###########################Analisis de insecticidas################# 
#######################dependidendo el numero de fractiles###########
library(readxl) #libreria para cargar datos de excel
library(profileR) #libreria para analsisi de paralelismo, planitud
## Loading required package: ggplot2
## Loading required package: RColorBrewer
## Loading required package: reshape
## Loading required package: lavaan
## This is lavaan 0.6-3
## lavaan is BETA software! Please report any bugs.
datos <- read_excel("C:/Users/Julian Gómez/Desktop/ggg.xlsx") #cargar datos
tratos <- c(rep("Cor50",5),rep("Cor100",5),rep("Cor500",5),rep("Krte300",5),rep("Agua",5)) #crear vector e tratamientos debe tener la misma longitud a la longitud de la base de datos por tratamiento

fpi <- function(BD,nfractiles){#Crear función donde BD es la base de datos y nfractiles es el numero de fractiles que se desea obtener
inter <- sum(datos[[1]])/(nfractiles+1) #se crea el tamaño de cada fratil
x <- matrix(nrow=length(BD), ncol=nfractiles) # se crea matriz vacia con tamaño longtud de datos por tratamiento y numero de fractiles
fractiles <- seq(inter,10,inter) #se crea el vector con los fractiles
for(j in 1:nfractiles){  #Se crea ciclo para que pase por todos los fractiles
  for(i in 1:length(BD)){ #Ciclo para realizar la lectura de la base de datos original
      x[i,j] = min(which(cumsum(BD[i])>=fractiles[j])) #Función que arroja el valor de tiempo de vida por fractil
  }}
return(x)
}

F25 <-fpi(datos,3)
F20 <-fpi(datos,4)
F15 <-fpi(datos,6)
F10 <-fpi(datos,9)
F05 <-fpi(datos,19)

######################## Anlisis de paralelismo ###############
mod25 <- pbg(data=F25,group=tratos,original.names=T, profile.plot=T)
## Warning in FUN(data[x, , drop = FALSE], ...): the standard deviation is
## zero

mod20 <- pbg(data=F20,group=tratos,original.names=T, profile.plot=T)
## Warning in FUN(data[x, , drop = FALSE], ...): the standard deviation is
## zero

mod15 <- pbg(data=F15,group=tratos,original.names=T, profile.plot=T)
## Warning in FUN(data[x, , drop = FALSE], ...): the standard deviation is
## zero

mod10 <- pbg(data=F10,group=tratos,original.names=T, profile.plot=T)
## Warning in FUN(data[x, , drop = FALSE], ...): the standard deviation is
## zero

