gateway_data = read.csv(file = "gateway survey.csv")
head(gateway_data)
projects = gateway_data$projects
knowledge = gateway_data$understanding
train = gateway_data$train
recommend = gateway_data$recommend
backlog_management = gateway_data$backlog.manage
sl_user_exp = gateway_data$sl.exp
customer_experience = gateway_data$customer.exp
story_refinement = gateway_data$refinement
client_story_acception = gateway_data$client.accept
client_todo = gateway_data$to.do
release_planning = gateway_data$release
sprint_planning = gateway_data$sprint.plan
sprint_management = gateway_data$sprint.manage
story_editing = gateway_data$story.edit
summary(gateway_data)
Order
Min. : 1
1st Qu.: 5
Median : 9
Mean : 9
3rd Qu.:13
Max. :17
NA's :100
How.many.projects.have.you.used.Gateway.on...Including.current.projects.
Min. :1.000
1st Qu.:1.000
Median :1.000
Mean :1.529
3rd Qu.:2.000
Max. :5.000
NA's :100
What.were.the.projects.you.worked.on.
:100
Baptist Health : 2
2 Clients (CS has a different sprint structure) Blend & Brand Share: 1
AIME : 1
Altium, Comm-Works, FFB, Doctors Only, Project Sunshine : 1
automotive Mastermind : 1
(Other) : 11
How.well.do.you.think.you.understand.how.to.use.the.Gateway.effectively.
Min. : 3.000
1st Qu.: 7.000
Median : 7.000
Mean : 7.176
3rd Qu.: 8.000
Max. :10.000
NA's :100
How.well.were.you.trained.on.using.the.Gateway.before.you.started.
Min. :1.000
1st Qu.:2.000
Median :3.000
Mean :3.353
3rd Qu.:4.000
Max. :7.000
NA's :100
How.likely.are.you.to.recommend.the.Gateway.to.be.used.on.your.future.projects.
Min. : 1.000
1st Qu.: 5.000
Median : 6.000
Mean : 6.118
3rd Qu.: 8.000
Max. :10.000
NA's :100
Backlog.management.organization Silverline.user.experience Customer.experience
Min. :1.000 Min. :1.000 Min. :2.000
1st Qu.:5.000 1st Qu.:3.000 1st Qu.:3.000
Median :7.000 Median :6.000 Median :5.500
Mean :5.824 Mean :5.235 Mean :5.438
3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.250
Max. :8.000 Max. :8.000 Max. :9.000
NA's :100 NA's :100 NA's :101
Story.refinement.with.clients Client.accepting.or.approving.stories
Min. :1.000 Min. :1.000
1st Qu.:2.750 1st Qu.:4.750
Median :5.500 Median :6.500
Mean :5.375 Mean :6.062
3rd Qu.:8.250 3rd Qu.:8.250
Max. :9.000 Max. :9.000
NA's :101 NA's :101
Managing.client..to.dos..and.tasks Release.planning Sprint.planning
Min. :1.000 Min. :1.000 Min. :1.000
1st Qu.:2.750 1st Qu.:2.750 1st Qu.:3.000
Median :5.000 Median :5.000 Median :6.000
Mean :4.562 Mean :4.312 Mean :5.267
3rd Qu.:6.250 3rd Qu.:5.250 3rd Qu.:7.000
Max. :9.000 Max. :7.000 Max. :8.000
NA's :101 NA's :101 NA's :102
Sprint.management Drafting.editing.user.stories X X.1
Min. :1.000 Min. : 1.000 Mode:logical Mode:logical
1st Qu.:4.500 1st Qu.: 3.000 NA's:117 NA's:117
Median :7.000 Median : 6.000
Mean :5.667 Mean : 5.647
3rd Qu.:7.500 3rd Qu.: 8.000
Max. :8.000 Max. :10.000
