Buildings energy use and industrial process emissions . Total residential floor area (smr) . Total commercial floor area (million smc) . Total floor area per capita (sm/capita) . Residential electricity, natural gas, cooking fuels, and heating fuels use . Commercial-industrial- government electricity, natural gas, other fuel use . Total waste generated in city
Transportation energy use . Allocated daily VKT (VKT/capita/day) . Fleet fuel efficiency . Volume of gasoline, diesel, and CNG used in road transport . Number of enplaned passengers at regional airport (domestic, international) . Jet fuel liters loaded into airplanes . Percentage of planes fueling at airport . Tonnes of long-distance freight and liters of fuel per ton moved . Energy used in rail transport
Materials use Volume of water used (i.e., pumped) . Energy used in pumping water . Volume of wastewater treated . Energy used in wastewater treatment . Percentage of water used for residential, commercial, and industrial uses . Food consumed/used in the community . Cement use in the community
data <- read.csv(file = "tbif.csv", header=TRUE);
library(datasets); require(stats); require(graphics);
data <-data[1:3,2:18];
summary(data);
## kWh.HH.mo L.LPG.HH.mo L.kerosene.HH.mo Total.MJ.HH.mo..end.use.
## Min. :253 Min. :18.8 Min. : 9.18 Min. :1438
## 1st Qu.:281 1st Qu.:30.7 1st Qu.: 9.72 1st Qu.:1464
## Median :310 Median :42.5 Median :10.26 Median :1489
## Mean :341 Mean :47.0 Mean :10.29 Mean :1684
## 3rd Qu.:386 3rd Qu.:61.1 3rd Qu.:10.84 3rd Qu.:1807
## Max. :462 Max. :79.8 Max. :11.42 Max. :2125
## Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.
