Summary statistics:

## p_hat = 0.09 ;  n = 1145 
## Check conditions: number of successes = 103 ; number of failures = 1042 
## Standard error = 0.0085 
## 95 % Confidence interval = ( 0.0734 , 0.1065 )

THe confindence intervals overlap significantly indicating there is not a clear difference between the datasets

**b.** Is there convincing evidence that the United States has seen a
change in its atheism index between 2005 and 2012?
us05 <- atheism[atheism$nationality == "United States" & atheism$year == "2005",]
sum(us05$response == 'atheist')
## [1] 10
us12 <- atheism[atheism$nationality == "United States" & atheism$year == "2012",]
sum(us12$response == 'atheist')
## [1] 50
us <- atheism[atheism$nationality == "United States" & atheism$year %in% c("2012", "2005"),]

inference(us05$response, est = "proportion", type = "ci", method = "theoretical", 
          success = "atheist")
## Single proportion -- success: atheist 
## Summary statistics:

## p_hat = 0.01 ;  n = 1002 
## Check conditions: number of successes = 10 ; number of failures = 992 
## Standard error = 0.0031 
## 95 % Confidence interval = ( 0.0038 , 0.0161 )
inference(us12$response, est = "proportion", type = "ci", method = "theoretical", 
          success = "atheist")
## Single proportion -- success: atheist 
## Summary statistics:

## p_hat = 0.0499 ;  n = 1002 
## Check conditions: number of successes = 50 ; number of failures = 952 
## Standard error = 0.0069 
## 95 % Confidence interval = ( 0.0364 , 0.0634 )
inference(x = us$year, y = us$response, est = "proportion", type = "ht", method = "theoretical", alternative = "twosided", null = 0, success = "atheist")
## Warning: Explanatory variable was numerical, it has been converted to
## categorical. In order to avoid this warning, first convert your explanatory
## variable to a categorical variable using the as.factor() function.
## Response variable: categorical, Explanatory variable: categorical
## Two categorical variables
## Difference between two proportions -- success: atheist
## Summary statistics:
##              x
## y             2005 2012  Sum
##   atheist       10   50   60
##   non-atheist  992  952 1944
##   Sum         1002 1002 2004
## Observed difference between proportions (2005-2012) = -0.0399
## 
## H0: p_2005 - p_2012 = 0 
## HA: p_2005 - p_2012 != 0 
## Pooled proportion = 0.0299 
## Check conditions:
##    2005 : number of expected successes = 30 ; number of expected failures = 972 
##    2012 : number of expected successes = 30 ; number of expected failures = 972 
## Standard error = 0.008 
## Test statistic: Z =  -5.243 
## p-value =  0

For the united states the confidence intervals do not overlap so we can successfully reject the null hypothesis that the amount of atheists has not changed

This is a product of OpenIntro that is released under a Creative Commons Attribution-ShareAlike 3.0 Unported. This lab was written for OpenIntro by Andrew Bray and Mine Çetinkaya-Rundel.