#mod05 <- pbg(data=F05,group=tratos,original.names=T, profile.plot=T)
print(mod25) ;summary(mod25)
## 
## Data Summary:
##    Agua Cor100 Cor50 Cor500 Krte300
## V1  6.4    6.8   7.6    5.4       1
## V2 10.0    9.0   9.4    7.0       1
## V3 14.2   14.4  12.6   10.6       1
## Call:
## pbg(data = F25, group = tratos, original.names = T, profile.plot = T)
## 
## Hypothesis Tests:
## $`Ho: Profiles are parallel`
##   Multivariate.Test Statistic  Approx.F num.df den.df      p.value
## 1             Wilks 0.2071937  5.685310      8     38 9.059362e-05
## 2            Pillai 0.9901810  4.902765      8     40 2.890179e-04
## 3  Hotelling-Lawley 2.8737921  6.466032      8     36 3.318254e-05
## 4               Roy 2.4914389 12.457194      4     20 3.022446e-05
## 
## $`Ho: Profiles have equal levels`
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## group        4 307.09   76.77   30.63 2.84e-08 ***
## Residuals   20  50.13    2.51                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`Ho: Profiles are flat`
##          F df1 df2      p-value
## 1 76.60389   2  19 8.047447e-10
print(mod20) ;summary(mod20)
## 
## Data Summary:
##    Agua Cor100 Cor50 Cor500 Krte300
## V1  5.2    6.6   6.2    4.4       1
## V2  9.0    7.8   8.4    6.4       1
## V3 11.6   10.0  10.2    7.6       1
## V4 14.2   14.4  12.6   10.6       1
## Call:
## pbg(data = F20, group = tratos, original.names = T, profile.plot = T)
## 
## Hypothesis Tests:
## $`Ho: Profiles are parallel`
##   Multivariate.Test  Statistic  Approx.F num.df   den.df      p.value
## 1             Wilks 0.08002369  6.378422     12 47.91503 1.381826e-06
## 2            Pillai 1.45876299  4.732442     12 60.00000 2.216154e-05
## 3  Hotelling-Lawley 5.14590279  7.147087     12 50.00000 2.296960e-07
## 4               Roy 3.44650154 17.232508      4 20.00000 2.896511e-06
## 
## $`Ho: Profiles have equal levels`
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## group        4 284.09   71.02   29.36 4.06e-08 ***
## Residuals   20  48.38    2.42                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`Ho: Profiles are flat`
##          F df1 df2      p-value
## 1 69.67962   3  18 4.202441e-10
print(mod15) ;summary(mod15)
## 
## Data Summary:
##    Agua Cor100 Cor50 Cor500 Krte300
## V1  5.2    6.6   6.2    4.4       1
## V2  6.4    6.8   7.6    5.4       1
## V3 10.0    9.0   9.4    7.0       1
## V4 11.6   10.0  10.2    7.6       1
## V5 14.2   14.4  12.6   10.6       1
## V6 16.0   16.2  14.2   11.2       1
## Call:
## pbg(data = F15, group = tratos, original.names = T, profile.plot = T)
## 
## Hypothesis Tests:
## $`Ho: Profiles are parallel`
##   Multivariate.Test  Statistic  Approx.F num.df   den.df      p.value
## 1             Wilks 0.05777734  3.679425     20 54.01587 7.106274e-05
## 2            Pillai 1.69198851  2.785756     20 76.00000 7.080769e-04
## 3  Hotelling-Lawley 5.84635154  4.238605     20 58.00000 8.424797e-06
## 4               Roy 3.93419838 14.949954      5 19.00000 5.078570e-06
## 
## $`Ho: Profiles have equal levels`
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## group        4  330.3   82.57   37.14 5.43e-09 ***
## Residuals   20   44.5    2.22                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`Ho: Profiles are flat`
##          F df1 df2      p-value
## 1 42.81665   5  16 1.050757e-08
print(mod10) ;summary(mod10)
## 
## Data Summary:
##    Agua Cor100 Cor50 Cor500 Krte300
## V1  3.6    5.0   4.0    3.6       1
## V2  5.2    6.6   6.2    4.4       1
## V3  6.4    6.8   7.6    5.4       1
## V4  9.0    7.8   8.4    6.4       1
## V5 10.0    9.0   9.4    7.0       1
## V6 11.6   10.0  10.2    7.6       1
## V7 12.8   11.6  11.2    8.8       1
## V8 14.2   14.4  12.6   10.6       1
## V9 16.0   16.2  14.2   11.2       1
## Call:
## pbg(data = F10, group = tratos, original.names = T, profile.plot = T)
## 
## Hypothesis Tests:
## $`Ho: Profiles are parallel`
##   Multivariate.Test   Statistic  Approx.F num.df   den.df      p.value
## 1             Wilks  0.01068062  3.752878     32 49.53681 1.523307e-05
## 2            Pillai  2.06406945  2.132380     32 64.00000 5.057840e-03
## 3  Hotelling-Lawley 19.41542244  6.977417     32 46.00000 2.382062e-09
## 4               Roy 16.58868467 33.177369      8 16.00000 1.542044e-08
## 
## $`Ho: Profiles have equal levels`
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## group        4  280.3   70.08   31.22 2.42e-08 ***
## Residuals   20   44.9    2.24                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $`Ho: Profiles are flat`
##          F df1 df2      p-value
## 1 84.90767   8  13 5.775056e-10
#print(mod05) ;summary(mod05)