## Min. :0.480
## 1st Qu.:0.545
## Median :0.610
## Mean :0.653
## 3rd Qu.:0.740
## Max. :0.870
## Total.Commercial.industrial.intensity.MJ.capita.yr..end.use.
## Min. : 2064
## 1st Qu.: 3297
## Median : 4530
## Mean : 5598
## 3rd Qu.: 7365
## Max. :10200
## Industrial.process..t.waste.capita.yr. Electricity.EF..kg.CO2.eq.kWh.
## Min. :1.30 Min. :0.820
## 1st Qu.:1.45 1st Qu.:0.895
## Median :1.60 Median :0.970
## Mean :1.63 Mean :0.940
## 3rd Qu.:1.80 3rd Qu.:1.000
## Max. :2.00 Max. :1.030
## Surface.travel.intensity..VKT.capita.day.
## Min. :4.10
## 1st Qu.:5.29
## Median :6.47
## Mean :6.46
## 3rd Qu.:7.63
## Max. :8.80
## Air.Travel..L.jet.fuel.enplaned.passenger
## Min. : 26.5
## 1st Qu.: 30.9
## Median : 35.2
## Mean : 71.0
## 3rd Qu.: 93.2
## Max. :151.2
## Water..treated.water.WW..1000.liters.capita.yr. GDP.capita....capita.
## Min. :14.3 Min. :6037
## 1st Qu.:15.3 1st Qu.:6544
## Median :16.4 Median :7050
## Mean :21.5 Mean :7477
## 3rd Qu.:25.1 3rd Qu.:8198
## Max. :33.9 Max. :9345
## Total.local.population..capita. Population.density..capita.km2.
## Min. : 1055450 Min. : 9252
## 1st Qu.: 6777725 1st Qu.: 9296
## Median :12500000 Median : 9340
## Mean :10385483 Mean :17640
## 3rd Qu.:15050500 3rd Qu.:21834
## Max. :17601000 Max. :34328
## Total.homes..HH. Total.commercial.floor.area..million.smc.
## Min. : 277000 Min. : 1.44
## 1st Qu.:2046052 1st Qu.:12.76
## Median :3815104 Median :24.08
## Mean :3030701 Mean :17.07
## 3rd Qu.:4407552 3rd Qu.:24.89
## Max. :5000000 Max. :25.70
## Total.floor.area.per.capita..sm.cap.
## Min. : 6.03
## 1st Qu.: 8.06
## Median :10.10
## Mean : 9.47
## 3rd Qu.:11.19
## Max. :12.28
Plots are as follows:
pairs(data,panel = panel.smooth, main = "
TBIF,
figure 4",pch=21,bg = c("red", "green", "white"));
Manipulate function
library(manipulate);
plotting two variables
Regression modelling
y<-data$Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.;
plot(data$Electricity.EF..kg.CO2.eq.kWh.,data$Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.,bg = c("red", "green", "white"),type="p",main = "figure 5",
col = "black", cex = 1.1, pch = 21,frame = FALSE)
abline(lm(Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use. ~ Electricity.EF..kg.CO2.eq.kWh., data = data), col="red")
legend("right", c("Delhi","Mumbai","Chandigarh"), pch = 21,pt.bg=c("red","green","white"),bg="white")
cor(data$Electricity.EF..kg.CO2.eq.kWh.,data$Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.)
## [1] -0.9986
fit <- lm(Electricity.EF..kg.CO2.eq.kWh. ~ Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use., data = data)
coef(fit)
## (Intercept)
## 1.295
## Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.
## -0.544
e <- resid(fit)
yhat <- predict(fit)
max(abs(e - (y - yhat)))
## [1] 0.55
Regression modelling b
y<-data$L.kerosene.HH.mo;
plot(data$Electricity.EF..kg.CO2.eq.kWh.,data$L.kerosene.HH.mo,bg = c("red", "green", "white"),type="p",main = "figure 6",
col = "black", cex = 1.1, pch = 21,frame = FALSE)
abline(lm(L.kerosene.HH.mo ~ Electricity.EF..kg.CO2.eq.kWh., data = data), col="red")
legend("right", c("Delhi","Mumbai","Chandigarh"), pch = 21,pt.bg=c("red","green","white"),bg="white")
cor(data$Electricity.EF..kg.CO2.eq.kWh.,data$L.kerosene.HH.mo)
## [1] 0.9656
fit <- lm(Electricity.EF..kg.CO2.eq.kWh. ~ L.kerosene.HH.mo, data = data)
coef(fit)
## (Intercept) L.kerosene.HH.mo
## -0.01905 0.09323
e <- resid(fit)
yhat <- predict(fit)
max(abs(e - (y - yhat)))
## [1] 10.39
Regression modelling c
y<-data$L.kerosene.HH.mo;
plot(data$Surface.travel.intensity..VKT.capita.day.,data$L.kerosene.HH.mo,bg = c("red", "green", "white"),type="p",main = "figure 7",
col = "black", cex = 1.1, pch = 21,frame = FALSE)
abline(lm(L.kerosene.HH.mo ~ Surface.travel.intensity..VKT.capita.day., data = data ), col="red")
legend("right", c("Delhi","Mumbai","Chandigarh"), pch = 21,pt.bg=c("red","green","white"),bg="white")
cor(data$Water..treated.water.WW..1000.liters.capita.yr. , data$L.LPG.HH.mo)
## [1] 0.9556
fit <- lm(Surface.travel.intensity..VKT.capita.day. ~ L.kerosene.HH.mo, data = data)
summary(fit)
##
## Call:
## lm(formula = Surface.travel.intensity..VKT.capita.day. ~ L.kerosene.HH.mo,
## data = data)
##
## Residuals:
## 1 2 3
## 0.0221 -0.0426 0.0205
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 28.0333 0.3402 82.4 0.0077 **