NA's :102 NA's :100
X.2 X.3 X.4 X.5 X.6
Mode:logical Mode:logical Mode:logical Mode:logical Mode:logical
NA's:117 NA's:117 NA's:117 NA's:117 NA's:117
CORRELATIONS BETWEEN PROJECT # AND…
cor(projects,knowledge,use = "complete.obs")
[1] 0.2202582
cor(projects,train,use = "complete.obs")
[1] 0.02786987
cor(projects,recommend,use = "complete.obs")
[1] 0.5166323
cor(projects,backlog_management,use = "complete.obs")
[1] 0.2188239
cor(projects,sl_user_exp,use = "complete.obs")
[1] 0.2302061
cor(projects,customer_experience,use = "complete.obs")
[1] 0.4241866
cor(projects,story_refinement,use = "complete.obs")
[1] 0.431916
cor(projects,client_story_acception,use = "complete.obs")
[1] 0.3592603
cor(projects,client_todo,use = "complete.obs")
[1] -0.3836408
cor(projects,release_planning,use = "complete.obs")
[1] 0.2239232
cor(projects,sprint_planning,use = "complete.obs")
[1] 0.3695943
cor(projects,sprint_management,use = "complete.obs")
[1] 0.3394514
cor(projects,story_editing,use = "complete.obs")
[1] 0.2059582
CORRELATIONS BETWEEN KNOWLEDGE AND…
cor(knowledge,projects,use = "complete.obs")
[1] 0.2202582
cor(knowledge,train,use = "complete.obs")
[1] 0.6983325
cor(knowledge,recommend,use = "complete.obs")
[1] 0.3466897
cor(knowledge,backlog_management,use = "complete.obs")
[1] 0.3915122
cor(knowledge,sl_user_exp,use = "complete.obs")
[1] 0.4420609
cor(knowledge,customer_experience,use = "complete.obs")
[1] 0.06624267
cor(knowledge,story_refinement,use = "complete.obs")
[1] 0.1987571
cor(knowledge,client_story_acception,use = "complete.obs")
[1] -0.004784829
cor(knowledge,client_todo,use = "complete.obs")
[1] 0.08693006
cor(knowledge,release_planning,use = "complete.obs")
[1] 0.1729495
cor(knowledge,sprint_planning,use = "complete.obs")
[1] 0.4410134
cor(knowledge,sprint_management,use = "complete.obs")
[1] 0.465234
cor(knowledge,story_editing,use = "complete.obs")
[1] 0.4064404
cor(gateway_data)
Order projects understanding train recommend
Order 1.00000000 0.17440562 -0.22152269 -0.40373128 -0.06585155
projects 0.17440562 1.00000000 0.27907630 0.08250413 0.51257233
understanding -0.22152269 0.27907630 1.00000000 0.66636902 0.45641501
train -0.40373128 0.08250413 0.66636902 1.00000000 0.35581369
recommend -0.06585155 0.51257233 0.45641501 0.35581369 1.00000000
backlog.manage 0.20687552 0.24604070 0.40711497 0.23840966 0.76130827
sl.exp 0.13266460 0.29821604 0.43081191 0.21323513 0.81172493
customer.exp 0.03568066 0.41094491 0.15492533 0.07851603 0.78215495
refinement 0.16319823 0.44426166 0.19448298 -0.03998555 0.77737611
client.accept 0.16799162 0.37762746 -0.05114363 -0.31155823 0.67913348
to.do 0.06412175 -0.36989871 0.02007012 0.02750934 0.45176146
release 0.21426326 0.19221462 0.36066361 0.10061945 0.72938144
sprint.plan -0.02135822 0.36959433 0.44101335 0.32645508 0.87920381
