library(readr)
library(dplyr)
library(knitr)
library(kableExtra)
library(ggplot2)
VoterData<-read_csv("/Users/juliushunte/Downloads/VOTER_Survey_July17_Release1-csv copy.csv")
urbanreligon <-VoterData%>%
 mutate(Demographics = ifelse(urbancity_baseline==1,"City",
                        ifelse(urbancity_baseline==2,"Suburb",
                        ifelse(urbancity_baseline==3,"Town",
                        ifelse(urbancity_baseline==4,"Rural Area",
                        ifelse(urbancity_baseline==5,"Other",NA))))),
        imminaturalize = ifelse(immi_naturalize_baseline==1,"Favor",
                     ifelse(immi_naturalize_baseline==2,"Oppose",NA)),
        ft_muslims = ifelse(ft_muslim_2017==997,NA,ft_muslim_2017),
        ImmiMakeDiff = ifelse(immi_makedifficult_baseline==1,"Much easier",
                        ifelse(immi_makedifficult_baseline==2,"Slightly easier",
                        ifelse(immi_makedifficult_baseline==3,"No change",
                        ifelse(immi_makedifficult_baseline==4,"Slightly harder",
                        ifelse(immi_makedifficult_baseline==5,"Much harder",
                        ifelse(immi_makedifficult_baseline==8,"Not Sure",NA)))))))%>%
 select(Demographics,imminaturalize,ft_muslims,ImmiMakeDiff)


gridExtra::grid.arrange(
  urbanreligon%>%
      filter(imminaturalize=="Favor")%>%
      ggplot()+
      geom_histogram(aes(ft_muslims),fill="blue")+
      geom_vline(aes(xintercept=mean(urbanreligon$ft_muslims,na.rm=TRUE)))+
      ggtitle("Average Feelings towards Muslims for those who favor"),
  urbanreligon%>%
      filter(imminaturalize=="Oppose")%>%
      ggplot()+
      geom_histogram(aes(ft_muslims),fill="red")+
      geom_vline(aes(xintercept=mean(urbanreligon$ft_muslims,na.rm=TRUE)))+
      ggtitle("Average Feelings towards Muslims for those who oppose"),
  nrow=1)

urbanreligon%>%
      group_by(Demographics,imminaturalize)%>%
      summarize(n=n())%>%
      mutate(percent = n/sum(n))%>%
  filter(imminaturalize=="Favor")%>%
      kable()%>%
      kable_styling(latex_options = c("striped", "scale_down"), font_size = 11)
Demographics imminaturalize n percent
City Favor 1084 0.4798583
Other Favor 33 0.6470588
Rural Area Favor 482 0.3250169
Suburb Favor 1264 0.4210526
Town Favor 442 0.3873795
NA Favor 24 0.3750000
urbanreligon%>%
      group_by(Demographics,imminaturalize)%>%
      summarize(n=n())%>%
      mutate(percent = n/sum(n))%>%
  filter(imminaturalize=="Oppose")%>%
      kable()%>%
      kable_styling(latex_options = c("striped", "scale_down"), font_size = 11)
Demographics imminaturalize n percent
City Oppose 734 0.3249225
Other Oppose 7 0.1372549
Rural Area Oppose 691 0.4659474
Suburb Oppose 1145 0.3814124
Town Oppose 453 0.3970202
NA Oppose 21 0.3281250
urbanreligon%>%
  filter(Demographics %in% c("City","Rural Area"))
## # A tibble: 3,742 x 4
##    Demographics imminaturalize ft_muslims ImmiMakeDiff   
##    <chr>        <chr>               <int> <chr>          
##  1 Rural Area   <NA>                   61 No change      
##  2 City         Favor                  49 Much easier    
##  3 City         Favor                  NA Much easier    
##  4 City         Favor                 100 Slightly easier
##  5 City         Favor                  69 Slightly easier
##  6 Rural Area   Favor                  71 Slightly easier
##  7 Rural Area   Favor                  73 No change      
##  8 Rural Area   <NA>                   71 No change      
##  9 Rural Area   Favor                  90 Much easier    
## 10 City         Favor                  NA Slightly easier
## # ... with 3,732 more rows
prop.table(table(urbanreligon$Demographics))%>%
  kable()
Var1 Freq
City 0.2846522
Other 0.0064264
Rural Area 0.1868700
Suburb 0.3782762
Town 0.1437752
prop.table(table(urbanreligon$imminaturalize))%>%
  kable()
Var1 Freq
Favor 0.5217868
Oppose 0.4782132
chisq.test(urbanreligon$Demographics, urbanreligon$imminaturalize)
## 
##  Pearson's Chi-squared test
## 
## data:  urbanreligon$Demographics and urbanreligon$imminaturalize
## X-squared = 115.81, df = 4, p-value < 2.2e-16