## L.kerosene.HH.mo -2.0975 0.0329 -63.7 0.0100 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0522 on 1 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 4.05e+03 on 1 and 1 DF, p-value: 0.01
coef(fit)
## (Intercept) L.kerosene.HH.mo
## 28.033 -2.098
e <- resid(fit)
yhat <- predict(fit)
max(abs(e - (y - yhat)))
## [1] 7.32
Regression modelling d
y<-data$L.kerosene.HH.mo;
plot(data$Air.Travel..L.jet.fuel.enplaned.passenger,data$L.kerosene.HH.mo,bg = c("red", "green", "white"),type="p",
main = "figure 8", col = "black", cex = 1.1, pch = 21,frame = FALSE)
abline(lm(L.kerosene.HH.mo ~ Air.Travel..L.jet.fuel.enplaned.passenger , data = data), col="red")
legend("right", c("Delhi","Mumbai","Chandigarh"), pch = 21,pt.bg=c("red","green","white"),bg="white")
cor(data$Air.Travel..L.jet.fuel.enplaned.passenger,data$L.kerosene.HH.mo)
## [1] -0.8862
fit <- lm(Air.Travel..L.jet.fuel.enplaned.passenger ~ L.kerosene.HH.mo, data = data)
coef(fit)
## (Intercept) L.kerosene.HH.mo
## 637.39 -55.06
e <- resid(fit)
yhat <- predict(fit)
max(abs(e - (y - yhat)))
## [1] 142
Regression modelling e
y<-data$L.kerosene.HH.mo;
plot(data$GDP.capita....capita.,data$L.kerosene.HH.mo,bg = c("red", "green", "white"),type="p",
main = "figure 9", col = "black", cex = 1.1, pch = 21,frame = FALSE)
abline(lm(L.kerosene.HH.mo ~ GDP.capita....capita., data = data), col="red")
legend("right", c("Delhi","Mumbai","Chandigarh"), pch = 21,pt.bg=c("red","green","white"),bg="white")
cor(data$GDP.capita....capita.,data$L.kerosene.HH.mo)
## [1] 0.9802
fit <- lm(GDP.capita....capita. ~ L.kerosene.HH.mo, data = data)
coef(fit)
## (Intercept) L.kerosene.HH.mo
## -7777 1483
e <- resid(fit)
yhat <- predict(fit)
max(abs(e - (y - yhat)))
## [1] 9334
Regression modelling f
y<-data$Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.;
plot(data$Electricity.EF..kg.CO2.eq.kWh.,data$Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.,bg = c("red", "green", "white"),type="p",main = "figure 10",
col = "black", cex = 1.1, pch = 21,frame = FALSE)
abline(lm(Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use. ~ Electricity.EF..kg.CO2.eq.kWh., data = data), col="red")
legend("right", c("Delhi","Mumbai","Chandigarh"), pch = 21,pt.bg=c("red","green","white"),bg="white")
cor(data$Electricity.EF..kg.CO2.eq.kWh.,data$Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.)
## [1] -0.9986
fit <- lm(Electricity.EF..kg.CO2.eq.kWh.~ Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use., data = data)
coef(fit)
## (Intercept)
## 1.295
## Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.
## -0.544
e <- resid(fit)
yhat <- predict(fit)
max(abs(e - (y - yhat)))
## [1] 0.55
Regression modelling g
y<-data$Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.;
plot(data$Surface.travel.intensity..VKT.capita.day.,data$Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.,bg = c("red", "green", "white"),type="p",
main = "figure 11", col = "black", cex = 1.1, pch = 21,frame = FALSE)
abline(lm(Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.~ Surface.travel.intensity..VKT.capita.day. , data = data), col="red")
legend("right", c("Delhi","Mumbai","Chandigarh"), pch = 21,pt.bg=c("red","green","white"),bg="white")
cor(data$Surface.travel.intensity..VKT.capita.day.,data$Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.)
## [1] 0.981
fit <- lm(Surface.travel.intensity..VKT.capita.day.~ Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use., data = data)
coef(fit)
## (Intercept)
## -1.128
## Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.
## 11.610
e <- resid(fit)
yhat <- predict(fit)
max(abs(e - (y - yhat)))
## [1] 7.93
Regression modelling h
y<-data$GDP.capita....capita.;
plot(data$Total.local.population..capita.,data$GDP.capita....capita.,bg = c("red", "green", "white"),type="p", main = "figure 12",
col = "black", cex = 1.1, pch = 21,frame = FALSE)
abline(lm(GDP.capita....capita. ~ Total.local.population..capita., data = data), col="red")
legend("right", c("Delhi","Mumbai","Chandigarh"), pch = 21,pt.bg=c("red","green","white"),bg="white")
cor(data$Total.local.population..capita.,data$GDP.capita....capita.)