sprint.manage 0.09099236 0.33945143 0.46523401 0.41362919 0.84273732
story.edit 0.08164968 0.21859806 0.47369005 0.31578687 0.77944692
backlog.manage sl.exp customer.exp refinement client.accept
Order 0.2068755 0.1326646 0.03568066 0.16319823 0.16799162
projects 0.2460407 0.2982160 0.41094491 0.44426166 0.37762746
understanding 0.4071150 0.4308119 0.15492533 0.19448298 -0.05114363
train 0.2384097 0.2132351 0.07851603 -0.03998555 -0.31155823
recommend 0.7613083 0.8117249 0.78215495 0.77737611 0.67913348
backlog.manage 1.0000000 0.7899337 0.66175748 0.72870967 0.61974097
sl.exp 0.7899337 1.0000000 0.70950211 0.73308894 0.66067211
customer.exp 0.6617575 0.7095021 1.00000000 0.96408224 0.70751690
refinement 0.7287097 0.7330889 0.96408224 1.00000000 0.77172084
client.accept 0.6197410 0.6606721 0.70751690 0.77172084 1.00000000
to.do 0.6104070 0.3873788 0.49910606 0.52462739 0.38954104
release 0.9139770 0.7392495 0.72959078 0.80878525 0.68831096
sprint.plan 0.8271048 0.9033632 0.81294191 0.79844616 0.60958799
sprint.manage 0.8981582 0.8565604 0.65436914 0.68365049 0.53147962
story.edit 0.8683172 0.8298330 0.50241557 0.53504723 0.62534480
to.do release sprint.plan sprint.manage story.edit
Order 0.06412175 0.2142633 -0.02135822 0.09099236 0.08164968
projects -0.36989871 0.1922146 0.36959433 0.33945143 0.21859806
understanding 0.02007012 0.3606636 0.44101335 0.46523401 0.47369005
train 0.02750934 0.1006194 0.32645508 0.41362919 0.31578687
recommend 0.45176146 0.7293814 0.87920381 0.84273732 0.77944692
backlog.manage 0.61040703 0.9139770 0.82710484 0.89815817 0.86831720
sl.exp 0.38737877 0.7392495 0.90336322 0.85656036 0.82983297
customer.exp 0.49910606 0.7295908 0.81294191 0.65436914 0.50241557
refinement 0.52462739 0.8087852 0.79844616 0.68365049 0.53504723
client.accept 0.38954104 0.6883110 0.60958799 0.53147962 0.62534480
to.do 1.00000000 0.7252493 0.48757382 0.45889996 0.44247978
release 0.72524934 1.0000000 0.82636704 0.75135616 0.76741842
sprint.plan 0.48757382 0.8263670 1.00000000 0.86591533 0.77528618
sprint.manage 0.45889996 0.7513562 0.86591533 1.00000000 0.79609827
story.edit 0.44247978 0.7674184 0.77528618 0.79609827 1.00000000
str(gateway_data)
'data.frame': 15 obs. of 15 variables:
$ Order : int 1 2 4 5 6 7 8 9 10 11 ...
$ projects : int 1 1 2 2 1 2 3 1 1 1 ...
$ understanding : int 9 7 8 7 6 8 8 8 3 9 ...
$ train : int 7 1 5 4 2 4 3 4 1 5 ...
$ recommend : int 9 2 5 8 9 10 8 7 1 3 ...
$ backlog.manage: int 7 2 2 8 7 7 8 8 1 4 ...
$ sl.exp : int 7 1 2 8 5 7 6 7 1 3 ...
$ customer.exp : int 5 3 3 9 8 7 7 8 3 4 ...
$ refinement : int 3 2 2 9 9 7 8 9 1 3 ...
$ client.accept : int 5 4 2 7 9 9 8 8 6 1 ...
$ to.do : int 5 2 2 4 9 6 5 7 1 3 ...
$ release : int 5 2 2 5 6 5 7 7 1 3 ...
$ sprint.plan : int 8 2 3 8 6 6 8 7 1 3 ...
$ sprint.manage : int 8 1 3 8 7 7 7 8 1 4 ...
$ story.edit : int 10 1 2 8 6 9 7 6 1 3 ...