## [1] -1
fit <- lm(Total.local.population..capita.~ GDP.capita....capita., data = data)
coef(fit)
## (Intercept) GDP.capita....capita.
## 47765619 -4999
e <- resid(fit)
yhat <- predict(fit)
max(abs(e - (y - yhat)))
## [1] 17594963
Regression modelling i
y<-data$Total.local.population..capita.;
plot(data$Total.commercial.floor.area..million.smc.,data$Total.local.population..capita.,bg = c("red", "green", "white"),type="p",main = "figure 13",
col = "black", cex = 1.1, pch = 21,frame = FALSE)
abline(lm(Total.local.population..capita. ~ Total.commercial.floor.area..million.smc., data = data), col="red")
legend("right", c("Delhi","Mumbai","Chandigarh"), pch = 21,pt.bg=c("red","green","white"),bg="white")
cor(data$Total.commercial.floor.area..million.smc.,data$Total.local.population..capita.)
## [1] 0.9699
fit <- lm(Total.commercial.floor.area..million.smc.~ Total.local.population..capita., data = data)
coef(fit)
## (Intercept) Total.local.population..capita.
## 9.494e-01 1.553e-06
e <- resid(fit)
yhat <- predict(fit)
max(abs(e - (y - yhat)))
## [1] 17600974
Regression modelling j
y<-data$Surface.travel.intensity..VKT.capita.day.;
plot(data$GDP.capita....capita.,data$Surface.travel.intensity..VKT.capita.day.,bg = c("red", "green", "white"),type="p",main = "figure 14",
col = "black", cex = 1.1, pch = 21,frame = FALSE)
abline(lm(Surface.travel.intensity..VKT.capita.day. ~ GDP.capita....capita., data = data), col="red")
legend("right", c("Delhi","Mumbai","Chandigarh"), pch = 21,pt.bg=c("red","green","white"),bg="white")
cor(data$GDP.capita....capita.,data$Surface.travel.intensity..VKT.capita.day.)
## [1] -0.9769
fit <- lm(GDP.capita....capita.~ Surface.travel.intensity..VKT.capita.day., data = data)
coef(fit)
## (Intercept)
## 12026.6
## Surface.travel.intensity..VKT.capita.day.
## -704.6
e <- resid(fit)
yhat <- predict(fit)
max(abs(e - (y - yhat)))
## [1] 9341
Regression modelling k
y<-data$Surface.travel.intensity..VKT.capita.day.;
plot(data$Total.local.population..capita.,data$Surface.travel.intensity..VKT.capita.day.,bg = c("red", "green", "white"),type="p", main = "figure 15",
col = "black", cex = 1.1, pch = 21,frame = FALSE)
abline(lm(Surface.travel.intensity..VKT.capita.day. ~ Total.local.population..capita., data = data), col="red")
legend("right", c("Delhi","Mumbai","Chandigarh"), pch = 21,pt.bg=c("red","green","white"),bg="white")
cor(data$Total.local.population..capita.,data$Surface.travel.intensity..VKT.capita.day.)
## [1] 0.9774
fit <- lm(Total.local.population..capita.~ Surface.travel.intensity..VKT.capita.day., data = data)
coef(fit)
## (Intercept)
## -12368285
## Surface.travel.intensity..VKT.capita.day.
## 3524074
e <- resid(fit)
yhat <- predict(fit)
max(abs(e - (y - yhat)))
## [1] 17600991
Regression modelling l
y<-data$Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.;
plot(data$Total.local.population..capita.,data$Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.,bg = c("red", "green", "white"),type="p", main = "figure 16",
col = "black", cex = 1.1, pch = 21,frame = FALSE)
abline(lm(Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use. ~ Total.local.population..capita., data = data), col="red")
legend("right", c("Delhi","Mumbai","Chandigarh"), pch = 21,pt.bg=c("red","green","white"),bg="white")
cor(data$Total.local.population..capita.,data$Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.)
## [1] 0.9179
fit <- lm(Total.local.population..capita.~ Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use., data = data)
coef(fit)
## (Intercept)
## -15203358
## Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.
## 39166593
e <- resid(fit)
yhat <- predict(fit)
max(abs(e - (y - yhat)))
## [1] 17600999
Regression modelling m
y<-data$Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.;
plot(data$GDP.capita....capita.,data$Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.,bg = c("red", "green", "white"),type="p",main = "figure 17",
col = "black", cex = 1.1, pch = 21,frame = FALSE)
abline(lm(Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use. ~ GDP.capita....capita., data = data), col="red")
legend("right", c("Delhi","Mumbai","Chandigarh"), pch = 21,pt.bg=c("red","green","white"),bg="white")
cor(data$GDP.capita....capita., data$Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.)
## [1] -0.917
fit <- lm(GDP.capita....capita.~ Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use., data = data)
coef(fit)
## (Intercept)
## 12591
## Total.Commercial.industrial.intensity.MJ.GDP.yr..end.use.
## -7827
e <- resid(fit)
yhat <- predict(fit)
max(abs(e - (y - yhat)))
## [1] 9345
Regression modelling n
y<-data$L.LPG.HH.mo;
plot(data$Total.MJ.HH.mo..end.use.,data$L.LPG.HH.mo,bg = c("red", "green", "white"),type="p",main = "figure 18",
col = c("red", "green", "white"), cex = 1.1, pch = 21,frame = FALSE)
abline(lm(L.LPG.HH.mo ~ Total.MJ.HH.mo..end.use., data = data), col="red")
legend("right", c("Delhi","Mumbai","Chandigarh"), pch = 21,pt.bg=c("red","green","white"),bg="white")
cor(data$L.LPG.HH.mo , data$Total.MJ.HH.mo..end.use.)
## [1] -0.8336
fit <- lm(Total.MJ.HH.mo..end.use.~ L.LPG.HH.mo, data = data)
coef(fit)
## (Intercept) L.LPG.HH.mo
## 2172.24 -10.38
e <- resid(fit)
yhat <- predict(fit)
max(abs(e - (y - yhat)))
## [1] 2106
As, correclation is >80%, it is highly correaltred and thus can be used with suitable accuracy
Regression modelling o
y<-data$L.LPG.HH.mo;
plot(data$Industrial.process..t.waste.capita.yr.,data$L.LPG.HH.mo,bg = c("red", "green", "white"),type="p",main = "figure 19",
col = "black", cex = 1.1, pch = 21,frame = FALSE)
abline(lm(L.LPG.HH.mo ~ Industrial.process..t.waste.capita.yr., data = data), col="red")
legend("right", c("Delhi","Mumbai","Chandigarh"), pch = 21,pt.bg=c("red","green","white"),bg="white")
cor(data$Industrial.process..t.waste.capita.yr., data$L.LPG.HH.mo)
## [1] -0.9779
fit <- lm(Industrial.process..t.waste.capita.yr.~ L.LPG.HH.mo, data = data)
coef(fit)
## (Intercept) L.LPG.HH.mo
## 2.15883 -0.01117
e <- resid(fit)
yhat <- predict(fit)
max(abs(e - (y - yhat)))
## [1] 78.5
As, correclation is >80%, it is highly correaltred and thus can be used with suitable accuracy
Regression modelling p
y<-data$L.LPG.HH.mo;
plot(data$Water..treated.water.WW..1000.liters.capita.yr.,data$L.LPG.HH.mo,bg = c("red", "green", "white"),type="p", main = "figure 20",
col = "black", cex = 1.1, pch = 21,frame = FALSE)
abline(lm(L.LPG.HH.mo ~ Water..treated.water.WW..1000.liters.capita.yr. , data = data), col="red")
legend("right", c("Delhi","Mumbai","Chandigarh"), pch = 21,pt.bg=c("red","green","white"),bg="white")
cor(data$Water..treated.water.WW..1000.liters.capita.yr. , data$L.LPG.HH.mo)
## [1] 0.9556
fit <- lm(Water..treated.water.WW..1000.liters.capita.yr.~ L.LPG.HH.mo, data = data)
coef(fit)
## (Intercept) L.LPG.HH.mo
## 5.7534 0.3352
e <- resid(fit)
yhat <- predict(fit)
max(abs(e - (y - yhat)))
## [1] 45.88
As, correclation is >80%, it is highly correaltred and thus can be used with suitable accuracy
data<-read.csv(file = "multiplied_by_ef.csv", header=TRUE);
data <- data[1:3,2:8];
fit <- lm(Total.GHGs ~ . , data = data)
fit1 <- aov(Total.GHGs~kWh.HH.mo,data=data)
fit2 <- aov(Total.GHGs~kWh.HH.mo+L.LPG.HH.mo,data=data)
fit2 <- update(fit, Total.GHGs~kWh.HH.mo+L.LPG.HH.mo)
fit3 <- update(fit, Total.GHGs~kWh.HH.mo+L.LPG.HH.mo+L.kerosene.HH.mo)
fit4 <- update(fit, Total.GHGs~kWh.HH.mo+L.LPG.HH.mo+L.kerosene.HH.mo+Industrial.process..t.waste.capita.yr.)
fit5 <- update(fit, Total.GHGs~kWh.HH.mo+L.LPG.HH.mo+L.kerosene.HH.mo+Industrial.process..t.waste.capita.yr.+Air.Travel..L.jet.fuel.enplaned.passenger)
fit6 <- update(fit, Total.GHGs~kWh.HH.mo+L.LPG.HH.mo+L.kerosene.HH.mo+Industrial.process..t.waste.capita.yr.+Air.Travel..L.jet.fuel.enplaned.passenger+Water..treated.water.WW..1000.liters.capita.yr.)
anova(fit,fit1,fit2,fit3,fit4,fit5,fit6)
## Analysis of Variance Table
##
## Model 1: Total.GHGs ~ kWh.HH.mo + L.LPG.HH.mo + L.kerosene.HH.mo + Industrial.process..t.waste.capita.yr. +
## Air.Travel..L.jet.fuel.enplaned.passenger + Water..treated.water.WW..1000.liters.capita.yr.
## Model 2: Total.GHGs ~ kWh.HH.mo
## Model 3: Total.GHGs ~ kWh.HH.mo + L.LPG.HH.mo
## Model 4: Total.GHGs ~ kWh.HH.mo + L.LPG.HH.mo + L.kerosene.HH.mo
## Model 5: Total.GHGs ~ kWh.HH.mo + L.LPG.HH.mo + L.kerosene.HH.mo + Industrial.process..t.waste.capita.yr.
## Model 6: Total.GHGs ~ kWh.HH.mo + L.LPG.HH.mo + L.kerosene.HH.mo + Industrial.process..t.waste.capita.yr. +
## Air.Travel..L.jet.fuel.enplaned.passenger
## Model 7: Total.GHGs ~ kWh.HH.mo + L.LPG.HH.mo + L.kerosene.HH.mo + Industrial.process..t.waste.capita.yr. +
## Air.Travel..L.jet.fuel.enplaned.passenger + Water..treated.water.WW..1000.liters.capita.yr.
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 0 0
## 2 1 736 -1 -736
## 3 0 0 1 736
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## 7 0 0 0 0
Summary of multi-variate Regression
summary(fit2)
##
## Call:
## lm(formula = Total.GHGs ~ kWh.HH.mo + L.LPG.HH.mo, data = data)
##
## Residuals:
## ALL 3 residuals are 0: no residual degrees of freedom!
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -83.49 NA NA NA
## kWh.HH.mo 1.60 NA NA NA
## L.LPG.HH.mo 0.63 NA NA NA
##
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: NaN
## F-statistic: NaN on 2 and 0 DF, p-value: NA
Scope and Uses of the Project
Two-variable Regression - To find the amount of GHGs contribution of an unknown variable when its relationship with another parameter is known
Multi-Variate Regression - To find the overall GHG production of a city or state when various contributors to GHGs are known
Scope of Improvement - Many More variables in the model - Using data of various cities and state to make a much better model - Also, using better regression by going into higher order regression modelling
Acknowledgement
We would like to thank Dr. B.R. Gurjar to give us and guide us in this project.
Thanks to Ajay Nagapure sir for his constatnt guidance by quick email replies
Road Ahead Working on this project to make a better and much more reliable model. Also, publishing research papers along the way.
Thanks